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Abstract

One major challenge for monocular 3D human pose es-
timation in-the-wild is the acquisition of training data that
contains unconstrained images annotated with accurate 3D
poses. In this paper, we address this challenge by propos-
ing a weakly-supervised approach that does not require
3D annotations and learns to estimate 3D poses from un-
labeled multi-view data, which can be acquired easily in
in-the-wild environments. We propose a novel end-to-end
learning framework that enables weakly-supervised train-
ing using multi-view consistency. Since multi-view consis-
tency is prone to degenerated solutions, we adopt a 2.5D
pose representation and propose a novel objective func-
tion that can only be minimized when the predictions of the
trained model are consistent and plausible across all cam-
era views. We evaluate our proposed approach on two large
scale datasets (Human3.6M and MPII-INF-3DHP) where it
achieves state-of-the-art performance among semi-/weakly-
supervised methods.

1. Introduction

Learning to estimate 3D body pose from a single RGB
image is of great interest for many practical applications.
The state-of-the-art methods [6,16,17,28,32,39–41,52,53]
in this area use images annotated with 3D poses and train
deep neural networks to directly regress 3D pose from im-
ages. While the performance of these methods has im-
proved significantly, their applicability in in-the-wild envi-
ronments has been limited due to the lack of training data
with ample diversity. The commonly used training datasets
such as Human3.6M [10], and MPII-INF-3DHP [22] are
collected in controlled indoor settings using sophisticated
multi-camera motion capture systems. While scaling such
systems to unconstrained outdoor environments is imprac-
tical, manual annotations are difficult to obtain and prone
to errors. Therefore, current methods resort to existing
training data and try to improve the generalizabilty of
trained models by incorporating additional weak supervi-
sion in form of various 2D annotations for in-the-wild im-
ages [27,39,52]. While 2D annotations can be obtained eas-

ily, they do not provide sufficient information about the 3D
body pose, especially when the body joints are foreshort-
ened or occluded. Therefore, these methods rely heavily
on the ground-truth 3D annotations, in particular, for depth
predictions.

Instead of using 3D annotations, in this work, we pro-
pose to use unlabeled multi-view data for training. We as-
sume this data to be without extrinsic camera calibration.
Hence, it can be collected very easily in any in-the-wild
setting. In contrast to 2D annotations, using multi-view
data for training has several obvious advantages e.g., am-
biguities arising due to body joint occlusions as well as
foreshortening or motion blur can be resolved by utiliz-
ing information from other views. There have been only
few works [14, 29, 33, 34] that utilize multi-view data to
learn monocular 3D pose estimation models. While the ap-
proaches [29,33] need extrinsic camera calibration, [33,34]
require at least some part of their training data to be labelled
with ground-truth 3D poses. Both of these requirements
are, however, very hard to acquire for unconstrained data,
hence, limit the applicability of these methods to controlled
indoor settings. In [14], 2D poses obtained from multiple
camera views are used to generate pseudo ground-truths for
training. However, this method uses a pre-trained pose esti-
mation model which remains fixed during training, meaning
2D pose errors remain unaddressed and can propagate to the
generated pseudo ground-truths.

In this work, we present a weakly-supervised approach
for monocular 3D pose estimation that does not require any
3D pose annotations at all. For training, we only use a
collection of unlabeled multi-view data and an independent
collection of images annotated with 2D poses. An overview
of the approach can be seen in Fig. 1. Given an RGB image
as input, we train the network to predict a 2.5D pose repre-
sentation [12] from which the 3D pose can be reconstructed
in a fully-differentiable way. Given unlabeled multi-view
data, we use a multi-view consistency loss which enforces
the 3D poses estimated from different views to be consistent
up to a rigid transformation. However, naively enforcing
multi-view consistency can lead to degenerated solutions.
We, therefore, propose a novel objective function which is
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constrained such that it can only be minimized when the 3D
poses are predicted correctly from all camera views. The
proposed approach can be trained in a fully end-to-end man-
ner, it does not require extrinsic camera calibration and is
robust to body part occlusions and truncations in the unla-
beled multi-view data. Furthermore, it can also improve the
2D pose predictions by exploiting multi-view consistency
during training.

We evaluate our approach on two large scale datasets
where it outperforms existing methods for semi-/weakly-
supervised methods by a large margin. We also show that
the MannequinChallenge dataset [18], which provides in-
the-wild videos of people in static poses, can be effectively
exploited by our proposed method to improve the gener-
alizability of trained models, in particular, when their is a
significant domain gap between the training and testing en-
vironments.

