
Towards Interactive Bump Mapping with Anisotropic Shift-Variant BRDFs

Jan Kautz Hans-Peter Seidel

Max-Planck-Institute for Computer Science∗

Abstract

In this paper a technique is presented that combines interactive
hardware accelerated bump mapping with shift-variant anisotropic
reflectance models. An evolutionary path is shown how some
simpler reflectance models can be rendered at interactive rates on
current low-end graphics hardware, and how features from future
graphics hardware can be exploited for more complex models.

We show how our method can be applied to some well known
reflectance models, namely the Banks model, Ward’s model, and an
anisotropic version of the Blinn-Phong model, but it is not limited
to these models.

Furthermore, we take a close look at the necessary capabilities
of the graphics hardware, identify problems with current hardware,
and discuss possible enhancements.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors; I.3.3 [Computer Graphics]:
Picture/Image Generation—Bitmap and frame buffer operations;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, Shading, Shadowing and Texture

1 Introduction

Blinn [2] has shown how wrinkled surfaces can be simulated by
only perturbing the normal vector, without changing the underlying
surface itself. The perturbed normal is then used for the lighting
calculations instead of the original normal. This technique is gen-
erally called bump mapping. A simple lighting model such as the
Phong model [21] or the Blinn-Phong model [3] is usually used for
the lighting calculations.

Recently, hardware accelerated bump mapping has been intro-
duced, which is capable of rendering diffuse and specular reflec-
tions. For the diffuse reflection a lambertian surface is assumed and
for the specular reflection the Blinn-Phong model is used, since in
both cases only an (exponentiated) dot-product needs to be com-
puted, which can be done with either the OpenGL imaging sub-
set [8, 22] or e.g. with NVIDIA’s register combiner extension [11].

These hardware accelerated bump mapping techniques only al-
low to vary the specular coefficient of the Blinn-Phong model freely
(using an additional so-called gloss map, which is simply modu-
lated onto the bump map), whereas the Phong exponent, which con-

∗{kautz,hpseidel}@mpi-sb.mpg.de, Im Stadtwald, 66123 Saarbrücken,
Germany.

trols the sharpness of the highlight, has to remain constant across a
polygon.

Moreover, the Blinn-Phong model in its original form can only
model a very limited number of materials, hence it is desirable to
be able to use other more general reflectance models.

Hardware accelerated techniques, which allow the usage of more
complex [8] or almost arbitrary [10] bidirectional reflectance func-
tions (BRDFs) have already been developed. These methods can
only handle BRDFs that are shift-invariant across a polygon and
the local coordinate frame is only allowed to change smoothly (lo-
cal coordinate frames are specified per vertex rather than per pixel),
i.e. they cannot be used for bump mapping or rapidly changing
anisotropy.

The per pixel computation of dot-products is now becoming
available even on low-end graphics hardware, such as the NVIDIA
GeForce 256. Dependent texture lookup (also known as Pixel Tex-
tures [23]), which allows to use one texture map to contain indices,
which are then used to index into another texture map, is expected
to be readily available by the end of the year.

We propose a technique that evaluates BRDFs on a per-pixel ba-
sis using these two capabilities at interactive rates, even if the local
surface coordinate frame and the material properties (i.e the param-
eters of the BRDF) are allowed to vary per pixel. For approxima-
tions of some simpler lighting models it is even sufficient to have
the possibility to do per-pixel dot-products.

The basic idea we use is simple. A given analytical lighting
model is broken up into complex functions that cannot be computed
by the graphics hardware. These functions are sampled and stored
in texture maps. Each of the functions depends on some parameters
which need to be computed from surface and material properties,
such as the local coordinate frame, roughness of the surface, and
so on. For every pixel of the surface these properties are stored in
texture maps. The computation of the parameters of the complex
functions depends on the used reflectance model, but requires only
simple math, such as dot-products and multiplications, which can
be done in hardware, since dependent texturing is used to perform
all complex operations. The computed parameters are then used
to index into the sampled complex functions using a dependent tex-
ture lookup, which effectively evaluates them. Finally the evaluated
functions are recombined, depending on how they were broken up,
e.g. using multiplication or addition.

This allows us to render surfaces at interactive rates, where the
tangents and normals as well as the parameters of the reflectance
model can change per pixel, which is equivalent to bump mapping
with a shift-variant anisotropic BRDF. For instance, it is possible to
render a roughly brushed surface with small bumps or to render a
knife with a blade that has only a few scratches.

