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Abstract— Driver distraction is a serious threat to automotive
safety. The visual-manual interfaces in cars are a source of
distraction for drivers. Automotive touch-less hand gesture-
based user interfaces can help to reduce driver distraction and
enhance safety and comfort. The choice of hand gestures in
automotive interfaces is central to their success and widespread
adoption. In this work we evaluate the recognition accuracy
of 25 different gestures for state-of-the-art computer vision-
based gesture recognition algorithms and for human observers.
We show that some gestures are consistently recognized more
accurately than others by both vision-based algorithms and
humans. We further identify similarities in the hand gesture
recognition abilities of vision-based systems and humans. Lastly,
by merging pairs of gestures with high miss-classification rates,
we propose ten robust hand gestures for automotive interfaces,
which are classified with high and equal accuracy by vision-
based algorithms.

I. INTRODUCTION

Distracted driving has been identified as a serious threat
to road safety in many countries around the world [1]. In
the United States, driver distraction was involved in 10% of
all police-reported crashes in 2013 and resulted in injuries to
424,000 people [2]. Distraction is defined as the diversion of
the driver’s attention away from the primary task of driving
towards a competing activity [3]. It results in the impairment
of the driver’s situational awareness, decision making and
driving performance. There are various forms of distraction
including visual, cognitive, physical and auditory. Visual-
manual interfaces, e.g., haptic controls and touch screens
in cars or cell phones, are a significant source of driver
distraction [4].

The research on visual-manual distraction in cars estab-
lishes a link between visual attention (e.g. eyes off the road)
and crash risk [5]. Hand gesture-based user interfaces (UIs)
in cars allow drivers to keep their eyes on the road while
performing secondary tasks. These UIs can improve safety
and comfort in cars especially when coupled with appropriate
mechanisms to provide feedback. Additionally, hand gestures
performed with hands on/close to the steering wheel can
result in low physical distraction. Unlike voice-based inter-
faces, gesture UIs are less likely to be affected by ambient
sounds in vehicles and cause less auditory distraction. Vision-
based gesture recognition systems can also be extended to
incorporate functionality for driver monitoring.

A recent evaluation of human subjects found that, in
cars, users perceived gesture UIs to be more secure, less
distracting and slightly more useful than touch screens [6].
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Users also reported gesture interfaces to be more desirable
and worth buying, but less reliable than touch screens. The
choice of hand gestures in automotive UIs is an impor-
tant design consideration which can greatly influence their
success and widespread adoption. Research on automotive
gesture UIs has gained significant traction in recent years,
but has primarily focused on algorithms for hand gesture
recognition in cars [6], [7], [8], [9], [10], [11], [12], [13].
Some work to standardize vehicular gesture interfaces is also
underway [14], but little attention has been paid to selecting
the best set of gestures for automotive UIs.

The ideal choice of hand gestures for automotive UIs
should jointly optimize for safety, ease of use, robustness,
and the intended application [15]. In this work we primarily
focus on robustness, which in turn depends on the accuracy
of automatic gesture recognition systems for each class
of hand gesture. As a step towards identifying the most
robust hand gestures, we evaluate the recognition accuracy
of 25 different hand gestures intended for use in automotive
gestural interfaces. We evaluate the recognition accuracy of
5 different state-of-the-art gesture recognition algorithms and
6 human observers. Since the most successful algorithms for
hand gesture recognition in cars are based on computer vision
technology that uses RGB and/or depth (D) data as input, we
consider only vision-based gesture recognition algorithms.

We show that some gestures are consistently recognized
more accurately than others by both vision-based systems
and humans. This implies the presence of inherent variability
in the recognizability of different types of hand gestures. We
further identify similarities in how well vision-based systems
and humans observers are able to recognize the various kinds
of gestures. Lastly, by merging the pairs of gestures with the
highest miss-classification rates, we propose ten robust hand
gestures for automotive interfaces, which are classified with
high and equal accuracy by vision-based algorithms.

