
Context-Aware Synthesis and Placement of
Object Instances

Donghoon Lee1,2∗, Sifei Liu3, Jinwei Gu3, Ming-Yu Liu3,
Ming-Hsuan Yang2,4, Jan Kautz3

donghoon.lee@rllab.snu.ac.kr {sifeil, jinweig, mingyul}@nvidia.com
mhyang@ucmerced.edu jkautz@nvidia.com

1Seoul National University
2Google Cloud AI

3NVIDIA
4University of California at Merced

Abstract

Learning to insert an object instance into an image in a semantically coherent
manner is a challenging and interesting problem. Solving it requires (a) determining
a location to place an object in the scene and (b) determining its appearance at the
location. Such an object insertion model can potentially facilitate numerous image
editing and scene parsing applications. In this paper, we propose an end-to-end
trainable neural network for the task of inserting an object instance mask of a
specified class into the semantic label map of an image. Our network consists
of two generative modules where one determines where the inserted object mask
should be (i.e., location and scale) and the other determines what the object mask
shape (and pose) should look like. The two modules are connected together
via a spatial transformation network and jointly trained. We devise a learning
procedure that leverage both supervised and unsupervised data and show our model
can insert an object at diverse locations with various appearances. We conduct
extensive experimental validations with comparisons to strong baselines to verify
the effectiveness of the proposed network.

1 Introduction

Inserting objects into an image that conforms to scene semantics is a challenging and interesting task.
The task is closely related to many real-world applications, including image synthesis, AR and VR
content editing and domain randomization [28]. Numerous methods [2, 7, 8, 10, 15, 16, 20, 24, 26, 31,
33, 34, 35] have recently been proposed to generate realistic images based on generative adversarial
networks (GANs) [5]. These methods, however, have not yet considered semantic constraints between
scene context and the object instances to be inserted. As shown in Figure 1, given an input semantic
map of a street scene, the context (i.e., the road, sky, and buildings) constrains possible locations,
sizes, shapes, and poses of pedestrians, cars, and other objects in this particular scene. Is it possible to
learn this conditional probabilistic distribution of object instances in order to generate novel semantic
maps? In this paper, we propose a conditional GAN framework for the task. Our generator learns
to predict plausible locations to insert object instances into the input semantic label map and also
generate object instance masks with semantically coherent scales, poses and shapes. One closely
related work is the ST-GAN approach [14] which warps an input RGB image of an object segment to
place it in a scene image. Our work differs from the ST-GAN work in two ways. First, our algorithm
operates in the semantic label map space. It allows us to manipulate the scene without relying on the

∗This work is mainly done when Donghoon Lee was an intern at NVIDIA.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



RGB image that needs to be rendered in a number of cases, e.g., simulators or virtual worlds. Second,
we aim to learn the distribution of not only locations but also shapes of objects conditioned on the
input semantic label map.

Our conditional GANs consist of two modules tailored to address the where and what problems,
respectively, in learning the distributions of object locations and shapes. For each module, we encode
the corresponding distributions through a variational auto-encoder (VAE) [11, 23] that follows a unit
Gaussian distribution in order to introduce sufficient variations of locations and shapes.

The main technical novelty of this work is to construct an end-to-end trainable neural network that can
sample plausible locations and shapes for the new object from its joint distribution conditioned on the
input semantic label map. To achieve this goal, we establish a differentiable link, based on the spatial
transformation network (STN) [9], between two modules that are designed specifically for predicting
locations and generating object shapes. In the forward pass, the spatial transformation network is
responsible for transforming both of a bounding box for the where module and a segmentation mask
for the what module to the same location on the input semantic label map. In the backward pass,
since the spatial transformation network is differentiable, the encoders can receive the supervision
signal that are back-propagated from both ends, e.g., the encoder of the where module is adjusted
according to the discriminator on top of the what module. The two modules can benefit each other
and be jointly optimized. In addition, we devise a learning procedure that consists of a supervised
path and an unsupervised path to alleviate mode collapse while training. During inference, we use
only the unsupervised path. Experimental results on benchmark datasets show that the proposed
algorithm can synthesize plausible and diverse pairs of location and appearance for new objects.

The main contributions of this work are summarized as follows:

• We present a novel and flexible solution to synthesize and place object instances in images,
with a focus on semantic label maps. The synthesized object instances can be used either as
an input for GAN-based methods [8, 30, 31, 34] or for retrieving the closest segment from
an existing dataset [19], to generate new images.

