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Abstract. Point cloud registration sits at the core of many important
and challenging 3D perception problems including autonomous naviga-
tion, SLAM, object/scene recognition, and augmented reality. In this
paper, we present a new registration algorithm that is able to achieve
state-of-the-art speed and accuracy through its use of a Hierarchical
Gaussian Mixture representation. Our method, Hierarchical Gaussian
Mixture Registration (HGMR), constructs a top-down multi-scale rep-
resentation of point cloud data by recursively running many small-scale
data likelihood segmentations in parallel on a GPU. We leverage the
resulting representation using a novel optimization criterion that adap-
tively finds the best scale to perform data association between spatial
subsets of point cloud data. Compared to previous Iterative Closest Point
and GMM-based techniques, our tree-based point association algorithm
performs data association in logarithmic-time while dynamically adjust-
ing the level of detail to best match the complexity and spatial distri-
bution characteristics of local scene geometry. In addition, unlike other
GMM methods that restrict covariances to be isotropic, our new PCA-
based optimization criterion well-approximates the true MLE solution
even when fully anisotropic Gaussian covariances are used. Efficient data
association, multi-scale adaptability, and a robust MLE approximation
produce an algorithm that is up to an order of magnitude both faster
and more accurate than current state-of-the-art on a wide variety of 3D
datasets captured from LiDAR to structured light.

1 Introduction

Point cloud registration is the task of aligning two or more point clouds by es-
timating the relative transformation between them, and it has been an essential
part of many computer vision algorithms such as 3D object matching [8], local-
ization and mapping [30], dense 3D reconstruction of a scene [29], and object
pose estimation [31].

Recently point set registration methods [38] have been gaining more impor-
tance due to the growing commercial interest of virtual and mixed reality [25],
commercial robotics, and autonomous driving applications [17,23]. In most of
these applications, massive amounts of 3D point cloud data (PCD) are directly
captured from various active sensors (i.e., LiDAR and depth cameras) but at dif-
ferent times under different poses or local coordinate systems. The task of point
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cloud registration is then to try to find a common coordinate system, which is
done by estimating some type of geometric similarity in the point data that can
be recovered through optimization over a set of spatial transformations.

One of the oldest and most widely used registration algorithms, Iterative
Closest Point (ICP) [1,3], is based on an iterative matching process where point
proximity establishes candidate point pair sets. Given a set of point pairs, the
rigid transformation that minimizes the sum of squared point pair distances
can be calculated efficiently in closed form. ICP and its dozens of variants [34]
often fail to produce correct results in many common but challenging scenarios,
where the presence of noise, uneven point density, occlusions, or when large pose
displacements can cause a large proportion of points to be without valid matches.

Compared to traditional ICP-based approaches, much research has been done
on the use of statistical models for registration, which in principle can pro-
vide better estimates for outlier rejection, convergence, and geometric match-
ing [15,39,27]. In particular, many statistical methods have been designed around
the Expectation Maximization (EM) algorithm [7] as it has been shown that EM
generalizes the ICP algorithm under a few basic assumptions [35,16]. Many sta-
tistical registration techniques have explicitly utilized this paradigm to deliver
better robustness and accuracy [6,13,16,18], but these algorithms tend to be
much slower than ICP and often offer only marginal improvement in all but a
few specific circumstances. As a result, ICP-based methods are still heavily used
in practice for many real-world applications.

Our proposed method falls into the category of GMM-based statistical reg-
istration algorithms. We tackle the typical shortcomings of these methods, slow
speeds and lack of generality, by adopting an efficient hierarchical construction
for the creation of an adaptive multi-scale point matching process. Efficiency:
The search over multiple scales as a recursive tree-based search produces a highly
performant logarithmic-time algorithm that quickly and adaptively finds the
most appropriate level of geometric detail with which to match points. Gener-
ality: By using a data-driven point matching procedure over multiple scales,
our proposed algorithm can automatically adapt to many different types of
scenes, particularly with real-world data where widely varying sampling sparsity
and scene complexity are common. Finally, we introduce a novel Mahalanobis
distance approximation resembling ICP’s point-to-plane distance minimization
metric, which more faithfully approximates the true MLE solution under general
anisotropic covariances than previous methods.