2. Related Work
We discuss existing methods for monocular 3D human

pose estimation with varying degree of supervision.
Fully-supervised methods aim to learn a mapping from

2D information to 3D given pairs of 2D-3D correspon-
dences as supervision. The recent methods in this direc-
tion adopt deep neural networks to directly predict 3D poses
from images [16, 17, 41, 53]. Training the data hungry neu-
ral networks, however, requires large amounts of training
images with accurate 3D pose annotations which are very
hard to acquire, in particular, in unconstrained scenarios.
To this end, the approaches in [5, 35, 45] try to augment
the training data using synthetic images, however, still need
real data to obtain good performance. More recent meth-
ods try to improve the performance by incorporating ad-
ditional data with weak supervision i.e., 2D pose annota-
tions [6, 28, 32, 39, 40, 52], boolean geometric relationship
between body parts [27, 31, 37], action labels [20], and
temporal consistency [2]. Adverserial losses during train-
ing [50] or testing [44] have also been used to improve the
performance of models trained on fully-supervised data.

Other methods alleviate the need of 3D image annota-
tions by directly lifting 2D poses to 3D without using any
image information e.g., by learning a regression network
from 2D joints to 3D [9, 21, 24] or by searching nearest
3D poses in large databases using 2D projections as the
query [3, 11, 31]. Since these methods do not use image
information for 3D pose estimation, they are prone to re-
projection ambiguities and can also have discrepancies be-
tween the 2D and 3D poses.

In contrast, in this work, we present a method that
combines the benefits of both paradigms i.e., it estimates
3D pose from an image input, hence, can handle the re-
projection ambiguities, but does not require any images
with 3D pose annotations.

Semi-supervised methods require only a small subset
of training data with 3D annotations and assume no or weak
supervision for the rest. The approaches [33,34,51] assume
that multiple views of the same 2D pose are available and
use multi-view constraints for supervision. Closest to our
approach in this category is [34] in that it also uses multi-
view consistency to supervise the pose estimation model.
However, their method is prone to degenerated solutions
and its solution space cannot be constrained easily. Con-
sequently, the requirement of images with 3D annotations
is inevitable for their approach. In contrast, our method is
weakly-supervised. We constrain the solution space of our
method such that the 3D poses can be learned without any
3D annotations. In contrast to [34], our approach can easily
be applied to in-the-wild scenarios as we will show in our
experiments. The approaches [43, 48] use 2D pose annota-
tions and re-projection losses to improve the performance
of models pre-trained using synthetic data. In [19], a pre-
trained model is iteratively improved by refining its predic-
tions using temporal information and then using them as su-
pervision for next steps. The approach in [30] estimates the
3D poses using a sequence of 2D poses as input and uses
a re-projection loss accumulated over the entire sequence
for supervision. While all of these methods demonstrate
impressive results, their main limiting factor is the need of
ground-truth 3D data.

Weakly-supervised methods do not require paired 2D-
3D data and only use weak supervision in form of motion-
capture data [42], images/videos with 2D annotations [25,
47], collection of 2D poses [4, 7, 46], or multi-view im-
ages [14, 29]. Our approach also lies in this paradigm
and learns to estimate 3D poses from unlabeled multi-view
data. In [42], a probabilistic 3D pose model learned us-
ing motion-capture data is integrated into a multi-staged 2D
pose estimation model to iteratively refine 2D and 3D pose
predictions. The approach [25] uses a re-projection loss to
train the pose estimation model using images with only 2D
pose annotations. Since re-projection loss alone is insuf-
ficient for training, they factorize the problem into the es-
timation of view-point and shape parameters and provide
inductive bias via a canonicalization loss. Similar in spirit,
the approaches [4,7,46] use collection of 2D poses with re-
projection loss for training and use adversarial losses to dis-
tinguish between plausible and in-plausible poses. In [47],
non-rigid structure from motion is used to learn a 3D pose
estimator from videos with 2D pose annotations. The clos-
est to our work are the approaches of [14, 29] in that they
also use unlabeled multi-view data for training. The ap-
proach of [29], however, requires calibrated camera views
that are very hard to acquire in unconstrained environments.
The approach [14] estimates 2D poses from multi-view im-
ages and reconstructs corresponding 3D pose using Epipo-
lar geometry. The reconstructed poses are then used for
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Figure 1. An end-to-end approach for learning 3D pose estimation model without 3D annotations. For training, we only use unlabeled
multi-view data along with an independent collection of images with 2D pose annotations. Given an RGB image, the model is trained
to generate 2D heatmaps H2D and latent depth-maps Hz - shown only for I2 for simplicity. The 2D heatmaps are converted to 2D pose
coordinates using soft-argmax. The relative-depth values ẑr are obtained by taking channel-wise summation of the multiplication of
normalized heatmaps H̄2D and latent depth-maps Hz . The 3D pose is reconstructed in a fully differentiable manner by exploiting the scale
normalization constraint (Sec. 3.1). The images with 2D pose annotation are used for heatmap loss LH. The 3D supervision is provided
via a multi-view consistency loss LMC that enforces that the 3D poses generated from different views should be identical up to a rigid
transform. Given 2D pose estimates from different views and camera intrinsics, the objective is designed such that the only way for the
network to minimize it is to produce correct relative depth values ẑr (Sec. 3.3). We also enforce a bone-length loss LB on each predicted
3D pose to further constrain the search space.