2 Related Work

Hardware accelerated rendering techniques for bump mapping,
which was originally introduced by Blinn [2], have recently been
proposed. A technique called embossing [15] uses a multipass
method that works on traditional graphics hardware and is capable
of rendering diffuse and specular reflections. The bump map needs
to be specified as heights in a texture map. Dot-product bump map-

ping, which is also called normal mapping, is also used to render
diffuse and specular reflections from small surface bumps. It di-
rectly stores the normals of the surface in texture maps [8, 28], but
needs some more advanced hardware feature, namely the ability to
compute dot-products per pixel.

Dedicated hardware support for bump mapping has also been
proposed or even implemented [5, 16, 20]. A more general ap-
proach was used by Olano and Lastra [19], who have built graphics
hardware that can run small shading programs and is therefore also
capable of doing bump mapping. Pixel textures have already been
shown to be useful in a variety of different applications [9].

Many BRDF models have been proposed over the past years. We
will only briefly mention a few that we are using throughout this pa-
per. The widely used Phong model [21], which is neither physically
plausible nor empirical, has been modified by Blinn [3] to make it
visually more satisfying. Ward [27] has introduced an anisotropic
BRDF model that is based on an anisotropic Gaussian micro-facet
distribution. Banks [1] has proposed a BRDF which assumes small
fibers along the given tangent, resulting in anisotropic reflections.

Hardware accelerated rendering usually uses the Blinn-Phong
model, because of its mathematical simplicity. Recently new
techniques have been developed to incorporate other more com-
plex BRDF models. Heidrich and Seidel [8] factored the Banks
model [1] and the Cook-Torrance model [4] analytically and put
the factors into texture maps. Texture mapping was then used to
reconstruct the original models. Kautz and McCool [10] first repa-
rameterized BRDFs and then decomposed them numerically. The
reconstruction was also done using texture mapping. Both meth-
ods assume smoothly varying normals and tangents, i.e. they can
neither be used with bump mapping, nor can the parameters of the
reflectance model vary.

So far, it has not been possible to achieve interactive per-pixel
shading with varying surface and material properties, which our
method is capable of.

3 Mapping Reflectance Models to Graph-
ics Hardware

Our method works as illustrated in Figure 1. First, a given ana-
lytical BRDF is decomposed into sub-functions, e.g. square root,
exponentiation and other complex computations which are not sup-
ported by the hardware. We sample these complex functions and
put them into texture maps, which will be used later on. In case
of Figure 1, we have two two-dimensional texture maps, one for
F (s, t) = exp s

t
and one forG(u, v) =

√
u
v.

The parameters of the functions are computed from the sur-
face and material properties, which are allowed to vary per pixel,
e.g. the normal, the tangent, the binormal, the surface roughness,
anisotropy, and so on. These varying properties are stored in tex-
ture maps, which we will callmaterial textures from now on. The
viewing and light directions are also usually used in the compu-
tation of the parameters, but need not to be stored in texture maps,
since they only vary smoothly, e.g. they can be specified as the color
at the vertices.

The computation of the function parameters is done in the
parameter stage. For instance, this can be implemented with
NVIDIA’s register combiner extension [18] or with a combination
of multiple passes, blending, and the color matrix of the OpenGL
imaging subset [22], see Section 4 for a detailed example. In our
example from Figure 1 three parameters have to be computed using
dot-products and one is directly read from the texture map.

After the function parameters have been computed, they are used
for a dependent texture lookup1. The dependent lookup corre-
sponds to evaluating the complex functions which originally could

1Dependent texture lookup is currently only available on SGI Octanes

not be computed by the graphics hardware. The results of the de-
pendent texture lookups are combined (e.g. multiplication or addi-
tion, depending on how the BRDF was broken up) and we have
evaluated the BRDF.

Some reflectance models can be modified so that the dependent
texture lookup is not needed at all, making our method work with
current hardware, see the next subsections.

The type of reflectance models that can be used with this method
is highly dependent on the operations supported by the graphics
hardware in the parameter stage. We limit ourselves to models that
can be computed with either the register combiners or with multiple
passes and the color matrix.

t

texture lookup
dependent

b.t .lv α

material textures

parameter
stage

α

 F(s,t) * G(u,v)

v l.bexp(/)*sqrt() modeltn l ..

n b

.ln

reflectance

complex functions
decomposition into

sample and store
 F(s,t) G(u,v) in texture map

v

re
nd

er
in

g
pr

ec
al

cu
la

tio
n

F(s,t) = exp(s/t) G(u,v) = sqrt(u)

α

Figure 1:Example of how our method works conceptually.