The paper is organized as follows. In Section II, we
summarize the existing work on vision-based hand ges-
ture recognition algorithms. In Section III we describe our
experimental methodology including the dataset and the
vision-based algorithms that we use as well as the human
study and statistical analysis that we conduct to evaluate the
recognition accuracies of the various gesture types. Section
IV enumerates the results of our experiments. We conclude in
Section V with a summary of our main findings and identify
directions for future research.



II. RELATED WORK

A. Gesture Recognition Systems

Hand gesture recognition using computer-vision tech-
niques in the uncontrolled lighting conditions encountered
in a car is challenging. RGB-based techniques for gesture
recognition in cars that use special infrared (IR) illuminators
and near-IR cameras have been proposed [7], [8], [6]. These
previous methods use hand-crafted features, including Hu
moments [7], decision rules [8], or contour shape features [6]
along with HMM classifiers [7], [8]. Ohn-Bar and Trivedi
use RGBD data, histogram of gradients (HOG) features
and a support vector machine (SVM) classifier [9], whereas
Kopinski et al. [13] extract point feature histograms from
depth images, and classify them with a multi-layer percep-
tron (MLP).

Besides hand-crafted features, recent works learn feature
representations from deep neutral networks for gesture and
action classification. Neverova et al. [10] employ convolu-
tional neural networks to combine color and depth inputs
from hand regions with upper-body skeletons to recognize
sign language gestures. Molchanov et al. [11], [12] ap-
ply three-dimensional (3D) convolutional neural networks
(CNN) to segmented gesture video sequences along with
space and time video augmentation techniques to avoid
overfitting. They report state-of-the-art performance, in both
accuracy and speed, on a benchmark in-car hand gesture
recognition dataset [9]. Independently of vision-based tech-
niques, hand recognition systems that use micro-Doppler
signatures of electromagnetic signals have also been devel-
oped [11], [16], [17], [18], but they result in lower accuracy.

Techniques that were originally geared towards video
classification and action recognition can also be applied
to hand gesture recognition. Improved dense trajectories
(iDT) [19] rely on image gradients and optical flow, use
hand-crafted descriptors based on appearance and motion
cues, and are considered state-of-the-art for action classi-
fication. Super normal vectors (SNV) [20] perform action
recognition on depth videos using a novel scheme for aggre-
gating normals, yielding high accuracy. The two-stream CNN
architecture [21] uses two separate CNNs for spatial (video
frame) and temporal (optical flow) streams that are combined
through late fusion. Finally, the convolutional 3D (C3D)
method [22] performs classification by analyzing individual
short video clips and classifies their averaged responses via
an SVM classifier, which leads to state-of-the-art accuracy.

B. Gesture Types

Despite the many systems that have been proposed for
in-car gesture recognition, no standard has emerged for
which types of gestures to use. Most published work focuses
on recognition with little attention to choosing a set of
gestures to improve recognition accuracy. The early work
by Zobl et al. [23] reports that there is a “limited gesture
vocabulary with a high inter- and intra-individual conformity
for a variety of applications”, but unfortunately does not
specify that set of gestures. The more recent work by Riener

Fig. 1. (Top left) The driving simulator for data collection with the
main monitor displaying simulated driving scenes and a user interface for
prompting gestures, (A) a SoftKinetic depth camera (DS325) for recording
depth and RGB data, and (B) a DUO 3D camera capturing stereo IR data.
Both sensors capture 320×240 pixels at 30 frames per second. (Bottom
row) Examples of each recorded modality, from left: RGB, optical flow,
depth, IR-left, and IR-disparity.

et al. [14] finds that, when subjects are allowed to freely
choose their own set of gestures, there is a low variability
within a subjects’ gestures (subjects consistently use the
same gesture for the same functionality), but variability is
high between subjects (subjects use different gestures for
the same functionality), which is perhaps not surprising.
We set out to answer whether particular gestures are more
amenable to automatic recognition. While this is related
to the aforementioned studies, our work looks at gesture
recognition from the point of view of a system designer.

