
LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 1

Video Stitching for Linear Camera Arrays
Supplementary Material

Wei-Sheng Lai1,2

wlai24@ucmerced.edu

Orazio Gallo2

ogallo@nvidia.com

Jinwei Gu2

gujinwei@gmail.com

Deqing Sun2

deqing.sun@gmail.com

Ming-Hsuan Yang1

mhyang@ucmerced.edu

Jan Kautz2

jkautz@nvidia.com

1 University of California, Merced
2 NVIDIA

1 Overview
In this supplementary document, we present additional results to complement the paper.
First, we provide the implementation and training details of the proposed method. Second,
we analyze the robustness of the proposed method on the variation of the camera settings. Fi-
nally, we show some failure cases of our model. The video results are available in our project
website at http://vllab.ucmerced.edu/wlai24/video_stitching/.

2 Implementation Details
Figure 1 shows the network architecture of our flow estimation and flow refinement networks.
Both the flow estimation and flow refinement networks use the same U-Net architecture. All
the convolutional layers are followed by the leaky ReLU activation layer with a negative
slope of 0.1. In the encoder, we use the 2×2 average pooling layer to downsample feature
maps by 2×. In the decoder, we use the bilinear upsampling layer instead of the transposed
convolutional layer to upsample feature maps. We also add skip connections from the en-
coder to the decoder.

We implement our model using PyTorch [3]. During the training stage, we sample three
consecutive frames from the same video in each forward pass. We only compute the tem-
poral loss for the center frame while computing the content and perceptual losses for all the
sampled frames. We set the initial learning rate to 10−4 and decrease by a factor of 2 for
every 20,000 iterations. In total, we optimize our network using the ADAM solver [1] for
100,000 iterations We train our model on an NVIDIA Titan X GPU, which takes about 1 day

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

http://vllab.ucmerced.edu/wlai24/video_stitching/


2 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

Input frames Bidirectional flows
7	×	7
32

5	×	5
64

3	×	3
128

3	×	3
256

3	×	3
512

3	×	3
512

3	×	3
512

3	×	3
32

3	×	3
64

3	×	3
128

3	×	3
256

Conv Average pooling Bilinear upsampling

Concatenate

(a) Flow estimation network

Concatenate

Initial warped frames Refined flows

7	×	7
32

5	×	5
64

3	×	3
128

3	×	3
256

3	×	3
512

3	×	3
512

3	×	3
512

3	×	3
32

3	×	3
64

3	×	3
128

3	×	3
256

Scaled flows
Visibility map

(b) Flow refinement network

Figure 1: Network architecture.

to converge. At the test stage, it takes 0.12 second for our network to stitch a video frame
with a resolution of 1000×600 pixels.

3 Additional Analysis

Our method requires the cameras positions to be known, a fairly common assumption for
algorithms that stitch the output of camera rigs. In fact, NVIDIA’s VRWorks [2], against
which we compare in the paper, also requires this information. Further, although trained
for a specific configuration, our model is robust to deviations from the expected settings.
To demonstrate the robustness of our model, we render the same test video by changing
the camera baseline, i.e., horizontally shifting the side cameras inward or outward from the
position used for training.

Figure 2(a) and (b) offer an insight on the analysis of the impact of different baselines.
Even when moving the side cameras inwards by up to 0.8m (62.5% of the original baseline)
the PSNR drops by less than 1dB. While moving the side cameras outwards decreases the
size of overlapped region, the PSNR drops less than 2dB when the deviation is up to 0.4m.
On the other hand, the temporal warping error remains small and the video is still stable
during playback. We show visual results from the default baseline and an extreme base-
line shift (+1.0m) in Figure 2(c-d). Note that despite the very large change in baseline and
associated reduction in image overlap when the baseline is increased, the quality remains
similar—see the lamp post, which is in a transition region. However, minor artifacts can be
seen in close-by regions, e.g., double yellow lines.

We then fine-tune our model with data that mixes multiple camera baselines (from 0.28m
to 2.28m). The fine-tuned model further improves the performance (red curves in Figure 2(a-
b)) for a range of baseline shifts. In Figure 2(e), we show that our fine-tuned model success-



LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 3

1.0 0.5 0.0 0.5 1.0
Baseline shift (m)

27

28

29

30

31

32

33

PS
N

R

Trained on default baseline
Finetuned on multiple baselines

1.0 0.5 0.0 0.5 1.0
Baseline shift (m)

7.00e-04

8.00e-04

9.00e-04

1.00e-03

1.10e-03

1.20e-03

1.30e-03

W
ar

pi
ng

Er
ro

r

Trained on default baseline
Finetuned on multiple baselines

(a) PSNR (b) Temporal warping error

(c) 1.28m (default) (d) 2.28m (+1.0m) (e) 2.28m (+1.0m) fine-tuned

Figure 2: Robustness analysis. The model trained on a single camera setting is robust
to a certain deviations from the default camera baseline. After fine-tuning the model on
data with multiple camera baseline settings, the visual quality and temporal stability can be
further improved.

Figure 3: Failure cases. Our approach might produce mis-alignment or ghosting artifacts
when the flow estimation is not accurate, especially for thin objects.

fully reduces the alignment artifacts in the double yellow lines. For dramatically different
camera configurations or best quality, re-training or fine-tuning is a reasonable strategy, as
the configuration is usually known before the deployment of the system.

4 Failure Cases
In Figure 3, we show two results where our model does not perform well. As the proposed
pushbroom interpolation layer relies on the optical flow, the alignment may fail due to inac-
curate flow estimation, especially on long and thin objects, e.g., utility poles or street lamps.



4 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

ICLR, 2015. 1

[2] Nvidia VRWorks. https://developer.nvidia.com/vrworks/
vrworks-360video. 2

[3] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017. 1

https://developer.nvidia.com/vrworks/vrworks-360video
https://developer.nvidia.com/vrworks/vrworks-360video