In the rest of this section we will show how our method can be
applied to the Banks model, to an anisotropic version of the Blinn-
Phong model, and to Ward’s model. We also propose an approx-
imation to the Banks model and the Blinn-Phong model so that it
can be used without the dependent texture lookup.

Note that we will assume graphics hardware that can compute
dot-products in some way and for Ward’s model we assume support
for two dimensional dependent texture lookups. We will only take
a look at the specular part of the BRDFs, since the diffuse reflection
can be simply added with a diffuse bump mapping step, see [8, 11]
for example. Furthermore, we assume that the surfaces are lit with
either a point light source or with a directional light source.

3.1 Banks Model

The first model that we use is the anisotropic Banks model [1]
(specular part only):

Lo = ks · (n̂ · l̂)+

(√
1− (v̂ · t̂)2

√
1− (l̂ · t̂)2 − (v̂ · t̂)(l̂ · t̂)

)+

wherev̂ is the global viewing direction,̂l is the global light direc-
tion, {n̂, t̂, n̂ × t̂} is the local coordinate frame,ks is the specular
coefficient, and(a)+ means thata is clamped to zero, ifa < 0.

The Banks model is an ad-hoc model, which is not physically
based. It assumes small fibers along the given tangent, resulting in
anisotropic reflections.

Since this model mainly uses dot-products we only need depen-
dent texture lookups for the square roots. We use the function
R(s) :=

√
1− s, which we sample in the range[0, 1] and put

in the form of Pixel Textures [23], but is expected to be available on other
graphics hardware by the end of the year.

it into a one dimensional texture map. We can rewrite the Banks
model using this function:

Lo = ks · (n̂ · l̂)+
(
R
(
(v̂ · t̂)2)R((l̂ · t̂)2)− (v̂ · t̂)(l̂ · t̂)

)+

.

All the other parts of the reflectance model can be computed
using a combination of dot-product computations (using register
combiners or the color matrix) and blending operations. Only one
two dimensional texture map is needed for storing the tangents and
the specular coefficient.

If desired, it is possible to use an approximation of this model in
order to make it work on current graphics hardware. The function
R(s) can be approximated withR∗(s) := (1−s), which is a crude
approximation, but avoids the dependent texture lookup completely,
since it can be computed directly with the graphics hardware. See
Section 6 for results using the Banks model.

3.2 Anisotropic Blinn-Phong Model

Blinn [3] modified the original Phong model [21] so that it achieves
more realistic reflections:

Lo = ks(ĥ · n̂)N ,

whereĥ is the normalized halfway vector between the light and the
viewing direction,n̂ is the local surface normal,ks is the specular
coefficient, andN controls the sharpness of the highlight. This
is the model that is usually used for hardware accelerated bump
mapping. We will rewrite the model so that it is anisotropic and that
it has more parameters that influence the shape of the highlight.

With Pythagoras’ theorem the above dot-product can be ex-
pressed the following way:

ĥ · n̂ =

(√(
1− (ĥ · t̂)2 − (ĥ · b̂)2

)+
)N

.

The model can be made anisotropic by prolonging the tangent
and the binormal by a certain amount, which is similar to the
anisotropic formulation used by Kindlmann and Weinstein [12]:

Lo = ks


√√√√(1−

(
ĥ · t̂

αx

)2

−

(
ĥ · b̂

αy

)2)+

N

,

where the parametersαx/y ∈ [0, 1] are used to control the
anisotropy and the sharpness of the highlight. The smaller these
values are, the sharper the highlight is.

This model uses two functions that are not supported by cur-
rent graphics hardware: the square root and the exponentiation.
These functions can be modeled with one two dimensional depen-
dent texture lookup, whereN is used as one parameter and the re-
sult of the expressione that is inside the square root is used as the
other parameter of the lookup. So we have to sample the function
F (N, e) := (

√
e)N and store it as a texture map. The expressione

can be evaluated in the parameter stage using current graphics hard-
ware. We need to store the tangents and the binormals (already di-
vided byαx respectivelyαy) in two two dimensional texture maps.
The parametersN andks can be stored in the alpha channel of the
texture maps.