training in a fully-supervised way. The main drawback of
this method is that the 3D poses remain fixed throughout the
training, and the errors in 3D reconstruction directly propa-
gate to the trained models. This is, particularly, problematic
if the multi-view data is captured in challenging outdoor
environments where 2D pose estimation may fail easily. In
contrast, in this work, we propose an end-to-end learning
framework which is robust to challenges posed by the data
captured in in-the-wild scenarios. It is trained using a novel
objective function which can simultaneously optimize for
2D and 3D poses. In contrast to [14], our approach can
also improve 2D predictions using unlabeled multi-view
data. We evaluate our approach on two challenging datasets
where it outperforms existing methods for semi-/weakly-
supervised learning by a large margin.

3. Method

Our goal is to train a convolutional neural network
F(I, θ) parameterized by weights θ that, given an RGB im-
age I as input, estimates the 3D body pose P = {pj}j∈J
consisting of 3D locations pj = (xj , yj , zj) ∈ R3 of J
body joints with respect to the camera.

We do not assume any training data with paired 2D-3D
annotations and learn the parameters θ of the network in
a weakly-supervised way using unlabeled multi-view im-
ages and an independent collection of images with 2D pose
annotations. To this end, we build on the 2.5D pose repre-

sentation of [12] for hand pose estimation and extend it to
human body. This 2.5D pose representation has several key
features that allow us to exploit multi-view information and
devise loss functions for weakly-supervised training.

In the following, we first recap the 2.5D pose represen-
tation (Sec. 3.1) and the approach to reconstruct absolute
3D pose from it (Sec. 3.1.1). We then describe a fully-
supervised approach to regress the 2.5D pose using a con-
volutional neural network (Sec.3.2) followed by our pro-
posed method for weakly-supervised training in Sec. 3.3.
An overview of the proposed approach can be seen in Fig. 1.

3.1. 2.5D Pose Representation

Many existing methods [27, 39, 40] for 3D body pose
estimation adopt a 2.5D pose representation P2.5D =
{p2.5D

j = (uj , vj , z
r
j )}j∈J where uj and vj are the 2D

projection of the body joint j on a camera plane and zrj =
zroot−zj represents its metric depth with respect to the root
joint. This decomposition of 3D joint locations into their
2D projection and relative depth has the advantage that ad-
ditional supervision from in-the-wild images with only 2D
pose annotations can be used for better generalization of the
trained models. However, this representation does not ac-
count for scale ambiguity present in the image which might
lead to ambiguities in predictions.

The 2.5D representation of [12], however, differs from
the rest in terms of scale normalization of 3D poses. Specif-
ically, they scale normalize the 3D pose P such that a spe-
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cific pair of body joints has a unit distance:

P̂ =
P

s
, (1)

where s = ‖pk − pl‖2 is estimated independently for each
pose. The pair (k, l) corresponds to the indices of the joints
used for scale normalization. The resulting scale normal-
ized 2.5D pose representation p̂2.5D

j = (uj , vj , ẑ
r
j ) is ag-

nostic to the scale of the person. This not only makes it
easier to be estimated from cropped RGB images, but also
allows to reconstruct the absolute 3D pose of the person up
to a scaling factor in a fully differentiable manner as de-
scribed next.

3.1.1 Differentiable 3D Reconstruction

Given the 2.5D pose P̂2.5D, we need to find the depth ẑroot
of the root joint to reconstruct the scale normalized 3D lo-
cations P̂ of body joints using perspective projection:

p̂j = ẑjK
−1

ujvj
1

 = (ẑroot + ẑrj )K−1

ujvj
1

 . (2)

The value of ẑroot can be calculated via the scale normal-
ization constraint:

(x̂k − x̂l)2 + (ŷk − ŷl)2 + (ẑk − ẑl)2 = 1, (3)

which leads to an analytical solution as derived in [12].
Since all operations for 3D reconstruction are differentiable,
we can devise loss functions that directly operate on the re-
constructed 3D poses.

In the rest of this paper, we will use the scale normalized
2.5D pose representation. We use the distance between the
neck and pelvis joints to calculate the scaling factor s.