III. METHOD

A. Dataset

We employ a dataset containing 1532 videos of hand
gesture from 25 different gesture classes [24]. The data
were captured indoors with a car simulator under both
bright and dim artificial lighting environments, as shown
in Fig. 1. It includes gestures performed by 20 different
subjects. Each subject used their right hand to perform the
gestures while controlling the steering wheel with their left
hand. During a recording session, each subject repeated each
of the 25 different gestures three times in a random order.
The simulator had a user interface that prompted subjects to
perform particular hand gestures with an audio instruction
and a sample video clip of the gesture to perform. Despite the
uniformity of gesture prompts, we observe natural inter- and
intra-subject variability in gesture performance. This natural
variability is preserved in the data set.

The gesture classes include moving the hand left, right,
up or down; moving two fingers left, right, up or down;
“clicking” with the index finger; calling someone (beckoning
with the hand); opening or shaking the hand; showing the
index finger, two fingers or three fingers; pushing the hand
up, down, out or in; rotating two fingers clockwise (CW) or
counter-clockwise (CCW); pushing forward with two fingers;
closing the hand twice; and showing the symbols for “thumb
up” or “OK”. (See the examples shown in Fig. 2.) These
gestures were partly adopted from existing commercial sys-
tems [25] and from popular automotive gesture recognition
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Fig. 2. Each column shows a different gesture class (1−25). The gestures included (from left to right): moving the hand left, right, up, or down; moving
two fingers left, right, up, or down; clicking with the index finger; calling someone (beckoning with the hand); opening and shaking the hand; showing the
index finger, two fingers or three fingers; pushing the hand up, down, out or in; rotating two fingers clockwise or counter-clockwise; pushing forward with
two fingers; closing the hand twice; and showing “thumb up” or “OK”. The top and bottom rows show the starting and ending depth frames, respectively,
of the “nucleus” phase for each gesture, and yellow arrows indicate the motion performed in intermediate frames.

research datasets [9], [11]. The intended application of these
gestures is, e.g., to manipulate the visual-manual interfaces in
cars including those for controlling the radio, fan, thermostat,
and navigation systems. For example a gesture involving a
horizontal hand/finger motion to the left/right could be used
to move the music player to a previous/next audio track,
respectively.

The data were collected with RGBD (Fig. 1A) and IR
(Fig. 1B) sensors that each covered different views of
the hand. A SoftKinetic DS325 sensor acquired front-view
RGBD videos and a top-mounted DUO 3D sensor recorded a
pair of stereo-IR streams. In addition, dense optical flow [26]
was computed from the color stream and the IR disparity map
was computed from the IR-stereo pair [27]. The data were
randomly split by subject into training (70%) and testing
(30%) sets, resulting in 1050 training and 482 test gesture
videos.

B. Vision-based Algorithms

In previous work [12], we proposed a CNN-based al-
gorithm for hand gesture recognition, which outperformed
all other algorithms on the VIVA 2015 challenge’s in-car
hand gesture recognition dataset [9]. We recently extended
the CNN-based multi-modal algorithm to use a recurrent
three-dimensional convolutional neural network (R3DCNN),
which led to a significant improvement in accuracy over the
CNN-based method [24]. In the same work, we employed
the connectionist temporal classification cost function [28]
for training the R3DCNN classifier to support early detection
in unsegmented video streams with zero or negative lag.

We compared the performance of the proposed R3DCNN
algorithm to several state-of-the-art gesture and video ac-
tion recognition methods: HOG+HOG2 [9], improved dense
trajectories (iDT) [19], super normal vector (SNV) [20], two-
stream CNNs [21], and convolutional 3D (C3D) [22]; and to
the performance of human subjects. For the details of how
we implemented these algorithms, we refer interested readers
to Molchanov et al. [24].