Since we have an additional set of parametersαx/y that are used
to control the sharpness of the highlight, it is not necessary anymore
to use the parameterN at all. If desired, we can use the same idea
as before and approximate the square root with the identity func-
tion. This simplification eliminates the necessity to use dependent

texturing and the modified model can thus be used on current graph-
ics hardware. See Section 4 for two rendering algorithms using this
model and see Section 6 for some renderings done at interactive
rates.

3.3 Ward’s Model

Ward [27] has introduced a mathematical simple but physically
meaningful BRDF model:

fr := ks
1√

(l̂ · n̂)(v̂ · n̂)

1

4παxαy
· exp

−2

(
ĥ·t̂
αx

)2

+
(
ĥ·b̂
αy

)2

1 + ĥ · n̂

 ,

whereĥ is the halfway vector between the light and the viewing
direction,{n̂, t̂, b̂} is the local coordinate frame,ks is the specular
coefficient,αx/y control the sharpness of the highlight (the smaller
the sharper), and the ratioαx : αy controls the anisotropy. The
outgoing radiance is computed the following way:Lo = fr·(n̂·l̂)+.

Ward also measured the BRDFs of real materials and fitted his
model to the measured data, which are available in [27].

This model needs to be broken up into two complex functions:

S(p) :=
1
√
p
,

E(m, d) := exp(−2
m

1 + d
),

which leads to the following equation:

Lo =
ks

4παxαy
· S(p) · E(m, d) · (n̂ · l̂)+.

The two complex functions cannot be computed with graphics
hardware, while the other operations are supported. So we sample
these functions over their domain and store them in texture maps,
which are then used during the dependent texture lookup. The pa-
rametersp,m, andd are computed in the parameter stage:

p = (l̂ · n̂)(v̂ · n̂),

m =

(
ĥ · t̂

αx

)2

+

(
ĥ · b̂

αy

)2

,

d = ĥ · n̂.

It is necessary to store the following data in texture maps: one tex-
ture map for t̂

αx
, one for b̂

αy
, one for n̂, andks/(4παxαy) can

for example be stored in the alpha channel of one of the other tex-
ture maps. The light, viewing, and halfway vectors are varying
smoothly and can be specified per vertex.

3.4 Other models

Obviously this technique can be applied to other BRDF models as
long as they can be broken up into functions which depend on a
maximum ofn parameters, withn being the maximum dimension
of the supported dependent texture lookup. Furthermore the graph-
ics hardware must be able to compute the parameters of these func-
tions.

4 Rendering

Here we would like to discuss the algorithm that we used to render
surfaces with the anisotropic Blinn-Phong model in order to iden-
tify problems when using our method with current graphics hard-
ware. Note that the rendering algorithm for other models is similar.

We will present the rendering algorithm for the simplified Blinn-
Phong model, which does not need the dependent texture lookup:

Lo = ks

(
1−

(
ĥ · t̂

αx

)2

−

(
ĥ · b̂

αy

)2)+

. (1)

As already mentioned before, we need to store the tangentt̂
αx

in

one texture map and the binormalb̂
αy

in a second texture map.
These material textures define the reflective properties of the sur-

face. For instance, if a single scratch is to be modeled on a glossy
surface, the tangents should be aligned along the scratch and the
αx should be small compared toαy giving an anisotropic highlight
along the scratch. The rest of the surface can be made isotropic by
usingαx = αy.

The vectorŝt and b̂ can either be specified in a global coordi-
nate system, which means that the surface which this material is
applied to has to be known in advance (including geometry, ori-
entation, and position), which has the big disadvantage that these
texture maps can only be applied to one specific surface. Or the
vectors can be specified in a local coordinate system, which allows
to reuse the material textures for different surfaces. But then the
viewing and light direction need to be converted into the same local
coordinate system before they can be used [11]. Nonetheless we
choose to specify the vectors of all material textures in the same
local coordinate system to be able to reuse the material textures.

We will now discuss two algorithms, one using the register com-
biner extension and one using the color matrix of the OpenGL
imaging subset.

4.1 Register Combiners

Register combiners offer some limited programmability in the mul-
titexturing stage. The supported features include the computation
of dot-products and signed arithmetic [18].

Using these features, it is quite simple to implement the Blinn-
Phong model in one pass. For a given polygon, viewer and point
light source (or also directional light source) we compute the light
and viewing vectors at every vertex. Then we compute the halfway
vector for every vertex and transform it into the local coordinate
system of the used material texture. At every vertex the local
halfway vector is then specified as the color.