2 Related Work

Our method builds on previous work in GMM-based methods for registration
such as GMM-Reg [21][19], JRMPC [13], and MLMD [9], while also leveraging re-
cent results using hierarchical GMMs for point cloud modeling [10]. By adopting
a GMM-based paradigm, we gain robustness in situations of large pose displace-
ment, optimal solutions in the form of maximum likelihood estimates, and an
ability to more easily leverage point-level parallelism on GPUs. By augmenting
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Method
Mult.
Link

Aniso-
tropic

Multi-
Scale

Data
Trans.

Assoc.
Complex.

Opt.
Complex.

ICP [1] – N2 N

SoftAssign [15] X X† – N2 N2

EM-ICP [16] X X kd-tree N logN N2

LM-ICP [14] grid approx. N N
KC [40] X grid approx. N V

TrICP [4] voxels N2

V
N

FICP [32] kd-tree N logN N
G-ICP [35] X kd-tree N logN N
CPD [27] X FGT N N2

ECMPR [18] X X FGT N N

GMMReg [20] X X† FGT N N2

NDT-P2D [37] X X X voxels+kd-tree N log V N
NDT-D2D [37] X X X voxels+kd-tree V log V V

REM-Seg [11] X X X† GMM NJ N
MLMD [9] X X GMM NJ J

SVR [2] X X† GMM‡ N2 ∼ N3 J
JRMPC [12] X GMM NJ J
HGMR X X X GMM-Tree N log J log J ∼ J

† Implicitly multi-scale via annealing, ‡ Conversion to GMM via SVM
Table 1. A Comparison of Registration Methods. Multiply Linked : Many-to-one
or many-to-many correspondences, Anisotropic: General shape alignment using unre-
stricted covariance structures, Multi-Scale: Registration at multiple levels of granular-
ity, Data Transform: Underlying data structure or transform, Association Complexity :
Complexity of data association problem over all N points (E Step in the case of EM-
based methods), Optimization Complexity : Size of the optimization problem (M Step
in the case of EM-based methods). Assuming both point clouds size N , number of
voxels/grid points V , and number of mixture components J .

the GMM into a hierarchy, we can efficiently compress empty space, achieve
logarithmic-time matching, and perform robust multi-scale data analysis.

The earliest statistical methods placed an isotropic covariance around every
point in the first set of points and then registered the second set of points to it
under an MLE framework (MPM [6], EM-ICP [16], CPD [27,28]). More modern
statistical approaches utilize a generative model framework, where a GMM is
usually constructed from the points explicitly and registration is solved in an
MLE sense using an EM or ECM [26] algorithm (REM-Seg [11], ECMPR [18],
JRMPC [13], MLMD [9]), though some utilize a max correlation or L2 distance
approach (Kernel Correlation [40], GMM-Reg [21,19], SVR[2], NDT-D2D[36]).
Since a statistical framework for point cloud registration tends to be more heavy-
weight than ICP, techniques such as decimation (EM-ICP [16]), voxelization
(NDT methods [36,37]), or Support Vector Machines (SVR [2]) have been used
to create smaller or more efficient models, while others have relied on compu-
tational tricks such as the Fast Gauss Transform (CPD [27], ECMPR [18]), or
have devised ways to exploit point-level parallelism and GPU-computation for
increased computational tractability and speed (MLMD [9], parallelized EM-
ICP [39]).
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(a) (b) (c) (d)

Fig. 1. Multi-Scale Representation using a Hierarchy of Gaussian Mixtures:
Top-row shows identical geometries (black lines) and associated points (blue circles),
which are represented by different levels of Gaussian models (green contour for 1 σ.)
(a) (Top) Ideal Normals (red arrows) on the surfaces, (b) Too coarse (only two Gaus-
sians in Level 2): poor segmentation leads to incorrect normals, which will degrade
accuracy when registering points to model, (c) Too fine (using finest level of Gaus-
sian models): over-segmentation leads to erroneous normals as sample noise overtakes
real facet geometry (d) Adaptive multi-scale (Mixture of level 3 and level 4 models):
point-to-model association can be much more robust when fidelity adaptively changes
according to data distribution so that facets can be well-modeled given differing spatial
frequencies and sampling densities.

In contrast to these statistical model-based approaches, modern robust vari-
ants of point-to-plane ICP (e.g. Trimmed ICP [5], Fractional ICP [32]) are often
much faster and sometimes perform nearly as well, especially under real-world
conditions [33]. See Table 1 for a detailed comparison of key registration al-
gorithms utilizing the ICP and GMM paradigms. Our proposed method offers
favorable complexity over both classes of algorithms due to its novel use of a
GMM-Tree structure, without needing to resort to discretization strategies like
the NDT-based methods.