We observed that the multi-modal version of our R3DCNN
algorithm with depth, color, optical flow, IR disparity and IR
image data outperformed all vision-based algorithms with an
accuracy of 83.8%. The other top performing algorithms, in
order to decreasing accuracy, were: C3D with depth (accu-
racy of 78.8%), iDT with MBH (76.8%), iDT with color and

optical flow (73.4%) and SNV with depth (70.7%) [24].
These top-performing algorithms cover a broad array of

successful gesture recognition techniques ranging from those
that use hand-crafted features to those with purely data-
driven approaches for feature extraction. They also represent
many different pattern classification techniques. These top-
performing algorithms are more likely to be representative
of the true performance of vision-based algorithms, whereas
the poorly-performing methods are likely to yield noisy,
uncorrelated classification results. Hence, to identify the set
of gestures that are classified most accurately by vision-based
algorithms, we used these five top-performing vision-based
gesture recognition algorithms for all further analysis.

C. Annotation by Humans

We also conducted a subjective user study to evaluate
the performance of human subjects at recognizing dynamic
hand gestures in video clips [24]. We designed a custom
graphical user interface for the task (Fig. 3), wherein we
displayed the RGB video clips of gestures acquired with the
front-view SoftKinetic camera (Fig. 1A). Six human subjects
manually labeled, in one continuous session, all 482 gesture
videos from the test partition of our dataset. We re-scaled
all gestures temporally to 80 frames and presented them at
30 frames per second. Clips were presented in a different
random order to each subject.

Before the experiment, all annotators were required to fa-
miliarize themselves with the 25 gesture classes by reviewing
example video clips of each. While labeling the gestures,
the annotators viewed each gesture video clip only once.
Additionally, a black frame was presented in the gesture
viewing window after the clip had played and while the
annotators decided on its label. This allowed the subject to
view the gesture for only its actual duration and not beyond,
and prevented the use of any identifying information that may
be contained in the last frame of some gestures (e.g., “thumb
up”). Newly presented gestures were marked as belonging to
the “none” category so as not to bias the annotator’s decision,
but subjects had to assign one label from the 25 gestures
classes to every gesture before proceeding. There was no
time limit on how long the subjects could take to select a
label. Additionally, the annotators could review an example
video clip of any gesture type at any time during the labeling
session.



Fig. 3. The graphical user interface used by human subjects to label video clips of hand gestures.

D. Recognition Rates of Gestures

We wish to ascertain if among the set of 25 gestures there
are some that are consistently recognized more accurately
than others by multiple top-performing vision-based gesture
recognition algorithms. In order to evaluate this hypothesis,
we compute the confusion matrices for each of the top
five vision based classifiers: R3DCNN, C3D, iDT with
MBH, iDT with color and optical flow, and SNV for the
482 gestures in the test partition of our dataset. From the
confusion matrices, we further compute the sensitivityi,j ,
precisioni,j ,, and the F1i,j scores for each of the n = 5
vision-based classifiers and for each of the k = 25 gesture
types. We employ the standard definitions for these metrics
as:

sensitivityi,j =
TPi,j

TPi,j + FNi,j
, (1)

precisioni,j =
TPi,j

TPi,j + FPi,j
, (2)

F1i,j =
2TPi,j

2TPi,j + FNi,j + FPi,j
, (3)

where TPi,j , FPi,j and FNi,j are the numbers of true
positive, false positive, and false negative cases for the
classifier i and the gesture type j, respectively. Note that
while sensitivity and precision measure the different types
of classification errors performed by a system, the F1 score,
which is their harmonic mean, is an overall indicator of the
classification accuracy of a system.

We accumulate all sensitivity, precision and F1 scores
into 5 × 25 sized matrices with the classifier and gesture
effects represented along the rows and columns, respec-
tively. Similarly, we also compute the 6 × 25 sensitivity,
precision, and F1 score matrices for the 6 human annota-
tors.

The distributions for the sensitivity, precision and F1
measures are not Gaussian. Hence we perform the non-
parametric Friedman test [29] on all the six sensitivity,
precision and F1 matrices to ascertain the presence of
consistent differences in the recognition rates of different
gesture types. The test provides the mean ranks of the
column effects, or in our case, gesture types and a probability
value (p) for whether the ranks of the column effects are
significantly similar or not. A low value (p < 0.05) indicates
insufficient evidence to accept the hypothesis that the ranks
of the column effects are similar and vice-versa. On observ-
ing significant differences in the recognition accuracies of a
set of gestures, we rank them in decreasing order of their
mean ranks for F1 scores.