Both material textures are loaded once into texture memory us-
ing the multitexturing extension [22]. Some attention has be paid
to the dynamic range of the stored vectors. Usually all components
of a normalized vector are in the range[−1, 1], but in our case the
vectors are divided component-wise with theαx/y values, which
are less or equal 1, making the possible dynamic range quite large.
In order to limit this range, we are not allowing theαx/y to be
smaller than0.25. We scale all the material textures by0.25 so
that the range is again[−1, 1]. This way only two bits of precision
are lost and rescaling by a factor of 4 is supported by the register
combiner extension. Furthermore, we scale and bias the textures so
that the range becomes[0, 1] to conform with the allowed range for
texture maps (the register combiners map it back to[−1, 1]).

Now we can set up the register combiners. In the first stage we
compute the dot-product of the vector stored in first texture (con-
tains the tangent divided byαx) with the interpolated color (thêh
vector), scale it by four, and output it to the first spare register. In

the same stage we also compute the dot-product of the second tex-
ture (contains the binormal divided byαy) with the ĥ vector, scale
it by four, and output it to the second spare register. In the second
stage we compute the squares of both dot-products, add them, and
output them again to the first spare register. In the final combiner
stage we subtract the first spare register from 1. Now we render the
polygon and the register combiners evaluate Equation 1 for every
pixel.

4.2 Imaging Subset

The imaging subset [22] supports the application of a4× 4 matrix
(called color matrix) to each pixel in an image while it is trans-
ferred to or from the frame buffer or to texture memory. Using this
color matrix it is possible to compute dot-products. Furthermore a
color lookup table can be applied to the result of the color matrix
computation, which can be used to compute squares for instance.

We will use the color matrix to compute the dot-product between
the halfway vector̂h and the tangents/binormals stored in texture
maps, and the color lookup table to square the results. Since the
color matrix is constant while it is applied to a texture, only dot-
products between a constant vector (stored in the color matrix) and
vectors stored in a texture map can be computed. Hence it is nec-
essary to use a directional light source, to assume an orthogonal
viewer (at least per polygon), and to use flat surfaces only (i.e. same
normal at all vertices), or otherwise the halfway vector would vary
over the polygon. Again, the halfway vector has to be computed by
hand.

The material textures need to be scaled and biased the same way
as before, since the values of a texture must be in[0, 1]. It is not
necessary to limit the smallestαx/y to 0.25 though. In fact, if float-
ing point textures are used, they can become as small as floating
point precision allows, since the color matrix also works with float-
ing point precision.

Rendering is a bit more complicated, needing three passes this
time. For every polygon, we set up the the color matrix such that
it computes the dot-product between the (constant) halfway vector
and the vectors stored in the texture map. At the same time the color
matrix has to compensate for the scaling and biasing of the texture
map. We also define a color lookup table which squares the result
of the color matrix computation. Then we load the first texture
map (contains the tangent divided byαx) into the texture memory,
which computes the square of the dot-product withĥ. We render
the polygon with this texture map into the frame buffer. Now the
second texture map (contains the binormal divided byαy) is loaded
to texture memory computing the second dot-product and squaring
it. We set blending to addition and render the polygon again, which
now adds the second squared dot-product on top. Afterwards the
subtract blend extension is used to subtract the intermediate result
from one. Now Equation 1 has been evaluated for every pixel of the
rendered polygon.

5 Hardware Issues

There are a few problems with the current graphics hardware that
limit the application of our method. We will discuss these issues
with the help of current OpenGL extensions.

Imaging subset. The imaging subset [22] offers a simple way
to apply a4× 4 matrix to vectors which are stored in texture maps.
This 4 × 4 matrix can also be used to compute dot-products. The
precision is high, since the color matrix uses floating point arith-
metic, but in its current implementation no signed results are pos-
sible. Moreover, loading textures and applying the color matrix is
expensive.

The imaging subset is one way of doing the computations in the
parameter stage, but with its limitations it is necessary to assume
a directional light source, an orthogonal viewer, and flat surfaces
(i.e. same normal at all vertices), which makes reflections from
curved objects look unrealistic.

The imaging subset also supports color lookup tables after the
color matrix has been applied. This lookup table can be seen as a
one dimensional dependent texture lookup. But its application is
limited, because the indices for the lookup can only be computed
using the color matrix.

Multitexturing. Multitexturing [24] provides a means to com-
bine multiple different textures in one rendering pass. The pos-
sible operations usually include multiplication and addition of tex-
tures. The current implementations of multitexturing do not support
signed arithmetic, making it too limited for our technique (register
combiners are an exception). Furthermore most current implemen-
tations of multitexturing are limited to two texture maps.