3 Registration as Expectation Maximization

The Expectation Maximization (EM) algorithm forms the theoretical foundation
for most modern statistical approaches to registration and also generalizes ICP
under certain basic assumptions. EM is commonly employed for MLE optimiza-
tion in the case where directly maximizing the data likelihood for the sought
after variable is intractable, but maximizing the expected joint data likelihood
conditioned on a set of latent variables is tractable. For the registration case,
the sought after variable is the transformation T between point clouds and the
latent variables are the point-model associations.

The problem is set up as follows: Given point clouds Z1 and Z2, we would
like to maximize the data probability of Z2 under a set of transformations T
with respect to a probability model ΘZ1

derived from the first point cloud Z1.

T̂ = argmax
T

p(T (Z2)|Θ̂Z1
) (1)
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That is, the most likely estimate of the transformation T̂ is the estimate that
maximizes the probability that the samples of the transformed point cloud T (Z2)
came from some probabilistic representation of spatial likelihood (parameterized

by Θ̂) derived from the spatial distribution of the first point cloud Z1. The
most common form for parametrizing this probability distribution is through a
Gaussian Mixture Model (GMM), whose data probability is defined as a convex
combination of J Gaussians weighted by the J-component vector π,

p(z|ΘZ1) =

J∑
j=1

πjN (z|Θj) (2)

The derivation of the probability model ΘZ1 may be as simple as statically
setting an isotropic covariance around each point in Z1 (e.g. EM-ICP [16]), or as
complicated as framing the search forΘZ1

as a completely separate optimization
problem (e.g. SVR [2], MLMD [9]). Regardless of how the model is constructed,
however, EM provides an iterative procedure to solve for T through the introduc-
tion of a set of latent correspondence variables C = {cij} that dictate how points
zi ∈ Z2 probabilistically associate to the J subcomponents Θj of the model
ΘZ1

. Intuitively, we can view EM as a statistical generalization of ICP: The E
Step estimates data associations, replacing ICP’s matching step, while the M
Step maximizes the expected likelihood conditioned on these data associations,
replacing ICP’s distance minimization step over matched pairs.

In the E Step, we use Bayes’ rule to calculate expectations over the corre-
spondences. For a particular point zi, its expected correspondence to Θj (E[cij ])
can be calculated as follows,

E[cij = 1] =
πjN (zi|Θj)∑J
k=1 πkN (zi|Θk)

(3)

Generally speaking, larger model sizes (larger J) produce more accurate reg-
istration results since larger models have more representational fidelity. However,
large models produce very slow registration algorithms: Given N points in Z2,
Equation 3 must be calculated N × J times for each subsequent M Step. For
methods that utilize models of size J ≈ O(N) (e.g. EM-ICP [16], CPD [27],
GMMReg [21]), this causes a data association complexity of O(N2) and thus
these algorithms have problems scaling beyond small point cloud sizes.

To combat this scaling problem, our approach builds from recent advances
in fast statistical point cloud modeling via hierarchical generative models [10].
In this approach, point cloud data is modeled via a GMM-Tree, which is built
in a top-down recursive fashion from small-sized Gaussian Mixtures. This GPU-
based approach can produce high-fidelity GMM-Trees in real-time, but given
that they were originally designed to optimize reconstructive fidelity and for
dynamic occupancy map generation, it is not obvious how to adapt these models
for use in a registration setting. That is, we must derive a way to associate new
data to the model and then use the associations to drive an optimization over
T . As such, we can use their model construction algorithm in order to construct
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ΘZ1
from Z1 (see [10] for details), but we must derive a separate and new EM

algorithm to use these GMM-Tree models for registration.

4 Hierarchical Gaussian Mixture Mahalanobis Estimation

In this section, we review our proposed approach for hierarchical GMM-based
registration under a new EM framework. In Section 4.1 we discuss our new E
Step for probabilistic data association that utilizes the GMM-Tree representation
for point clouds, and in Section 4.2 we introduce a new optimization criterion
to approximate the MLE T for rigid transformations.

4.1 E Step: Adaptive Tree Search

Our proposed E Step uses a recursive search procedure to perform probabilistic
data association in logarithmic time. We also introduce an early stopping heuris-
tic in order to select the most appropriate scale at which to associate data to
the hierarchical model.