We further identify pairs of gestures with significantly
different recognition rates for vision-based algorithms and
humans subjects. To do so, we conduct the multiple compar-
ison test [30] using a nonparametric version of the balanced
two-way ANOVA on the ranks of the gestures. The mul-
tiple comparison test computes standard (95%) confidence
intervals for the ranks of each of the 25 gestures. It further
conducts statistical comparisons between all possible pairs of
the 25 gestures (called “pairwise comparisons”) to determine
if they have significantly different ranks. An example of such
“pairwise comparisons” is shown in Fig. 4 (left), where the
ranks of the 25 gestures in terms of their F1 scores for
vision-based algorithms, are compared.

E. Comparison to Humans’ Performance

We also wish to determine if the gesture recognition
rates of the various gestures for vision-based algorithms
are correlated to the recognition rates of human annotators.
We compute the Spearman’s correlation coefficient (r) [31]
between the mean F1 ranks of vision-based algorithms
and the mean F1 ranks of human annotators for the 25
gesture types. Further, we compute the correlation coefficient



between the average F1 scores (for the various gestures) of
vision-based algorithms and human subjects.

F. Merging Gestures

Lastly, we propose a methodology to identify a smaller
set of gestures, which are recognized with high and
roughly equal accuracy. The procedure we adopt progres-
sively merges pairs of gestures that have the largest mis-
classification errors.

We begin by identifying the lowest ranked gesture in terms
of F1 scores. For example, for vision-based systems, this
gesture is number 4 “move hand down” from Fig. 4 (right).
We pair this gesture with another gesture that results in the
highest observed false positive/negative error rate for the
lowest ranked gesture, provided the error rate is greater than
a pre-specified threshold (0.10 for vision-based algorithms
and 0.025 for human annotators). For example, from the
fourth row of Table I, which contains the average confusion
matrix of the vision-based systems, the gesture 17 “push
hand down” results in the highest false negative rate for
the gesture 4 “move hand down” with a value of 0.36.
Since this miss-classification error is greater than 0.1 we
merge the gestures 4 and 17 into one class. If the lowest
ranked gesture’s highest miss-classification rate is less than
the selected threshold value, we select the next lowest ranked
gesture (e.g., gesture 8 “move 2 fingers down” from Fig. 4
(right)) to merge with another gesture.

After merging the pair of highly miss-classified gestures,
we recompute the average confusion matrix for the new sets
of gestures and re-analyze the differences in their recognition
rates using the Friedman test. If statistical differences in
the recognition rates of the new sets of gestures exist, we
repeat the procedure and eliminate the gesture sets with the
lowest ranked F1 score from the current set. We terminate
the procedure when no statistical differences between the
recognition rates of the sets of gestures are present or when
all gesture sets’ mis-classification rates are less than the pre-
selected threshold.

IV. RESULTS

A. Recognition Rate of Gestures

The Friedman test revealed statistically significant differ-
ences in the recognition rates of the 25 hand gestures for
vision-based algorithms. The tests of all the three classifi-
cation performance metrics (sensitivity, precision and F1
scores for vision-based algorithms), resulted in probability
values p � 0.01. Pairwise comparisons of the gestures’ ranks
with respect to their F1 scores are shown in Fig. 4 (left). The
gestures, sorted (from top to bottom) in increasing order of
their mean ranks for F1 scores, are shown in Fig. 4 (right).
The average of the confusion matrices for the 5 vision-based
algorithms is shown in Table I.