Register combiners.The register combiner extension [18] pro-
vides a very wide range of operations that are supported during the
multitexturing stage. Those operations include dot-products, multi-
plications, sums, differences and signed arithmetic.

The only currently available hardware implementing the register
combiner extension (NVIDIA GeForce 256 and NVIDIA Quadro)
is limited to 8+1 bits of precision and can only compute a lim-
ited number of operations during one multitexturing step. The sup-
ported range of values is limited to[−1, 1] for all intermediate re-
sults. Some support for scaling intermediate results is available,
which can be used to handle larger ranges (see rendering algorithm
in Section 4.1), but with the limited precision this can only be used
to some extent.

Figure 2:Bilinear interpolation in the register combiners can cause
visible artefacts. Both images were rendered using the anisotropic
Blinn-Phong model, the left image using a software renderer and
the right image using the register combiners. The additional rings
around the bumps (right image) are due to the interpolation.

Since the register combiner work during the multitexturing stage,
the values fed into the register combiners are already filtered bilin-
early (if filtering is turned off, textures will look blocky). Bilinear
filtering is reasonable for color values, but it causes problems with
arbitrary data, such as vectors and material properties. See Fig-
ure 2 for an example, where the interpolation of tangent vectors
causes visible artefacts. The main problem is that the stored data
is interpolated before its used, instead of being used first and then
interpolated. A renormalization cube map [11] can be used for in-
terpolation problems with normalized vectors, but this technique
cannot be extended to other data types.

Despite these problems, the register combiner provide a very
convenient method of computing the parameters in the parameter
stage.

Pixel textures. Pixel textures [23], available on SGI Octanes,
are the only way of doing dependent texture lookups at the moment.
The image that contains the indices has to be written using glDraw-
Pixels, which are used to index into the current active texture map.
This is a rather complicated and bandwidth-intensive method to do

dependent texture lookups, which needs many copies to and from
the host memory, because all intermediate results that are used as
indices (parameters of functions in our case) have to be first written
to the frame buffer and then read to host memory in order to apply
the pixel textures.

5.1 Discussion

A blend of different features would be necessary for a better sup-
port of our technique. The register combiners have been proven to
be a good way to implement flexible operations in the multitextur-
ing stage. More stages, more concurrent texture maps and higher
precision would make them even more useful.

Both rendering algorithms presented in Section 4 have one prob-
lem in common. The possibly needed relative viewing, light, and
halfway vectors have to be computed by hand at every vertex. This
by itself is not ideal, but furthermore it keeps one from using dis-
play lists, since these vectors change for every new viewing, light,
or object position. Rendering speed could be significantly improved
if these values were automatically fed into the multitexturing stage,
which has already been proposed in a similar way by McCool and
Heidrich [14]. It would also be helpful if these vectors were in-
terpolated using correct spherical interpolation, since the currently
supported bilinear interpolation can lead to highlight aliasing across
polygon boundaries unless a high tessellation is used.

As seen in Figure 2, the bilinearly interpolated material textures
can cause severe visible artefacts. Unfortunately, this is not an easy
problem to fix. All calculations (such as dot-products) should work
on the stored valuesbefore they are interpolated. Bilinear interpo-
lation shouldthen be applied to the result of the specified compu-
tations. Unfortunately, this solution cannot be easily integrated into
the multitexturing stage without changing the concept of it.

Dependent texture lookups should be implemented in such a way
that an easy use is possible, for example inside the multitextur-
ing/register combiner stage, although an efficient hardware imple-
mentation is difficult due to possible memory stalls.

Dependent texture lookups could be avoided in certain cases if
the multitexturing stage was able to compute more complex func-
tions like square roots or divisions. Obviously, the set of necessary
functions depends on the BRDFs that are to be used, but dot prod-
uct, square root, division and exponentiation seem to be likely can-
didates. However, it is unclear if more complex functions should be
added or if dependent texture lookups should be used. On the one
hand the access pattern of the dependent texture lookup is possibly
irregular and therefore resulting in memory stalls but this highly
depends on the given bump map. On the other hand the per-pixel
computation of complex functions such as divisions is very expen-
sive.