The GMM-Tree representation from [10] forms a top-down hierarchy of 8-
component GMM nodes, with each individual Gaussian component in a node
having its own 8-component GMM child. Thus, a particular node in the GMM-
Tree functions in two ways: first, as a probabilistic partition of the data and
second, as a statistical description of the data within a partition. We exploit both
of these properties in our proposed E Step by using the partitioning information
to produce an efficient search algorithm and by using the local data distributions
as a scale selection heuristic.

Algorithm 1 E Step for Registration

1: procedure E step adaptive(Z2, ΘZ1)
2: for zi ∈ Z2 in parallel do
3: searchID ← −1, γ ← {0, 0, 0, 0, 0, 0, 0, 0}
4: for l = 0 to L− 1 do // L is max tree level

5: G ← Children(searchID) // Children(-1)
def
= {0..7}

6: for j ∈ G do // for each child in subtree
7: γ[j] ∝ πjN (zi|Θj) // calculate data-model expectation
8: end for
9: searchID ← argmaxj∈G γ[j] // Update with most likely association

10: if Complexity(Θ[searchID])) ≤ λc then
11: break // early stopping heuristic to prune clusters too simple
12: end if
13: end for
14: // Accumulate 0th, 1st, 2nd moments {M0

j ,M
1
j ,M

2
j } for next M Step

15: {M0
j ,M

1
j ,M

2
j } ←Accumulate(M0

j ,M
1
j ,M

2
j , γ[searchID], zi)

16: end for
17: return {M0

j ,M
1
j ,M

2
j }

18: end procedure
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Logarithmic Search Each level in the GMM-Tree forms a statistical segmen-
tation at finer levels of granularity and detail. Crucially, the expectation of a
point zi to a particular Gaussian component Θj is exactly the sum of the ex-
pectations of that point to its child GMM. Thus, if we query a parent node’s
point-model expectation and it falls under a threshold, we can effectively prune
away all its children’s expectations, thus avoiding calculating all N × J proba-
bilistic associations. Refer to Algorithm 1 for details. In our implementation, we
only traverse down the maximum likelihood path at each step. By utilizing the
hierarchy in this way, we can recursively search through the tree in logarithmic
time (O(log J)) to calculate a point’s expectation. This is opposed to previous
registration algorithms using traditional GMM’s, where a linear search much be
performed over all mixture components (O(J)) in order to match data to the
model.
Multiscale Adaptivity Real-world point clouds often exhibit large spatial dis-
crepancies in sampling sparsity and geometric complexity, and so different parts
of the scene may benefit from being represented at different scales when perform-
ing point-scene association. Refer to Figure 1 for an overview of this concept.
Under a single scale, the point cloud modeling and matching process might suc-
cumb to noise or sampling inadequacies if the given modeling fidelity is not
appropriate to the local data distribution.

To take advantage of the GMM-Tree multiscale representation and prevent
overfitting, we make a check for the current mixture component’s geometric
complexity and stop early if this condition is not met. This complexity check
acts as a heuristic for proper scale selection. We implement our complexity func-
tion (Complexity(·) in Algorithm 1, L10) as λ3

λ1+λ2+λ3
for each covariance where

λ1 ≥ λ2 ≥ λ3 are its associated eigenvalues. We experimentally set our adaptive
threshold, λC = 0.01 for all experiments. This means we terminate the search
at a particular scale if the current cluster associated to the point becomes too
planar: when 1% or less of its variance occurs along its normal direction. Exper-
imentally, we have found that if we recurse further, we will likely start to chase
noise.

Figure 2 shows a graphical depiction of what our adaptive threshold looks
like in practice. The Gaussian mixture components break down the point cloud
data at a static tree level of 2 (J = 64) and 3 (J = 512) as compared to
an adaptive model that is split into different recursion levels according to a
complexity threshold λC = 0.01. The points are color coded according to their
expected cluster ownership. Note that the adaptive model has components of
both levels of the GMM hierarchy according how smooth or complex the facet
geometry is. The ability to adapt to changing levels of complexity allows our M
Step to always use a robustly modeled piece of geometry (cf. Figure 1).