3.2. 2.5D Pose Regression

Since the 3D pose can be reconstructed analytically from
2.5D pose, we train the network to predict 2.5D pose and
implement 3D reconstruction as an additional parameter-
free layer. To this end, we adopt the 2.5D heatmap regres-
sion approach of [12]. Specifically, given an RGB image
as input, the network produces 2J channels as output with
J channels for 2D heatmaps (H2D) while the remaining J
channels are regarded as latent depth maps Hz . The 2D
heatmaps are converted to 2D pose coordinates (uj , vj) by
first normalizing them using spatial softmax, i.e., H̄2D

j =

softmax(H2D
j , λ), and then using the soft-argmax opera-

tion:

uj =
∑

u,v∈U

u · H̄2D
j (u, v); vj =

∑
u,v∈U

v · H̄2D
j (u, v), (4)

where U is a 2D grid sampled according to the effective
stride size of the network, and λ is a constant that controls
the temperature of the normalized heatmaps.

The relative scale normalized depth value ẑrj for each
joint can then be obtained as the summation of the element-
wise multiplication of H̄2D

j and latent depth maps Hz
j :

ẑrj =
∑
u,v

H̄2D
j �Hz

j . (5)

Given the 2D pose coordinates {(uj , vj)}j∈J , relative
depths ẑr = {ẑrj }j∈J and intrinsic camera parameters K,
the 3D pose can be reconstructed as explained in Sec. 3.1.1.

In the fully-supervised (FS) setting, the network can be
trained using the following loss function:

LFS = LH(H2D,H2D
gt ) + ψLz(ẑr, ẑrgt), (6)

where H2D
gt and ẑrgt are the ground-truth 2D heatmaps and

ground-truth scale-normalized relative depth values, respec-
tively. We use mean squared error as the loss functions
LH(·) and Lz(·).

We make one modification to the original loss to bet-
ter learn the confidence scores of predictions. Specifically,
in contrast to [12], we do not learn 2D heatmaps in a la-
tent way. Instead, we chose to explicitly supervise the 2D
heatmap predictions via ground-truth heatmaps with Gaus-
sian distributions at the true joint locations. We will rely
on the confidence scores to devise a weakly-supervised loss
that is robust to uncertainties in 2D pose estimates, as de-
scribed in the following section.

3.3. Weakly-Supervised Training

We describe our proposed approach for training the re-
gression network in a weakly-supervised way without any
3D annotations. For training, we assume a set M =
{{Inc }c∈Cn

}n∈N of N samples, with the nth sample con-
sisting of Cn camera views of a person in same body pose.
The multi-view images can be taken at the same time us-
ing multiple cameras, or using a single camera assuming a
static body pose over time. We do not assume knowledge of
extrinsic camera parameters. Additionally, we use an inde-
pendent set of images annotated only with 2D poses which
is available abundantly or can be annotated by people even
for in-the-wild data. For training, we optimize the following
weakly-supervised (WS) loss function:

LWS = LH(H2D,H2D
gt ) + αLMC(M) + βLB(L̂, µ̂L), (7)

where LH is the 2D heatmap loss, LMC is the multi-view
consistency loss, and LB is the limb length loss.

Recall that, given an RGB image, our goal is to esti-
mate the scale normalized 2.5D pose P̂2.5D = {p2.5D

j =
(uj , vj , ẑ

r
j )}j∈J from which we can reconstruct the scale

normalized 3D pose P̂ as explained in Sec. 3.1.1. While
LH provides supervision for 2D pose estimation, the loss
LMC supervises the relative depth component (ẑr). The
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limb length loss LB further ensures that the reconstructed
3D pose P̂ has plausible limb lengths. In the following, we
explain these loss functions in more detail.

Heatmap Loss (LH) measures the difference between
the predicted 2D heatmaps H2D and ground-truth heatmaps
H2D

gt with Gaussian distribution at the true joint location.
It operates only on images annotated with 2D poses and is
assumed to be zero for all other images.