Observe that the vision-based algorithms recognize the
“shake hand” gesture most accurately. On the other end of the
spectrum, they classify the “move hand down” gesture least
accurately. Additionally, with the help of the statistical com-
parisons between pairs of gestures three groups of gestures

with high, medium and low recognition rates, respectively,
can be loosely identified. These groups are indicated by the
colors yellow, blue and red, respectively, in Fig. 4. In this
categorization, all gestures in the “low” category (in red) are
significantly worse than the most accurate gesture (12); and
no gestures in the “high” category (yellow) are significantly
dissimilar from the most accurate gesture (12) in terms of
their recognition rates.

Similarly, the Friedman tests of the sensitivity,
precision and F1 scores for human annotators also revealed
significant differences between the recognition rates of the
25 gestures. All probability values for the Friedman tests
were low (p � 0.01). The statistical pairwise comparisons
of the gestures for human annotators and their ranks are
shown in Fig. 5 (left). Similar to vision-based algorithms,
human subjects also recognized the “shake hand” gesture
most accurately, and the “move hand down” gesture least
accurately. The groups of gestures with high, medium and
low recognition accuracy for human subjects are also indi-
cated in Fig. 5 (right) with the colors yellow, blue and red,
respectively.

B. Vision-based Algorithms vs. Humans

A plot of the average F1 scores (for the 25 gestures) for
the vision-based algorithms versus the average F1 scores of
the human subjects is shown in Fig. 6. Each gesture class is
represented as a single dot. The F1 scores of vision-based
algorithms were moderately, but significantly correlated to
the those of human subjects with a correlation coefficient of
r = 0.487 and a probability value of p = 0.014. Similarly,
the mean ranks of the gestures, for vision-based algorithms
were moderately correlated to those of human subjects (r =
0.493, p = 0.012). Here, we computed the ranks from the F1
score matrices of the vision-based algorithms and humans,
respectively.

It is also interesting to note from Fig. 4 (right) and
Fig. 5 (right) that the “shake hand”, “thumb up”, “close
hand two times”, and “open hand” gestures were among
the most accurately classified gestures for both humans and
vision-based algorithms; and the gestures “move hand down”
and “show two fingers” were among the least accurately
classified gestures.

These results demonstrate abilities of vision-based algo-
rithms to perform closely to human annotators. Moreover,
they indicate agreement in correctly recognizing certain types
of hand gestures versus others. It suggests the presence
of inherent differences between the various gestures which
render them less or more easily recognizable. The variability
in the recognizability of different gesture classes could be
attributed to the range of variability in how humans perform
them.

C. Mis-classification Errors

A number of gestures in our vocabulary are consistently
misclassified by vision-based algorithms (Fig. 4). The major
sources of error can be observed from the average confusion
matrix of the vision-based algorithms (Table I). Notably the
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Fig. 4. Ranking of gestures for vision-based algorithms (Left) Shows the ranks of the 25 gestures (Fig. 2) and the standard errors of the ranks with
horizontal lines. The ranks were computed from the F1 scores. The vertical lines represent the 95% confidence interval for the highest ranked gesture (12).
All gestures with estimated (central) rank value within the 12th gesture’s confidence interval are not regarded as being different from it. (Right) Shows the
gestures sorted in increasing order of their mean F1 ranks from top to bottom. The gesture type and its number (in parenthesis) is listed to the left; and
the average F1 score is listed to the right of each bar. Observe the set of gestures that are consistently recognized most (yellow) and least (red) accurately
by vision-based algorithms.
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Fig. 5. Ranking of gestures for human subjects (Left) Shows the ranks of the 25 gestures (Fig. 2) and the standard errors of the ranks with horizontal
lines. The ranks were computed from the F1 scores. The vertical lines represent the 95% confidence interval for the highest ranked gesture (12). All
gestures with estimated (central) rank value within the 12th gesture’s confidence interval are not regarded as being different from it. (Right) Shows the
gestures sorted in increasing order of their mean F1 ranks from top to bottom. The gesture type and its number (in parenthesis) is listed to the left; and
the average F1 score is listed to the right of each bar. Observe the set of gestures that are consistently recognized most (yellow) and least (red) accurately
by human subjects.