4.2 M Step: Mahalanobis Estimation

In this section, we will derive a new M Step for finding the optimal transforma-
tion T between a point set Z2 and an arbitrary GMM Θ̂Z1

representing point
set Z1.
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(a) GMM-Tree L2 (64
components)

(b) Adaptive L4 (λC = 0.01)
(c) GMM-Tree L3 (512

components)

Fig. 2. Scale Selection using a GMM-Tree To show qualitatively how scale selec-
tion works, we first build a model over a crop (couch, plant, and floor) of the Stanford
Scene Lounge dataset [42]. We then associate random colors to each mixture component
and color each point according to its data-model expectation. (a) shows this coloring
given a static recursion level of 2 in the GMM-Tree, while (c) shows this coloring for
a static recursion level of 3. We contrast this with (b), which shows our adaptively
scale-selected model containing components at varying levels of recursion depending
on the local properties of the mixture components. The scale selection process provides
our Mahalanobis estimator (Sec. 4.2) robust component normals, preventing the use
of over-fitted or under-fitted mixture components and resulting in a more accurate
registration result.

First, given N points zi and J clusters Θj ∈ Θ̂Z1
, we introduce a N × J

set of point-cluster correspondences C = {cij}, so that the full joint probability
becomes

ln p(T (Z), C|Θ) =

N∑
i=1

J∑
j=1

cij{lnπj + lnN (T (zi)|Θj)} (4)

We iterate between E and M Steps. On the E Step, we calculate γij
def
= E[cij ]

under the current posterior. On the M Step, we maximize the expected data log
likelihood with respect to T while keeping all γij fixed,

T̂ = argmax
T

Ep(C|T (Z),Θ)[ln p(T (Z), C|Θ)] (5)

= arg min
T

∑
ij

γij(T (zi)− µj)TΣ
−1
j (T (zi)− µj) (6)

From this construction, we see that the most likely transformation T between
point sets is the one that minimizes the weighted sum of squared Mahalanobis
distances between points of Z2 and individual clusters of ΘZ1

, with weights
determined by calculating expected correspondences given the current best guess
for T̂ .

As shown mathematically in previous work [18,13,16,9], if we restrict T solely
to the set of all rigid transformations (T ∈ SE(3)) we can further reduce the
double sum over both points and clusters into a single sum over clusters. This
leaves us with a simplified MLE optimization criterion over weighted moments,



HGMR: Hierarchical Gaussian Mixture Registration 9

T̂ = arg min
T

∑
j

M0
j

(
T

(
M1
j

M0
j

)
− µj

)T
Σ−1j

(
T

(
M1
j

M0
j

)
− µj

)
(7)

where M0
j =

∑
i γij and M1

j =
∑
i γijzi.

One can interpret the Mahalanobis distance as a generalization of point-to-
point distance where the coordinate system has undergone some affine trans-
formation. In the case of GMM-based registration, each affine transformation is
determined by the covariance, or shape, of the cluster to which points are being
registered. For example, clusters that are mostly planar in shape (two similar
eigenvalues and one near zero) will tend to aggressively pull points toward it
along its normal direction while permitting free movement in the plane. This
observation should match one’s intuition: given that we have chosen a proba-
bilistic model that accurately estimates local geometry, an MLE framework will
utilize this information to pull like geometry together as a type of probabilis-
tic shape matching. By using fully anisotropic covariances, arbitrarily oriented
point-to-geometry relations can be modeled. Previous algorithms in the litera-
ture, however, have yet to fully leverage this general MLE construction. Simpli-
fications are made either by 1) placing a priori restrictions on the complexity
of the Gaussian covariance structure (e.g. isotropic only [13] or a single global
bandwidth term [16]), or by 2) using approximations to the MLE criterion that
remove or degrade this information [9]. The reasons behind both model simplifi-
cation and MLE approximation are the same: Eq. 7 has no closed form solution.
However, we will show how simply reinterpreting the Mahalanobis distance cal-
culation can lead to a highly accurate and novel method for registration.