Multi-View Consistency Loss (LMC) enforces that the
3D pose estimates obtained from different views should be
identical up to a rigid transform. Formally, given a multi-
view training sample M = {Ic}c∈C with C camera views,
we define the multi-view consistency loss as the weighted
sum of the difference between the 3D joint locations across
different views after the rigid alignment:

LMC =
∑

c,c′∈C
c6=c′

∑
j∈J

φj,cφj,c′ · d(p̂j,c,R
c′

c p̂j,c′), (8)

where

φj,c = H2D
j,c (uj,c, vj,c) and φj,c′ = H2D

j,c′(uj,c′ , vj,c′)

are the confidence scores of the jth joint in camera view-
point Ic and Ic′ , respectively. The p̂j,c and p̂j,c′ are the
scale normalized 3D coordinates of the jth joint estimated
from viewpoint Ic and Ic′ , respectively. Rc′

c ∈ R3×4 is
a rigid transformation matrix that best aligns the two 3D
poses, and d is the distance metric used to measure the dif-
ference between the aligned poses. In this work, we use
L1-norm as the distance metric d. In order to understand
the contribution of LMC more clearly, we can rewrite the
distance term in (8) in terms of the 2.5D pose representa-
tion using (2), i.e.:

d(p̂j,c,R
c′

c p̂j,c′) =

d((ẑroot,c+ẑ
r
j,c)K

−1
c

uj,cvj,c
1

,Rc′

c (ẑroot,c′+ẑ
r
j,c′)K

−1
c′

uj,c′vj,c′

1

).

(9)

Let us assume that the 2D coordinates (uj,c, vj,c) and
(uj,c′ , vj,c′) are predicted accurately due to the loss LH and
the camera intrinsics Kc and Kc′ are known. For simplic-
ity, let us also assume the ground-truth transformation Rc′

c

between the two views is known. Then, the only way for
the network to minimize the difference d(., .) is to predict
the correct values for relative depths ẑrj,c and ẑrj,c′ . Hence,
the joint optimization of the losses LH and LMC allows us to
learn correct 3D poses using only weak supervision in form
of multi-view images and 2D pose annotations. Without the
loss LH the model can lead to degenerated solutions.

While in many practical scenarios, the transformation
matrix Rc′

c can be known a priori via extrinsic calibration,

we, however, assume it is not available and estimate it using
predicted 3D poses and Procrustes analysis as follows:

Rc′

c = argmin
R

∑
j∈J

φj,cφj,c′‖p̂j,c −Rp̂j,c′‖22. (10)

During training, we follow [34] and do not back-propagate
through the optimization of transformation matrix (10),
since it leads to numerical instabilities arising due to sin-
gular value decomposition. Note that the gradients from
LMC not only influence the depth estimates, but also affect
heatmap predictions due to the calculation of ẑroot in (3).
Therefore, LMC can also fix the errors in 2D pose estimates
as we will show in our experiments.

Limb Length Loss (LB) measures the deviation of the
limb lengths of predicted 3D pose from the mean bone
lengths:

LB =
∑

j,j′∈E
φjφj′(‖p̂j − p̂j′‖ − µ̂L

j,j′)
2, (11)

where E corresponds to the used kinematic structure of the
human body and µ̂L

j,j′ is the scale normalized mean limb
length for joint pair (j, j′). Since the limb lengths of all peo-
ple will be roughly the same after scale normalization (1),
this loss ensures that the predicted poses have plausible limb
lengths. During training, we found that having a limb length
loss leads to faster convergence.

Additional Regularization We found that if a large
number of samples in multi-view data have a constant back-
ground, the network learns to recognize these images and
starts predicting same 2D pose and relative depth values
for such images. Interestingly, it predicts correct values
for other samples. In order to prevent this, we incorporate
an additional regularization loss for such samples. Specif-
ically, we run a pre-trained 2D pose estimation model and
generate pseudo ground-truths by selecting joint estimates
with confidence score greater than a threshold τ = 0.5.
These pseudo ground-truths are then used to enforce the
2D heatmap loss LH, which prevents the model from pre-
dicting degenerated solutions. We generate the pseudo
ground-truths once at the beginning of the training and keep
them fixed throughout. Specifically, we use the regulariza-
tion loss for images from Human3.6M [10] and MPII-INF-
3DHP [22] that are both recorded in controlled indoor set-
tings. While the regularization may reduce the impact of
LMC on 2D poses, the gradients from LMC will still influ-
ence the heatmap predictions of body joints that were not
detected with high confidence (see Fig. 2).

4. Experiments

We evaluate our proposed approach for weakly-
supervised 3D body pose learning and compare it with the
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state-of-the-art methods. Additional training and imple-
mentation details can be found in the supplementary ma-
terial.