“move hand down” gesture was most often miss-classified as
the “push hand down” gesture and vice-verse. Both gestures
involve similar global hand motions and differ primarily in
the shape of the hand. Similarly the motion of fingers versus
that of the whole hand along the horizontal direction was of-
ten confused. This suggests that the vision-based algorithms
may be emphasizing motion cues over cues related to the
shape of the moving object. The low resolution of the sensor
used in our analyses may also be a contributing factor for
this observation.

Dynamic hand gestures contain three overlapping temporal
phases of “preparation” to bring the hand from the resting to
the starting position; “nucleus”, which contains the primary
motion for the gesture; and “retraction” where the subject
moves the hand back to the resting position. We observed
a trend, wherein, vision-based algorithms confused between

gestures which involved the same general type of motion
(e.g., horizontal, vertical, or rotation), but in opposite di-
rections, e.g., up/down, left/right, CW/CCW. These types of
gestures often contain motions in different directions during
their different phases. Hence it is plausible that vision-based
algorithms rely more heavily on the presence of certain types
of sub-motions as opposed to their evolution over time.

D. Merged Gestures

We obtained 10 sets of gestures by progressively merging
pairs of gestures with the highest observed miss-classification
rates for vision-based classifiers, as described in Section III-
F. The final sets are shown in Table II and are listed in
no particular order. Several of the sets of merged gestures
can be described with a single gesture listed in the third
column of Table II. Note that the gestures listed in the third



TABLE I
THE AVERAGE CONFUSION MATRIX OF VISION-BASED ALGORITHMS FOR THE 25 GESTURES. LARGE MISS CLASSIFICATION ERRORS (≥ 0.10) ARE

INDICTED IN COLOR AND ZERO VALUES AND NOT INCLUDED.

Truth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 .72 .10 .03 .05 .04 .02 .01 .01 .02
2 .10 .71 .02 .11 .02 .02 .01 .01
3 .01 .69 .10 .01 .07 .01 .01 .01 .03 .02 .03 .02
4 .02 .01 .50 .01 .02 .04 .01 .36 .01 .02
5 .87 .01 .01 .01 .02 .01 .01 .06
6 .01 .19 .68 .01 .04 .01 .06
7 .02 .03 .01 .76 .04 .01 .02 .04 .01 .03 .02 .01
8 .02 .01 .18 .65 .02 .01 .04 .02 .02 .01 .01
9 .03 .06 .63 .02 .01 .15 .01 .02 .01 .01 .05 .01
10 .85 .01 .11 .02 .01
11 .01 .01 .91 .01 .04 .02
12 .02 .98
13 .08 .03 .65 .14 .01 .02 .05 .02
14 .01 .05 .02 .07 .66 .16 .03
15 .01 .01 .03 .03 .19 .71 .01 .01
16 .03 .01 .03 .01 .91 .01
17 .01 .10 .01 .86 .01 .01
18 .02 .01 .03 .01 .06 .82 .01 .02 .01
19 .02 .01 .11 .01 .08 .77
20 .01 .06 .02 .01 .86 .03 .01
21 .01 .02 .22 .73 .01
22 .02 .07 .01 .10 .02 .01 .74 .01 .01
23 .02 .11 .01 .01 .85
24 .01 .03 .96
25 .01 .03 .07 .02 .07 .04 .02 .73

Fig. 6. The average F1 scores of vision-based algorithms for the 25
gestures plotted against the corresponding scores for human annotators. Each
dot represents a different gesture. The best-fit line to the observed data is
also plotted.

column of Table II are much less specific than the original
25 gestures and allow subjects more flexibility in choosing
how to perform them.