We first rewrite the inner Mahalanobis distance inside the MLE criterion of
Eq. 7 by decomposing each covariance Σj into its associated eigenvalues λ and
eigenvectors n, thereby producing the following equivalence,∣∣∣∣∣

∣∣∣∣∣T
(
M1
j

M0
j

)
− µj

∣∣∣∣∣
∣∣∣∣∣
2

Σj

=

3∑
l=1

1

λl

(
nTl

(
T

(
M1
j

M0
j

)
− µj

))2

(8)

Thus, we can reinterpret each cluster’s Mahalanobis distance term inside the
MLE criterion as a weighted sum of three separate point-to-plane distances.
The weights are inversely determined by the eigenvalues, with their associated
eigenvectors constituting each plane’s normal vector. Going back to the example
of a nearly planar Gaussian, its covariance will have two large eigenvalues and
one near-zero eigenvalue, with the property that the eigenvectors associated with
the larger eigenvalues will lie in the plane and the eigenvector associated with
the smallest eigenvalue will point in the direction of its normal vector. Since the
weights are inversely related to the eigenvalues, we can easily see that the MLE
criterion will mostly disregard any point-to-µj distance inside its plane (that
is, along the two dominant PCA axes) and instead disproportionately focus on
minimizing out-of-plane distances by pulling nearby points along the normal to
the plane.
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We can see that by plugging in this equivalence back into Eq. 7, we arrive at
the following MLE criterion,

T̂ = arg min
T

J∑
j=1

3∑
l=1

M0
j

λjl

(
nTjl

(
T

(
M1
j

M0
j

)
− µj

))2

(9)

where the set of njl , l = 1..3 represent the three eigenvectors for the jth Gaussian
(anisotropic) covariance, and λjl the associated eigenvalues.

We have transformed the optimization from the minimization of a weighted
sum of J squared Mahalanobis distances to an equivalent minimization of a
weighted sum of 3J squared point-to-plane distances. In doing so, we arrive
at a form that can be leveraged by any number of minimization techniques
previously developed for point-to-plane ICP [3]. Note that unlike traditional
point-to-plane methods, which usually involve the computationally difficult task
of finding planar approximations over local neighborhoods at every point and
sometimes also for multiple scales [22,41], the normals in Eq. 9 are found through
a very small number of 3x3 eigendecompositions (typically J ≤ 1000 for even
complex geometric models) over the model covariances, with appropriate scales
chosen through our proposed recursive search over the covariances in the GMM-
Tree (Sec 4.1).

We solve Equation 9 using the linear least squares technique described by
Low [24] for point-to-plane ICP optimization, which we adapt into a weighted
form. The only approximation required is a linearization of R using the small-
angle assumption.

5 Speed vs Accuracy

For every registration algorithm, there is an inherent trade-off between accuracy
and speed. To explore how different registration algorithms perform under var-
ious accuracy/speed trade-offs, we have designed a synthetic experiment using
the Stanford Bunny. We take 100 random 6DoF transformations of the bunny
and then run each algorithm over the same group of random point subsets of
increasing cardinality. Our method of obtaining a random transformation is to
sample each axis of rotation uniformly from [-15,15] degrees and each translation
uniformly from [-0.05, 0.05] (roughly half the extent of the bunny). We can then
plot speed vs accuracy as a scatter plot in order to see how changing the point
cloud size (a proxy for model complexity) affects the speed vs accuracy tradeoff.

The algorithms and code used in the following experiments were either pro-
vided directly by the authors (JRMPC, ECMPR, NDT-D2D, NDT-P2D, SVR,
GMMReg), taken from popular open source libraries (libpointmatcher for TrICP-
pt2pt, TrICP-pt2pl, FICP), or are open source re-implementations of the original
algorithms with various performance optimizations (EM-ICP-GPU, SoftAssign-
GPU, ICP-OpenMP, CPD-C++). Links to the sources can be found in our
project page. Parameters were set for all algorithms according to what was rec-
ommended by the authors and/or by the software. All our experiments were run
on Intel Core i7-5920K and NVIDIA Titan X.

http://research.nvidia.com/publication/2018-09_HGMM-Registration
http://research.nvidia.com/publication/2018-09_HGMM-Registration
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(a) Accuracy vs Speed (b) Speed vs Size

Fig. 3. Each data point represents a particular algorithm’s average speed and accu-
racy when registering together randomly transformed Stanford Bunnies. We produce
multiple points for each algorithm at different speed/accuracy levels by applying the
methods multiple times to different sized point clouds. The lower left corner shows the
fastest and most accurate algorithms for a particular model size. Our proposed algo-
rithms (black, cyan, and red) tend to dominate the bottom left corner, though robust
point-to-plane ICP methods sometimes produce more accurate results, albeit at much
slower speeds (e.g. Trimmed ICP).