• We propose a network that can simultaneously model the distribution of where and what
with respect to an inserted object. This framework enables both modules to communicate
and optimize each other.

2 Related Work

The key issues of inserting object instances to images are to consider: (a) where to generate an
instance, and (b) what scale and shape, or pose is plausible, given a semantic mask. Both are
fundamental vision and learning problems that have attracted much attention in recent years. In this
section, we discuss methods closely related to this work.

Predicting instance locations. It mainly concerns with the geometric consistency between source
and target images, which falls into the boarder category of scene and object structure reasoning [1,
4, 32]. In [29], objects are detected based on the contextual information by modeling the statistics
of low-level features of the object and surrounding scene. The same problem is recently addressed
using a deep convolutional network [25]. Both methods predict whether objects of interest are likely
to appear at specific locations without determining additional information such as scale. In [27], an
image composition method is developed where the bounding box position of an object is predicted
based on object proposals and a new instance is retrieved from an existing database. However,
this framework makes it significantly challenging to develop a joint generation model of shape and
position since the objective function with respect to object location prediction is not differentiable.
Recently, the ST-GAN [14] utilizes spatial transformer network to insert objects based on image
warping. However, this method does not synthesize plausible object instances in images.

Synthesizing object instances. Object generation based on GANs has been studied extensively
[2, 7, 8, 10, 15, 16, 20, 24, 26, 31, 33, 34, 35]. Closest to this work are the methods designed to
in-paint a desired patch [18] or object (e.g., facial component [13], pedestrian [17]) in original images.
In contrast, the object generation pipeline of this work is on the semantic layout rather than image
domain. As a result, we simplify the network module on learning desirable object shapes.

2



Figure 1: Overview of the proposed algorithm. Given an input semantic map, our end-to-end
trainable network employs two generative modules, i.e., the where module and the what module, in
order to learn the spatial distribution and the shape distribution of object instances, respectively. By
considering the scene context, the proposed algorithm can generate multiple new semantic maps by
synthesizing and placing new object instances at valid locations with plausible shape, pose, and scale.

Joint modeling of what and where. Several methods have been developed to model what and
where factors in different tasks. Reed et al. [22] present a method to generate an image from the
text input, which can either be conditioned on the given bounding boxes or keypoints. In [32], Wang
et al. model the distribution of possible human poses using VAE at different locations of indoor
scenes. However, both methods do not deal with the distribution of possible location conditioned
on the objects in the scene. Hong et al. [6] model the object location, scale and shape to generate
a new image from a single text input. Different from the proposed approach, none of the existing
methods are constructed based on end-to-end trainable networks, in which location prediction, as
well as object generation, can be regularized and optimized jointly.

3 Approach

The proposed algorithm learns to place and synthesize a new instance of a specific object category
(e.g., car and pedestrian) into a semantic map. The overall flow is shown in Figure 1.

Given the semantic map as an input, our model first predicts possible locations where an object
instance is likely to appear (see the where module in Figure 1 and Figure 2). This is achieved by
learning affine transformations with a spatial transformer network that transforms and places a unit
bounding box at a plausible location within the input semantic map. Then, given the context from
the input semantic map and the predicted locations from the where module, we predict plausible
shapes of the object instance with the what module (see Figure 1 and Figure 3). Finally, with the
affine transformation learned from the STN, the synthesized object instance is placed into the input
semantic map as the final output.

As both the where module and the what module aim to learn the distributions of the location and the
shape of object instances conditioned on the input semantic map, they are both generative models
implemented with GANs. To reduce mode collapse, during training, both the where module and the
what module consist of two parallel paths — a supervised path and an unsupervised path, as shown
in Figure 2 and 3. During inference, only the unsupervised path is used. We denote the input to the
unsupervised path as x, which consists of a semantic label map and an instance edge map that can be
extracted from the dataset (we use datasets that provide both semantic and instance-level annotations,
e.g., Cityscapes [3]). In addition, we use x+ to denote the input to the supervised path, which also
consists of a semantic label map and an instance edge map, but also contains at least one instance in
the target category. Table 1 describes the symbols used in our approach. In the following, we describe
the two generators and four discriminators of the proposed method.

3



Table 1: Symbols used in our approach. We have two generators and four discriminators in total.