4.1. Datasets

We use two large-scale datasets, Human3.6M [10]
and MPII-INF-3DHP [22] for evaluation. For weakly-
supervised training, we also use the MannequinChallenge
dataset [18] and MPII Human Pose dataset [1] . The details
of each dataset are as follows.
Human3.6M (H36M) [10] provides images of actors per-
forming a variety of actions from four views. We follow the
standard protocol and use five subjects (S1, S5, S6, S7, S8)
for training and test on two subjects (S9 and S11).
MPII-INF-3DH (3DHP) [22] provides ground-truth 3D
poses obtained using markerless motion-capture system.
Following the standard protocol [22], we use five chest
height cameras for training. The test-set consists of six se-
quences with actors performing a variety activities.
MannequinChallenge Dataset (MQC) [18] provides in-
the-wild videos of people in static poses while a hand-held
camera pans around the scene. The videos do not come
with any ground-truth annotations, however, the data is very
adequate for our proposed weakly-supervised approach us-
ing multi-view consistency. The dataset consists of three
splits for training, validation and testing. In this paper, we
use ∼3300 videos from training and validation set as pro-
posed by [18], but in practice one could download an im-
mense amount of such videos from YouTube (#Mannequin-
Challenge). We will show in our experiments that using
these in-the-wild videos during training yields better gener-
alization, in particular, when there is a significant domain
gap between the training and testing set. Since the videos
can have multiple people inside each frame, they have to
be associated across frames to obtain the required multi-
view data. To this end, we adopt the pose based tracking
approach of [49] and generate person tracklets from each
video. For pose estimation, we use a HRNet-w32 [38]
model pretrained on MPII Pose dataset [1]. In order to avoid
training on noisy data, we discard significantly occluded or
truncated people. We do this by discarding all poses that
have more than half of the estimated body joints with confi-
dence score lower than a threshold τ=0.5. We also discard
poses in which neck or pelvis joints have confidence lower
than τ=0.5 since both joints are important for ẑroot recon-
struction using (3). Finally, we discard all tracklets with
the length lower than 5 frames. This gives us 11,413 multi-
view tracklets with 241k images in total. The minimum and
maximum length of the tracklets is 5 and 140 frames, re-
spectively.
MPII Pose Dataset (MPII) [1] provides 2D pose annota-
tions for 28k in-the-wild images.

Method
Supervision Error

2D 3D MV 2D px 3D mm

FS H+M H - 5.9 55.5

WS + R H+M - H 6.1 57.2
WS H+M - H 6.1 59.3

2d-only M - - 8.9 -
WS + R M - H 8.3 62.3
WS M - H 8.4 69.1
WS M - I 9.0 106.2
WS M - I+Q 9.1 93.6
WS M - H+I+Q 8.4 67.4
WS + R M - H+I+Q 8.4 60.3

Table 1. Ablative study: We provide results when different levels
of supervision are used to train the proposed weakly-supervised
method. FS: Fully-Supervised, WS: Weakly-Supervised, MV:
Multi-View, H: H36M, M: MPII, I: 3DHP, Q: MQC. No 3D su-
pervision is used for all experiments except FS.

4.2. Evaluation Metrics

For evaluation on H36M, we follow the standard proto-
cols and use MPJPE (Mean Per Joint Position Error), N-
MPJPE (Normalized-MPJPE) and P-MPJPE (Procrustes-
aligned MPJPE) for evaluations. MPJPE measures the
mean euclidean error between the ground-truth and esti-
mated location of 3D joints after root alignment. While
NMPJPE [34] also aligns the scale of the predictions with
ground-truths, PMPJPE aligns both the scale and rotations
using Procrustes analysis. For evaluation on 3DHP dataset,
we follow [22] and also report PCK (Percentage of Correct
Keypoints) and Normalized-PCK as defined in [34]. PCK
measures the percentage of predicted body joints that lie
within the radius of 150mm from their ground-truths. 3DHP
evaluation protocol uses 14 joints for evaluation excluding
the pelvis joint which is used for alignment of the poses.

4.3. Ablation Studies

Tab. 1 evaluates the impact of different levels of super-
vision for training with the proposed approach. We use
H36M for evaluation. We start with a fully-supervised set-
ting (FS) which uses 2D supervision from H36M and MPII
(2D=H+M) datasets and 3D pose supervision from H36M
(3D=H). No multi-view (MV) data is used in this case.
The fully-supervised model yields a MPJPE of 5.9px and
55.5mm for 2D and 3D pose estimation, respectively. We
then remove the 3D supervision and instead train the net-
work using the proposed approach for weakly-supervised
learning (WS+R). The MV data is taken from H36M
(MV=H). For this experiment, we assume that the 2D pose
annotations for MV data are available (2D=H+M) and the
camera extrinsics R are known. This setting is essentially
similar to fully-supervised case since the 2D poses from dif-
ferent views can be triangulated using the known R. Train-
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Figure 2. Impact of using MQC dataset. We run the trained models on the tracks taken from MQC dataset and align the estimated 3D poses
using (10). Since people in MQC dataset do not move, the aligned poses should be very similar. Adding MQC dataset for training (right)
yields more consistent 3D pose estimates as compared to when only H36M is used (left) for multi-view consistency loss. Note that our
proposed approach can also fix the errors in 2D pose estimates in the unlabeled multi-view data.

ing the network under this setting, however, serves as a
sanity check that the proposed weakly-supervised approach
works as intended which can be confirmed by the obtained
3D pose error of 57.2mm. If R is unknown (WS) and is
obtained from estimated 3D poses using (10), the error in-
creases slightly to 59.3mm.