The merged gestures had an average F1 score of 0.89.
By comparison, the original 25 gestures had a much lower
average F1 score of 0.77. In addition, these 10 gestures
obtained via merging also had a higher average F1 score than
that of the individual 10 gestures from the original set with
the highest ranked F1 scores (Fig. 4 (right)). The latter set
of gestures has an F1 score of 0.86. Also, while the gestures
in the merged set (Table II) had statistically indistinguishable
recognition rates (p = 0.08), the high F1 ranked individual
gestures did not (p = 0.003). We observed an identical trend
on comparing the 10 merged gestures for human observers

TABLE II
MERGED GESTURES

Number Merged Gestures Equivalent Gesture
1 move hand left Move

move hand right, horizontally
move 2 fingers left,
move 2 fingers right

2 move hand up, Move hand
move hand down, vertically
push hand down,

push hand out
3 move 2 fingers up, Move 2 fingers

move 2 fingers down vertically
4 click with index finger, Show

show index finger, fingers
show 2 fingers,
show 3 fingers,

push 2 fingers out,
OK symbol

5 call someone, Beckon
pull hand in

6 open hand, Open/close hand
close hand 2 times

7 shake hand shake hand
8 push hand up push hand up
9 rotate fingers CW, rotate

rotate fingers CCW
10 thumb up thumb up

versus their 10 highest ranked gestures in terms of F1
scores (Fig. 5 (right)). The F1 scores for the original 25
gestures, 10 gestures after merging, and the 10 gestures
with the highest ranked F1 scores for human annotators
were 0.88, 0.99 and 0.96, respectively. Furthermore, there
was more parity in the recognition rates of the 10 gestures
resulting from merging (p = 0.007) versus those resulting
from selecting the 10 gestures with the highest ranked F1
scores (p = 8.51e−5). We also re-trained the best performing
vision-based R3DCNN classifier with data from the depth



channel only with the 10 (a) merged gestures in Table II
and (b) highest ranked gestures in Fig. 4 (right). Owing
to reduction in the number of gesture classes both sets of
gestures resulted in higher accuracies of 93.9% and 93.2%,
respectively, with the merged gestures resulting in slightly
higher accuracy.

Lastly, we compared the memorability of the 10 merged
gestures with that of the 10 gestures with the highest ranked
F1 scores for vision-based classifiers. We use the accuracy
of human observers at correctly recognizing a particular set
of gestures as a proxy for the memorability of that set.
We observed that the set of merged gestures were more
memorable: humans were able to correctly recognize with
an accuracy of 96.62%, as opposed to the 10 high ranked
gestures, which humans recognize correctly with an accuracy
of 92.73%. Hence, we recommend the final set of 10 gestures
listed in third column of Table II for automotive interfaces
because of their high and equivalent recognition rates, and
high memorability for human observers.

V. CONCLUSIONS

The accuracy of gesture recognition systems is a critical
factor in determining the success and widespread adoption
of gesture UIs in cars. In this work we focused on the
robustness of gestures. We show that there is consistent vari-
ability in how accurately different types of hand gestures are
recognized by various vision-based algorithms and human
subjects. We further identify similarities in the hand gesture
recognition abilities of vision-based systems and humans.
Lastly, by means of a methodology that we propose for
merging pairs of error-prone gesture classes, we identify
ten sets of hand gestures, which are accurately and equally
classified by vision-based algorithms. To the best of our
knowledge, ours is the first work to address the important
question of selecting robust gestures for automotive UIs from
a system design perspective.

In the future we plan to incorporate the human factors
of safety and driver distraction [15] as well as intuitiveness
and ease of use in the criteria for selecting hand gestures for
automotive UIs. In addition, we plan to incorporate a larger
corpus of gesture data containing more gestures per class, in
order to increase the statistical confidence of the results and
to improve the training of the statistical pattern classifier.
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[26] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scand. Conf. on Im. Anal., 2003.

[27] Code Laboratories Inc., “Duo3D SDK https://duo3d.com/.” [Online].
Available: https://duo3d.com/

[28] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks,” in ICML, 2006, pp. 369–376.

[29] R. V. Hogg and J. Ledolter, Engineering statistics. Macmillan Pub
Co, 1987.

[30] Y. Hochberg and A. C. Tamhane, “Multiple comparison procedures,”
2009.

[31] R. A. Fisher, Statistical methods for research workers. Genesis
Publishing Pvt Ltd, 1925.

shalinig
Highlight

shalinig
Highlight