Symbol Description Symbol Description

Gl generator (instance location) Gs generator (instance shape)
Dl (Dbox

layout, Daffine ) Ds (Dinstance
layout , Dshape)

Dbox
layout discriminator (semantic map w/ bbox) Dinstance

layout discriminator (semantic map w/ instance)
Daffine discriminator (affine transform) Dshape discriminator (instance shape)
Ll(Gl, Dl) loss for location prediction (1) Ls(Gs, Ds) loss for shape prediction (5)

3.1 The where module: learning a spatial distribution of object instances

As shown in Figure 2, given the input semantic map x, the where module aims to learn the conditional
distribution of the location and size of object instances valid for the given scene context. We represent
such spatial (and size) variations of object instances with affine transformations of a unit bounding
box b. Thus, the where module is a conditional GAN, where the generator Gl takes x and a random
vector zl as input and outputs an affine transformation matrix A via a STN, i.e., Gl(x, zl) = A. We
denote A(obj) as applying transformation A to the obj.

We represent a candidate region for a new object by transforming a unit bounding box b into the input
semantic map x. Without loss of generality, since all objects in training data can be covered by a
bounding box, we can constrain the transform as an affine transform without rotation. From training
data in the supervised path, for each existing instance, we can calculate the affine transformation
matrix A, which maps a box onto the object. Furthermore, we learn a neural network Gl, shared
by both paths, which predicts Â conditioned on x, so that the preferred locations are determined
according to the global context of the input. As such, we aim to find a realistic transform Â which
gives a result that is indistinguishable from the result of A. We use two discriminators; Dbox

layout which
focuses on finding whether the new bounding box fits into the layout of the input semantic map, and
Daffine which aims to distinguish whether the transformaion parameters are realistic. Let Dl denote
the above discriminators that are related to the location prediction. Then, a minimax game between
Gl and Dl is formulated as minGl

maxDl
Ll(Gl, Dl). We consider three terms for the objective Ll

as follows:

Ll(Gl, Dl) = Ladv
l (Gl, D

box
layout) + Lrecon

l (Gl) + Lsup
l (Gl, Daffine), (1)

where the first term is an adversarial loss for the overall layout, and other two terms are designed to
regularize Gl. We visualize each term in Figure 2 with red arrows.

Adversarial layout loss Ladv
l (Gl, D

box
layout). For an unsupervised path in Figure 2, we first sample

zl ∼ N (0, I) for an input. Information of x and zl is encoded to a vector e and fed to a spatial
transformer network to predict an affine transform Â. Finally, a new semantic map is generated by
composing a transformed box onto the input. An adversarial loss for the unsupervised part is2

Ladv
l (Gl, D

box
layout) = Ex[logD

box
layout(x⊕A(b))] + Ex,zl [log(1−Dbox

layout(x⊕ Â(b)))]. (2)

Input reconstruction lossLrecon
l (Gl). Although the adversarial loss aims to model the distribution

of objects in the data, it frequently collapses to a few number of modes instead of covering the entire
distribution [7]. For example, the first heatmap in Figure 2(b) presents the predicted bounding boxes
using 100 different samples of zl. It shows that the inferred location from Â is almost the same for
different random vectors. As a remedy, we reconstruct x and zl from e to make sure that both are
encoded in e. We add new branches at e for reconstruction and train the network again with (2) and
the following loss:

Lrecon
l (Gl) = ‖x′ − x‖1 + ‖z′l − zl‖1, (3)

where x′ and z′l represent reconstructions. However, the generated bounding boxes are still concen-
trated at a few locations. To alleviate this problem, we use supervision that can help to find a mapping
between zl and Â.

2We denote E(·) , E(·)∼pdata(·) for notational simplicity, input⊕mask denotes blending the mask into
the input. For example, x+ ⊕A(b) and x⊕ Â(b) are a pair of real/fake masks in Figure 2(a).

4



Figure 2: (a) Network architecture of the where module. Blue arrows indicate connections with the
what module in Figure 3. Red arrows denote the three loss terms in (1). (b) The learned context-aware
spatial distributions of inserting a new person into the input semantic map x. The distributions are
shown as the heatmaps on images by sampling 100 different random vectors zl. The top shows the
mode collapse issue if we only use the adversarial loss Ladv

l . The middle shows, by adding the
reconstruction loss Lrecon

l in training, it alleviates the mode collapse issue. The bottom shows, by
further adding the supervised loss Lsup

l in training, the learned distribution becomes more diverse.