All of the aforementioned settings assume that the MV
data is annotated with 2D poses which is infeasible to col-
lect in large numbers. Therefore, we have designed the pro-
posed method to work with MV data without even 2D an-
notations. Next, we remove the 2D supervision from MV
data and only use MPII dataset for 2D supervision (2D=M).
For reference, we also report the error of a 2D-only model
trained on MPII dataset which yields a 2D pose error of
8.9px. Training without 2D pose annotations for MV data
with and without ground-truth R yields errors of 62.3mm
(WS+R) and 69.1mm (WS), respectively, as compared to
57.2mm and 59.3mm when the 2D pose annotations are
available. While using ground-truth R always yields bet-
ter performance, for the sake of easier applicability, in the
rest of this paper, we assume it to be unknown unless speci-
fied otherwise. It is also interesting to note that the 2D pose
error decreases from 8.9px to 8.3px when the multi-view
consistency loss (8) is used. Some qualitative examples of
improvements in 2D poses can be seen in Fig. 2.

We also evaluate the case when the training data is
recorded in different settings than testing data. For this, we
use 3DHP for training (MV=I) and test on H36M. Since
the images of 3DHP are very different from H36M, it leads
to a very high error of 106.2mm. Adding the generated

training data from MQC dataset (MV=I+Q) significantly
reduces the error to 93.6mm which demonstrates the effec-
tiveness of in-the-wild data from MQC. Combining all three
datasets (MV=H+I+Q) reduces the error further to 67.4mm
as compared to 69.1mm when only H36M dataset was used
for training. We also provide the results when ground-
truth R is known (WS+R) for H36M and 3DHP datasets
(MV=H+I+Q) which shows a similar behaviour and de-
creases the error from 62.3mm to 60.3mm.

In our experiments, we found that training only on MQC
dataset is not sufficient for convergence and it has to be
combined with another dataset which provides multi-view
data from more distant viewing angles. This is likely be-
cause most videos in MQC dataset do not capture same per-
son from very different viewing angles, whereas datasets
such as H36M and 3DHP provide images from cameras
with sufficiently large baselines.

4.4. Comparison with the State-of-the-Art

Tab. 2 compares the performance of our proposed
method with the state-of-the-art on H36M dataset. We
group all approaches in three categories; fully-supervised,
semi-supervised, and weakly-supervised, and compare the
performance of our method under each category. While
fully-supervised methods use complete training set of
H36M for 3D supervision, semi-supervised methods use
3D supervision from only one subject (S1) and use other
subjects (S5, S6, S7, S9) for weak supervision. Weakly-
supervised methods do not use any 3D supervision. Some
methods also use ground-truth information during infer-
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Methods MPJPE ↓ NMPJPE ↓ PMPJPE ↓

Fully-Supervised Methods

Rogez et al. [36] (CVPR’17) 87.7 - 71.6
Habibie et al. [8] (ICCV’19) - 65.7 -
Rhodin et al. [34] (CVPR’18) 66.8 63.3 51.6
Zhou et al. [52] (ICCV’17) 64.9 - -
Martinez et al. [21] (ICCV’17) 62.9 - 47.7
Sun et al. [39] (ICCV’17) * 59.6 - -
Yang et al. [50] (CVPR’18) 58.6 - -
Pavlakos et al. [27] (CVPR’18) 56.2 - -
Sun et al. [40] (ECCV’18)* 49.6 - 40.6
Kocabas et al. [14] (CVPR’19)* 51.8 51.6 45.0
Ours - H - baseline 55.5 51.4 41.5
Ours* - H - baseline 50.2 49.9 36.9
Ours - H+I+Q 56.1 52.7 45.9

Semi-Supervised Methods - only Subject-1 is used for training

Rohdin et al. [33] (ECCV’18) 131.7 122.6 98.2
Pavlakos et al. [26] (ICCV’19) 110.7 97.6 74.5
Li et al. [19] (ICCV’19) 88.8 80.1 66.5
Rhodin et al. [34] (CVPR’18) n/a 80.1 65.1
Kocabas et al. [14] (CVPR’19) n/a 67.0 60.2
Ours - H 62.8 59.6 51.4
Ours - H+I+Q 59.7 56.2 50.6