In order to test how each design decision affects the performance of the
proposed algorithm, we test against three variants:

Adaptive Ln: The full algorithm proposed in this paper: Hierarchical Gaussian
Mixture Registration (HGMR). Adaptive multi-scale data association using a
GMM-Tree that was constructed up to a max recursion level of n.
GMM-Tree Ln: Here we use the same GMM-Tree representation for logarith-
mic time data association, but without multi-scale adaptivity (λc = 0). The tree
is constructed up to a max recursion level of n. By comparing GMM-Tree to
Adaptive, we can see the benefits of stopping our recursive search according to
data complexity.
GMM J=n: This variant forgoes a GMM-Tree representation and uses a sim-
ple, fixed complexity, single-level GMM with n mixture components. Similar to
other fixed complexity GMM-based registration approaches (e.g. [16,21,9,13]),
both recursive data-association and adaptive complexity cannot be used. How-
ever, it is still GPU-optimized and uses the new MLE optimization. Comparing
this approach to the tree-based representations (GMM-Tree and Adaptive) shows
how the tree-based data representation affects registration performance.

Figure 3(a) shows each algorithm’s speed vs accuracy trade-off by plotting
registration error vs time elapsed. The lower left corner is best (both fast and
accurate). One can quickly see how different classes of algorithms clearly domi-
nate each other on the speed/accuracy continuum. For additional clarity, Figure
3(b) explicitly plots the time scaling of each registration method as a function
of point cloud size. For both timing and accuracy, one can see that, roughly
speaking, our adaptive tree formulation performs the best, followed by our non-
adaptive tree formulation, followed by our non-adaptive non-tree formulation,
then ICP-based variants, and then finally previous GMM-based variants (black
> cyan > red > blue > green).
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(a) Urban scene with many
rectilinear structures

(b) Snowy, hilly terrain with
few features

Fig. 4. Speed vs accuracy tests for two types of real-world LiDAR frames with very
different sampling properties from the Stanford Bunny. In general, similar results are
obtained as in Figure 3.

It should be noted that even though our proposed algorithms (black, cyan,
and red) tend to dominate the lower left corner of Figure 3(a), certain robust
point-to-plane ICP methods sometimes produce more accurate results, albeit at
much slower speeds. See for example in Figure 3 that some point-to-plane ICP re-
sults were less than 10−2◦ angular error and near 1 second convergence time. We
estimate that this timing gap might be decreased given a good GPU-optimized
robust planar ICP implementation, though it is unclear if the neighborhood-
based planar approximation scheme used by these algorithms could benefit from
GPU parallelization as much as our proposed Expectation Maximization ap-
proach, which is designed to be almost completely data parallel at the point
level. However, if computation time is not a constraint for a given application
(e.g. offline approaches), we would recommend trying both types of algorithms
(our model-based approach vs a robust planar ICP-based approach) to see which
provides the best accuracy.

For completeness, we repeated the test with two frames of real-world Lidar
data, randomly transformed and varyingly subsampled as before in order to
obtain our set of speed/accuracy pairs. The results are shown in Figure 4. As in
Fig. 3(a), the bottom left corner is most desirable (both fast and accurate), our
methods shown in red, teal, and black. Given that the bunny and LiDAR scans
have very different sampling properties, a similar outcome for all three tests
shows that the relative performance of the proposed approach isn’t dependent
on evenly sampled point clouds.

6 Evaluation on Real-World Data

Lounge Dataset In this test, we calculate the frame-to-frame accuracy on the
Stanford Lounge dataset, which consists of range data produced by moving a
handheld Kinect around an indoor environment [42]. We register together every
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Method
Ang.

Error (◦)
Speed
(fps)

CPD 2.11 0.18
GMMReg 3.02 .04
NDT-D2D 14.25 11.76
FICP 1.44 4.9
ICP 7.29 2.58
IRLS-ICP 2.29 7.1
EMICP 10.47 1.44
SVR 2.67 0.35
ECMPR 2.21 0.059
JRMPC 8.27 0.042
TrICP-pt2pl 0.54 8.4
TrICP-pt2pt 1.26 5.5
ICP-pt2pl 2.24 7.6
GMM-Tree L2 0.77 31.3
GMM-Tree L3 0.48 20.4
GMM-Tree L4 0.56 14.2
Adaptive L2 0.76 29.6
Adaptive L3 0.46 19.8
Adaptive L4 0.37 14.5

Method
Ang.

Error (◦)
Trans.