Figure 3: (a) Network architecture of the what module, which learns the distribution of plausible
shape, pose, and scale of object instances. Blue arrows indicate connections with the where module
in Figure 2. Red arrows denote the three loss terms in (5). (b) Samples of the learned object instances
(i.e., person) to be inserted into the input semantic map x. Similar to Figure 2, the top shows the
mode collapse issue if we only use the adversarial loss Ladv

s (and the reconstruction loss Lrecon
s ).

The bottom shows, by adding the supervised loss Lsup
s , the learned distribution becomes multimodal.

VAE-Adversarial loss Lsup
l (Gl, Daffine). In the supervision path, given x+, A is one of affine

transforms that makes a new realistic semantic map. Therefore, Gl should be able to predict A based
on x+ and zA which is an encoded vector from parameters of A. We denote Ã as the predicted
transform from supervision as shown in Figure 2. The objective for the supervised path combines a

5



VAE and an adversarial loss [12]:

Lsup
l (Gl, Daffine) = EzA∼EA(A)‖A− Ã‖1 +KL(zA‖zl) + Lsup,adv

l (Gl, Daffine), (4)

where EA is an encoder that encodes parameters of an input affine transform, KL(·) is the Kullback-
Leibler divergence, and Lsup,adv

l is an adversarial loss that focuses on predicting a realistic Ã. Since
the objective asks Gl to map zA to A for each instance, the position determined by the transform
becomes more diverse, as shown in Figure 2(b).

As predicting a location of a bounding box mostly depends on the structure of the scene, so far we
use a low-resolution input, e.g., 128 × 256 pixels, for efficiency. Note that with the same Â, we can
transform a box to a high-resolution map, e.g., 512 × 1024 pixels, for more sophisticated tasks such
as a shape generation in the following section.

3.2 The what module: learning a shape distribution of object instances

As shown in Figure 3, given the input semantic map x, the what module aims to learn the shape
distribution of object instances, with which the inserted object instance fits naturally within the
surrounding context. Note that the shape, denoting the instance mask, also contains the pose
information, e.g., a car should not be perpendicular to the road. The input to the generator network
Gs is a semantic map x with a bounding box Â(b) (the output from the where module), and a random
vector zs, while the output is a binary mask of the instance shape s, i.e., Gs(x ⊕ Â(b), zs) = s.
Similar to the location prediction network, as shown in Figure 3(a), we set a minmax game between
Gs and discriminators Ds as minGs maxDs Ls(Gs, Ds) where Ds consists of Dinstance

layout , which
checks whether the new instance fits into the entire scene, and Dshape, which examines whether the
generated shape of the object s is real or fake. There are three terms in Ls(Gs, Ds):

Ls(Gs, Ds) = Ladv
s (Gs, D

instance
layout ) + Lrecon

s (Gs) + Lsup
s (Gs, Dshape). (5)

The role of each term is similar to (1) except that Lsup
s aims to reconstruct the input shape instead

of transformation parameters. Figure 3(b) shows that the supervised path plays an important role to
generate diverse shapes.

3.3 The complete pipeline

The where and what modules are connected by two links: first, the input to the unsupervised path of
the what module is the generated layout from the where module; second, we apply the same affine
transformation parameters to the generated shape, so that it can be inserted to the same location as
being predicted in the where module. Therefore, the final output is obtained as follows:

x̂ = x⊕ Â(s), (6)

where Â and s are generated from the generator of the where and the what modules, respectively:

Â = Gl(x, zl), s = Gs(x⊕ Â(b), zs). (7)

The STN is able to make a global connection between x from the input end, and x̂ in the output
end. In addition, Ladv

s checks the fidelity of the x̂ in a global view. The complete pipeline enables
that all the encoders to be adjusted by the loss functions that either lies in different modules, or with
the global score. It potentially benefits the generation of many complicated cases, e.g., objects with
occlusions.

4 Experimental Results

For all experiments, the network architecture, parameters, and initialization basically follow DCGAN
[20]. For Dbox

layout and Dinstance
layout , we use a PatchGAN-style discriminator. For Daffine, a fully

connected layer maps 6-dimensional input to 64 and the other fully connected layer shrinks it to
one dimension. For the where module, we place the bounding box in a 128×256 pixels semantic
map. Then, a 128×128 pixels instance is generated based on a 512×1024 pixels semantic map.
We use transposed convolutional layers with 32 as a base number of filters to generate the shape,
while we use 16 for convolutional layers in the discriminator. The batch size is set to 1 and instance
normalization is used instead of batch normalization.

6



Figure 4: The learned spatial distributions (i.e., plausible locations and scales) of inserting persons
(shown as red) and cars (shown as blue) for different input images. The distributions are shown as the
heatmaps, by sampling input random vectors zl in the where module.