Weakly-Supervised Methods - no 3D supervision

Pavlakos et al. [29] (CVPR’17) 118.4 - -
Kanzawa et al. [13] (CVPR’18) 106.8 - 67.5
Wandt et al. [46] (CVPR’19) 89.9 - -
Tome et al. [42] (CVPR’17) 88.4 - -
Kocabas et al. [14] (CVPR’19) n/a 77.75 70.67
Chen et al. [4] (CVPR’19) - - 68.0
Drover et al. [7] (ECCV-W’18) - - 64.6
Kolotouros et al. [15] (ICCV’19) - - 62.0
Wang et al. [47] (ICCV’19) 83.0 - 57.5
Ours - H 69.1 66.3 55.9
Ours - H+I+Q 67.4 64.5 54.5

Table 2. Comparison with the state-of-the-art on H36M dataset.
*use ground-truth depth of the root keypoint during inference.

ence [14, 39, 40]. For a fair comparison with those, we also
report our performance under the same settings. It is im-
portant to note that, many approaches such as [4, 7, 21, 33,
34, 36, 50] estimate root-relative 3D pose. Our approach,
on the other hand, estimates absolute 3D poses. While our
fully-supervised baseline (Ours-H-baseline) performs better
or on-par with the state-of-the-art fully-supervised methods,
our proposed approach for weakly-supervised learning sig-
nificantly outperforms other methods under both semi- and
weakly-supervised categories.

For a fair comparison with other methods, we report
results of our method under two settings: i) using H36M
and MPII dataset for training (Ours-H), and ii) with multi-
view data from 3DHP and MQC as additional weak su-
pervision (Ours-H+I+Q). In the fully-supervised case, us-
ing additional weak supervision slightly worsens the per-
formance (55.5mm vs 56.1mm) which is not surprising
on a dataset like H36M which is heavily biased to indoor
data and have training and testing images recorded with a
same background. Whereas, our approach, in particular the
data from MQC, is devised for in-the wild generalization.
The importance of additional multi-view data, however, can
be seen evidently in the semi-/weakly-supervised settings
where it decreases the error from 62.8mm to 59.7mm and

Methods MPJPE↓ NMPJPE↓ PCK↑ NPCK↑

Fully-Supervised Methods

Mehta et al. [23] - - 76.6 -
Rohdin et al. [34] n/a 101.5 n/a 78.8
Kocabas et al. [14]* 109.0 106.4 77.5 78.1
Ours 110.8 98.9 80.2 82.3
Ours* 99.2 97.2 83.0 83.3

Semi-Supervised Methods

Rhodin et al. [34] n/a 121.8 n/a 72.7
Kocabas et al. [14] n/a 119.9 n/a 73.5
Ours 113.8 102.2 79.1 81.5

Weakly-Supervised Methods

Kanazwa et al. [13] 169.5 - 59.6 -
Kolotouros et al. [15] 124.8 - 66.8 -
Ours 122.4 110.1 76.5 79.4

Kocabas et al. [14]* + R 126.8 125.7 64.7 71.9
Ours* + R 109.3 107.2 79.5 80.0

Table 3. Comparison with the state-of-the-art on 3DHP dataset.
*use ground-truth 3D location of the root joint during inference.

from 69.1mm to 67.4mm, respectively.
Compared to the state-of-the-art method [14] that also

uses multi-view information for weak supervision, our
method performs significantly better even though the fully-
supervised baselines of both approaches perform similar.
This demonstrates the effectiveness of our end-to-end train-
ing approach and proposed loss functions that are robust to
errors in 2D poses. While our weakly-supervised approach
does not outperform fully-supervised methods, it performs
on-par with many recent fully-supervised approaches.

Tab. 3 compares the performance of our proposed ap-
proach with the state-of-the-art on 3DHP dataset. We use
our models trained with Ours-H+I+Q setting, as described
above. We do not use any 3D pose supervision from 3DHP
dataset and instead use the same models used for evalua-
tion on H36M dataset. Our proposed approach outperforms
all existing methods with large margins under all three cat-
egories which also demonstrates the cross dataset general-
ization of our proposed method.

Some qualitative results of the proposed approach can be
seen in the supplementary material.

5. Conclusion
We have presented a weakly-supervised approach for 3D

human pose estimation in the wild. Our proposed approach
does not require any 3D annotations and can learn to es-
timate 3D poses from unlabeled multi-view data. This is
made possible by a novel end-to-end learning framework
and a novel objective function which is optimized to predict
consistent 3D poses across different camera views. The pro-
posed approach is very practical since the required training
data can be collected very easily in in-the-wild scenarios.
We demonstrated state-of-the-art performance on two chal-
lenging datasets.
Acknowledgments: We are thankful to Kihwan Kim and
Adrian Spurr for helpful discussions.
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