Error (cm)
Speed
(fps)

CPD 0.15 17.2 0.004
GMMReg 0.73 102.1 0.22
NDT-D2D 0.17 16.0 0.88
FICP 0.15 35.1 1.01
ICP 0.26 15.0 1.35
IRLS-ICP 0.15 14.7 1.28
EMICP 0.99 103.1 2.05
SVR 0.21 39.1 0.27
ECMPR 0.31 24.1 0.21
JRMPC 0.60 73.1 0.05
TrICP-pt2pl 0.15 43.2 1.74
TrICP-pt2pt 0.21 66.2 1.75
ICP-pt2pl 0.27 7.5 1.48
GMM-Tree L2 0.11 12.5 39.34
GMM-Tree L3 0.18 23.9 21.41
GMM-Tree L4 0.20 29.5 15.00
Adaptive L2 0.12 10.0 39.20
Adaptive L3 0.15 8.8 22.82
Adaptive L4 0.15 9.2 16.91

(a) Lounge Dataset (b) LiDAR Dataset

Table 2. Comparison of Registration Methods for the Lounge and LiDAR
Datasets Timing results for both datasets include the time to build the GMM-Tree.
Errors are frame-to-frame averages. Speed given is in average frames per second that
the data could be processed (note that the sensor outputs data frames at 30 Hz for the
Lounge data and roughly 10 Hz for the LiDAR data).

5th frame for the first 400 frames, each downsampled to 5000 points. To measure
the resulting error, we calculate the average Euler angle deviation from ground
truth. Refer to Table 2(a) for error and timing. All our experiments were run on
Intel Core i7-5920K and NVIDIA Titan X. We chose to focus on rotation error
since this was where the largest discrepancies were found among algorithms. The
best performing algorithm we tested against, Trimmed ICP with point-to-plane
distance error minimization, had an average Euler angle error of 0.54 degrees and
took on average 119 ms to converge. Our best algorithm, the adaptive algorithm
to a max depth of 3, had an average Euler angle error of 0.46 degrees and took
on average less than half the time (50.5 ms) to converge. The accuracy of our
proposed methods is comparable with the best ICP variants, but at roughly
twice the speed.

Velodyne LiDAR Dataset We performed frame-to-frame registration on an
outdoor LiDAR dataset using a Velodyne (VLP-16) LiDAR and overlaid the
results in a common global frame. See Figure 5 for a qualitative depiction of
the result. Table 2(b) summarizes the quantitative results from Figure 5 in an
easier to read table format. In Figure 5, the ground truth path is shown in red,
and the calculated path is shown in blue. Since there is no loop closures, the
error is expected to compound and cause drift over time. However, despite the
compounding error, the bottom right three diagrams of Figure 5 (and corre-
spondingly, the bottom three line items of Table 2(b)) show that the proposed
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Fig. 5. Frame-to-Frame Registration with Outdoor LiDAR Dataset: Ground
truth path shown in red, calculated path shown in blue. Each frame of LiDAR data
represents a single sweep. We register successive frames together and concatenate the
transformation in order to plot the results in a single coordinate system. Note that
drift is expected over such long distances as we perform no loop closures. The first
two examples in top row are from GMM-Based methods, next three results are from
modern ICP variants, the last three results show our proposed adaptive GMM-Tree
methods at three different max recursion levels. For our methods, the timing results
include the time to build the GMM model. GMM-Based methods generally perform
slowly. ICP-based methods fared better in our testing, though our proposed methods
show an order of magnitude improvement in speed while beating or competing with
other state-of-the-art in accuracy.

methods can be used for fairly long distances (city blocks), without the need for
any odometry (e.g. INS or GPS) or loop closures. Given that this sensor outputs
sweeps at roughly 10 Hz, our methods achieve faster than real-time speeds (17-
39 Hz), while the state-of-the-art ICP methods are an order of magnitude slower
(≈ 1 fps). Also, note that our times include the time to build the model (the
GMM-Tree), which could be utilized for other concurrent applications besides
registration.

7 Conclusion

We propose a registration algorithm using a Hierarchical Gaussian Mixture to
efficiently perform point-to-model association. Data association as recursive tree
search results in orders of magnitude speed-up relative to traditional GMM-based
approaches that linearly perform these associations. In addition, we leverage
the model’s multi-scale anisotropic representation using a new approximation
scheme that reduces the MLE optimization criteria to a weighted point-to-plane
measure. We test our proposed methods against state-of-the-art and find that
our approach is often an order of magnitude faster while achieving similar or
greater accuracy.
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