Figure 5: Effect of the random vector zs on shape generation from the what module.

Layout prediction. Figure 4 shows predicted locations for a person (red) and a car (blue) by
sampling 100 different random vectors zl for each class. It shows that the proposed network learns a
different distribution for each object category conditioned on the scene, i.e., a person tends to be on a
sidewalk and a car is usually on a road. On the other hand, we show in Figure 5 that while fixing the
locations, i.e., the where module, and by applying different zs in the what module, the network is
able to generate object shapes with obvious variations.

Baseline models. The baseline models are summarized in Figure 6. For baseline 1, given an input
scene, it directly generates an instance to a binary map. Then, the binary map is composed with
an input map to add a new object. We apply real/fake discriminators for both the binary map and
the resulting semantic map. While this baseline model makes sense, it fails to generate meaningful
shapes, as shown in Figure 7. We attribute this to the huge search space. As the search space for where
and what are entangled, it is difficult to obtain meaningful gradients. It indicates that decomposing
the problem to where and what is crucial for the task.

The second baseline model decomposes the problem into what and where – an opposite order
compared to the proposed method. It first generates an instance shape from the input and then finds
an affine transform that can put both the object shape and a box on the input properly. As shown
in results, the generated instances are not reasonable. In addition, we observe that STN becomes
unstable while handling all kinds of shapes and then it causes a collapse to the instance generation
network as well – the training is unstable. We attribute this to the fact that the number of possible
object shapes given an input scene is huge. In contrast, if we predict the location first as proposed,
then there is a smaller solution space that will significantly regularize the diversity of the object
shapes. For example, a generated car have a reasonable front or a rear view when it is located at a
straight lane. The results imply that the order of where and what is important for a joint training
scheme.

Ablation studies. As discussed in (1) and (5), the input reconstruction loss and the VAE-adversarial
losses are used to train the network. Figure 7 shows the results when the network is trained without
each loss. It shows that the location and shape of the object are almost fixed for different images,
which indicates that both losses are helping each other to learn a diverse mapping.

7



Figure 6: Two baseline architectures. Red arrows denote adversarial loss terms with real data.

Figure 7: Results compared with the baseline methods. For a clear comparison, generated objects
are marked with yellow circles. As shown, both baseline methods fail to generate realistic shapes of
object instances. Our method (2nd row) synthesizes realistic new semantic maps by inserting new
objects. The last two rows show the mode collapse issue, i.e., without either the reconstruction loss
or the supervised loss, the predicted location and shape of the objects are almost fixed for different
input images. Zoom-in to see details.

Human evaluation. We perform a human subjective test for evaluating the realism of synthesized
and inserted object instances. A set of 30 AB test questions are composed using Amazon Mechanical
Turk platform for the evaluation. In each question, a worker is presented two semantic segmentation
masks. We put a marker above an object instance in each mask. In one mask, the marker is put on top
of a real object instance. In the other, the marker is put on top of a fake object instance. The worker
is asked to choose which object instance is real. Hence, the better the proposed approach, the closer
the preference rate is to 50%. To ensure the human evaluation quality, a worker must have a lifetime
task approval rate greater than 98% to participate in our evaluation. For each question, we gather
answers from 20 different workers.

We find that for 43% of the time that a worker chooses the object instance synthesized and inserted
by our approach as the real one instead of a real object instance in the original image. This shows
that our approach is capable of performing the object synthesis and insertion task.

Quantitative evaluation. To further validate the consistency of layout distribution between the
ground truth and inserted instances by our method, we evaluate whether RGB images rendered using
the inserted masks can be reasonably recognized by a state-of-the-art image recognizer, e.g., YOLOv3
[21]. Specifically, given an RGB image generated by [31], we check whether the YOLOv3 detector
is able to detect the inserted instance in the rendered image as shown in Figure 8 and Figure 9. As the
state-of-the-art detector utilizes context information for detecting objects, we expect its detection
performance will degrade if objects are inserted into semantically implausible places. We use the
pretrained YOLOv3 detector with a fixed detection threshold for all experiments. Thus, the recall of
the detector for new instances indicates whether the instances are well-inserted. We compare with
four baseline models that are trained without one of the proposed discriminators. Table 2 shows that
the proposed algorithm performs best when all discriminators are used.

8



Figure 8: For a quantitative evaluation of a semantic map, we first synthesize an RGB image and
then determine whether the new instance is properly rendered in the image based on a detector.