6 Results

Here we would like to show different images that were rendered
using our technique. Unless stated otherwise, all the images were
rendered in two rendering passes (diffuse and specular pass) on an
NVIDIA GeForce 256 using the modified anisotropic Blinn-Phong
model (no square root and no exponentiation) at interactive rates
(15–25Hz).

Figure 3 shows a single polygon that has scratches along both
axes. Depending on the direction of the incoming light, one can see
scratches along one axis or the other, or if lit from top, scratches in
both directions are visible.

In Figure 4 two spheres are depicted, one which was roughly
brushed longitudinally and one latitudinally. One can clearly see
how anisotropic highlights occur depending on the orientation of
the scratches.

Figure 3:A single polygon with scratches along both axes, lit from different directions.

Figure 4:Two spheres with scratches in different directions. Each
sphere consists of 2500 triangles.

More complex materials can also be rendered using the
anisotropic Blinn-Phong model. In Figure 5 you can see a sphere
with slightly brushed bumpy gold. In Figure 6 you can see a mar-
ble sphere with elevated “veins”. The marble itself reflects slightly
more light in the darker parts, which was done by increasingαy in
the darker parts. The material textures for the marble can be seen
in Figure 7.

Figure 5:Gold and bumpy sphere.

Finally we would like to compare different lighting models.
In Figure 8 a polygon with the same slightly brushed bump map
was rendered using the Blinn-Phong model, the Banks model, and

Figure 6: Marble sphere with elevated “veins” using the shift-
variant Blinn-Phong model.

Figure 7: Material textures for the marble sphere. The left image
shows the tangents divided by αx and the right image shows the
binormals divided by αy .

Ward’s model. The Banks and Ward’s model were simulated in
software, because of the lacking dependent texturing.

7 Conclusions

We have presented a technique which enables hardware accelerated
bump mapping with anisotropic shift-variant BRDFs. This tech-
nique allows the local coordinate frame as well as the parameters
of the BRDF model to change on a per-pixel basis.

Our method is general enough to handle a wide range of BRDFs,
provided that dependent texture lookups are supported. It can still

Figure 8:The same bump mapped surface was rendered with different lighting models. From left to right: Banks model, anisotropic Blinn-
Phong, Ward’s model.

be applied to certain BRDFs, even if this feature is not supported.
Namely, we propose an approximation to an anisotropic version of
the Blinn-Phong model and to the Banks model, which can be then
used on current graphics hardware.

We have found that todays graphics hardware has some limi-
tations which may introduce visible artefacts. We have discussed
possible enhancements how these limitations could be overcome in
future graphics hardware.

There is still a lot of research to be done in this area. Alias-
ing problems have not been dealt with at all, being still an issue
for all bump mapping algorithms. Mip-mapping, a commonly used
technique to avoid aliasing artefacts, is already difficult to use with
traditional hardware accelerated bump mapping algorithms, but it is
especially difficult if complex BRDF models are used, since it is un-
clear how the material textures should be mip-mapped. A straight-
forward solution would be to fit a given BRDF model to each pixel
of each mip-mapping level, which is not a simple task.

Furthermore it is not clear how the material properties (local co-
ordinate frame, BRDF parameters) can be obtained. Measuring
shift-variant BRDFs is generally possible, but requires the mea-
surement of a six dimensional function. It is also conceivable that
an artist “draws” these properties using special software, but this
software does not exist yet.

8 Acknowledgements

We would like to thank Wolfgang Heidrich for proofreading and
discussing the paper.

References

[1] BANKS, D. Illumination in Diverse Codimensions. InPro-
ceedings SIGGRAPH(July 1994), pp. 327–334.

[2] BLINN , J. Simulation of Wrinkled Surfaces. InProceedings
SIGGRAPH(Aug. 1978), pp. 286–292.

[3] BLINN , J. Models of Light Reflection For Computer Syn-
thesized Pictures. InProceedings SIGGRAPH(July 1977),
pp. 192–198.

[4] COOK, R., AND TORRANCE, K. A Reflectance Model
for Computer Graphics. InProceedings SIGGRAPH(Aug.
1981), pp. 307–316.

[5] ERNST, I., RÜSSELER, H., SCHULZ, H., AND WITTIG ,
O. Gouraud Bump Mapping. InEurographics/SIGGRAPH
Workshop on Graphics Hardware(1998), pp. 47–54.

[6] HAEBERLI, P.,AND SEGAL, M. Texture Mapping As A Fun-
damental Drawing Primitive. InFourth Eurographics Work-
shop on Rendering(June 1993), Eurographics, pp. 259–266.

[7] HEIDRICH, W. High-quality Shading and Lighting for
Hardware-accelerated Rendering. PhD thesis, Universität
Erlangen-N̈urnberg, 1999.

[8] HEIDRICH, W., AND SEIDEL, H. Realistic, Hardware-
accelerated Shading and Lighting. InProceedings SIG-
GRAPH(Aug. 1999), pp. 171–178.

[9] HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND
ERTL, T. Applications of Pixel Textures in Visualization and
Realistic Image Synthesis. InSymposium on Interactive 3D
Graphics(1999).

[10] KAUTZ , J., AND MCCOOL, M. Interactive Rendering with
Arbitrary BRDFs using Separable Approximations. InTenth
Eurographics Workshop on Rendering(June 1999), pp. 281–
292.

[11] K ILGARD , M. A Practical and Robust Bump-mapping Tech-
nique for Today’s GPUs. NVIDIA Corporation, April 2000.
Available from http://www.nvidia.com.

[12] K INDLMANN , G., AND WEINSTEIN, D. Hue-Balls and Lit-
Tensors for Direct Volume Rendering of Diffusion Tensor
Fields. InIEEE Visualization ’99(October 1999).

[13] LAFORTUNE, E., FOO, S.-C., TORRANCE, K., AND
GREENBERG, D. Non-Linear Approximation of Reflectance
Functions. InProceedings SIGGRAPH(Aug. 1997), pp. 117–
126.

[14] MCCOOL, M., AND HEIDRICH, W. Texture Shaders. In1999
SIGGRAPH / Eurographics Workshop on Graphics Hardware
(August 1999), pp. 117–126.

[15] MCREYNOLDS, T., BLYTHE , D., GRANTHAM , B., AND
NELSON, S. Advanced Graphics Programming Techniques
Using OpenGL. InSIGGRAPH ’98 Course Notes(July 1998).

[16] M ILLER , G., HALSTEAD, M., AND CLIFTON, M. On-
the-fly Texture Computation for Real-Time Surface Shading.
IEEE Computer Graphics & Applications 18, 2 (Mar.–Apr.
1998), 44–58.

[17] NEIDER, J., DAVIS , T., AND WOO, M. OpenGL - Program-
ming Guide. Addison-Wesley, 1993.

[18] NVIDIA C ORPORATION. NVIDIA OpenGL Extension Spec-
ifications, Oct. 1999. Available from http://www.nvidia.com.

[19] OLANO , M., AND LASTRA, A. A Shading Language on
Graphics Hardware: The PixelFlow Shading System. InPro-
ceedings SIGGRAPH(July 1998), pp. 159–168.

[20] PEERCY, M., A IREY, J., AND CABRAL , B. Efficient Bump
Mapping Hardware. InProceedings SIGGRAPH(Aug. 1997),
pp. 303–306.

[21] PHONG, B.-T. Illumination for Computer Generated Pic-
tures. Communications of the ACM 18, 6 (June 1975), 311–
317.

[22] SEGAL, M., AND AKELEY, K. The OpenGL Graphics Sys-
tem: A Specification (Version 1.2.1), 1999.

[23] SILICON GRAPHICS INC. Pixel Texture Extension,
Dec. 1996. Specification document, available from
http://www.opengl.org.

[24] SILICON GRAPHICS INC. Multitexture Extension,
Sept. 1997. Specification document, available from
http://www.opengl.org.

[25] TORRANCE, K., AND SPARROW, E. Theory for Off-Specular
Reflection From Roughened Surfaces.Journal of the Optical
Society of America 57, 9 (Sept. 1967), 1105–1114.

[26] VOORHIES, D., AND FORAN, J. Reflection Vector Shading
Hardware. InProceedings SIGGRAPH(July 1994), pp. 163–
166.

[27] WARD, G. Measuring and modeling anisotropic reflection. In
Proceedings SIGGRAPH(July 1992), pp. 265–272.

[28] WESTERMANN, R., AND ERTL, T. Efficiently Using Graph-
ics Hardware in Volume Rendering Applications. InProceed-
ings SIGGRAPH(July 1998), pp. 169–178.

	Introduction
	Related Work
	Mapping Reflectance Models to Graphics Hardware
	Banks Model
	Anisotropic Blinn-Phong Model
	Ward's Model
	Other models

	Rendering
	Register Combiners
	Imaging Subset

	Hardware Issues
	Discussion

	Results
	Conclusions
	Acknowledgements