Figure 9: Synthetic images on top of manipulated segmentation maps via the proposed algorithm
and detection results using YOLOv3. The generated objects are enclosed with yellow circles.

Table 2: Recall of YOLOv3 to detect an added person on the Cityscape dataset.

wo Dbox
layout wo Daffine wo Dinstance

layout wo Dshape Full model

Recall 0.60 0.70 0.68 0.71 0.79

Figure 10: Samples of obtained RGB images from the synthesized semantic map.

Applications: two ways to synthesize new images. Our framework is flexible to be utilized – we
can synthesize an RGB image in two different ways. First, an image can be rendered using an image
synthesis algorithm which takes a semantic map as an input, such as [31]. The other way is finding
the nearest neighbor of the generated shape. Then, we can crop the corresponding RGB pixels of the
neighbor and paste it onto the predicted mask. Figure 10 shows that both approaches are working on
the generated semantic map. It suggests that based on the generated semantic map, the new object
can be well fitted into a provided image.

5 Conclusion

In this paper, we construct an end-to-end trainable neural network that can sample the plausible
locations and shapes for inserting an object mask into a segmentation label map, from their joint
distribution conditioned on the semantic label map. The framework contains two parts to model where
the object should appear and what the shape should be, using two modules that are combined with
differentiable links. We insert instances on top of semantic layout instead of image domain because
the semantic label map space that are more regularized, more flexible for real-world applications.
As our method jointly models where and what, it could be used for solving other computer vision
problems. One of the interesting future works would be handling occlusions between objects.

Acknowledgements This work was conducted in NVIDIA. Ming-Hsuan Yang is supported in part
by the NSF CAREER Grant #1149783 and gifts from NVIDIA.

9



References
[1] M. Bar and S. Ullman. Spatial context in recognition. Perception, 25(3):343–352, 1996.

[2] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level
domain adaptation with generative adversarial networks. In IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[4] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert. An empirical study of context
in object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Neural Information Processing Systems, 2014.

[6] S. Hong, D. Yang, J. Choi, and H. Lee. Inferring semantic layout for hierarchical text-to-image
synthesis. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[7] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-image
translation. In European Conference on Computer Vision, 2018.

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional
adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[9] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks.
In Neural Information Processing Systems, 2015.

[10] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved quality,
stability, and variation. In International Conference on Learning Representations, 2018.

[11] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[12] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels
using a learned similarity metric. In International Conference on Machine Learning, 2016.

[13] Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face completion. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[14] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and S. Lucey. ST-GAN: Spatial transformer
generative adversarial networks for image compositing. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[15] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In
Neural Information Processing Systems, 2017.

[16] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Neural Information
Processing Systems, 2016.

[17] X. Ouyang, Y. Cheng, Y. Jiang, C.-L. Li, and P. Zhou. Pedestrian-Synthesis-GAN: Generating
pedestrian data in real scene and beyond. arXiv preprint arXiv:1804.02047, 2018.

[18] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature
learning by inpainting. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[19] X. Qi, Q. Chen, J. Jia, and V. Koltun. Semi-parametric image synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[20] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[21] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

10



[22] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee. Learning what and where to
draw. In Neural Information Processing Systems, 2016.

[23] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[24] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from
simulated and unsupervised images through adversarial training. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[25] J. Sun and D. W. Jacobs. Seeing what is not there: Learning context to determine where objects
are missing. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[26] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation. In
International Conference on Learning Representations, 2017.

[27] F. Tan, C. Bernier, B. Cohen, V. Ordonez, and C. Barnes. Where and who? Automatic semantic-
aware person composition. In IEEE Winter Conference on Applications of Computer Vision,
2018.

[28] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017.

[29] A. Torralba. Contextual priming for object detection. International Journal of Computer Vision,
53(2):169–191, 2003.

[30] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro. Video-to-video
synthesis. In Neural Information Processing Systems, 2018.

[31] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional GANs. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[32] X. Wang, R. Girdhar, and A. Gupta. Binge watching: Scaling affordance learning from sitcoms.
In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[33] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas. StackGAN: Text
to photo-realistic image synthesis with stacked generative adversarial networks. In IEEE
International Conference on Computer Vision, 2017.

[34] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networkss. In IEEE International Conference on Computer Vision,
2017.

[35] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. Toward
multimodal image-to-image translation. In Neural Information Processing Systems, 2017.

11


