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Can you confirm if......has a greater 
width compared to......?

Relative Relation

In fact,......might be narrower 
than.......  
Which of these four,......,......,......, ......is 
the tallest?
......is the tallest.

From the viewer’s perspective, is the 
position of......closer than that of......?

No,......is closer.

Metric Measurement
If you are at......, where will you 
find......?

......is at 1 o’clock from.......

How far apart are......and......hori-
zontally?
They are 15.33 meters apart 
horizontally.

Spatial Reasoning

Can you try to estimate how many 
floors are in......? Think step by step.
The height of......is 204.54 feet. As-
suming each floor is about 10 feet 
high, the total number of floors 
would be 20.454. Since you can’t 
have a fraction of a floor, the total 
number of floors would be approxi-
mately 20.

I’m planning to build a bridge 
from......to......, is it possible?
The distance between .... and.... is 
14.82 meters, so it is possible to 
build a bridge between them.

If you are riding a motorcycle with 
36 inches wide, do you think you 
can pass through the area between 
.... and .... ?

The distance between .... and .... is 
38.95 inches, so yes, you can pass 
through the area between .... and .... 
since the motorcycle is narrower 
than the distance between them.
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What is the height of......?

......is 1.38 meters tall.

44
44

1122

A

B

C

Abstract

Vision Language Models (VLMs) have demonstrated remarkable performance
in 2D vision and language tasks. However, their ability to reason about spa-
tial arrangements remains limited. In this work, we introduce Spatial Region
GPT (SpatialRGPT) to enhance VLMs’ spatial perception and reasoning capa-
bilities. SpatialRGPT advances VLMs’ spatial understanding through two key
innovations: (i) a data curation pipeline that enables effective learning of regional
representation from 3D scene graphs, and (ii) a flexible “plugin” module for
integrating depth information into the visual encoder of existing VLMs. Dur-
ing inference, when provided with user-specified region proposals, SpatialRGPT
can accurately perceive their relative directions and distances. Additionally, we
propose SpatialRGBT-Bench, a benchmark with ground-truth 3D annotations en-
compassing indoor, outdoor, and simulated environments, for evaluating 3D spatial
cognition in VLMs. Our results demonstrate that SpatialRGPT significantly en-
hances performance in spatial reasoning tasks, both with and without local region
prompts. The model also exhibits strong generalization capabilities, effectively
reasoning about complex spatial relations and functioning as a region-aware dense
reward annotator for robotic tasks. Code, dataset, and benchmark are released at
https://www.anjiecheng.me/SpatialRGPT.
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1 Introduction

Understanding spatial arrangements in both 2D [1, 2] and 3D [3] spaces is crucial for accurately
interpreting complex visual environments. Despite the impressive advancements in Vision Language
Models (VLMs) across a variety of tasks such as image classification [4], captioning [5], object
detection [6], video understanding [7], and document parsing [8], etc., these models still face
significant challenges with spatial reasoning. This includes difficulties [9, 10, 11] in distinguishing
simple spatial concepts like "left" and "right," "above" and "below," as well as more complex
relationships such as "behind" and "in front," "inside" and "outside," and "near" and "far." The
ability to comprehend and reason about these spatial relationships is fundamental not only for
visual understanding, but also for enabling practical applications in fields like robotics [12, 13] and
augmented reality [14], where precise spatial awareness is crucial for tasks such as navigation [15],
manipulation [12], and interaction with real-world environments [16].

Recently, several works [11, 17, 18] has advanced VLMs’ spatial reasoning capabilities by introduc-
ing a comprehensive data generation pipeline that enables large-scale training with spatially-aware
visual question answering (VQA) tasks. This approach is based on the hypothesis that the limited
spatial reasoning capabilities of current VLMs are due to a lack of 3D/2D spatial knowledge in their
training data. However, two critical challenges remain. First, effective spatial reasoning requires
VLMs to accurately parse regional information, particularly the regions of object instances, whereas
most existing VLMs are primarily designed to understand the global context of an image. When an
image contains numerous instances, it becomes challenging to prompt the model to reason about the
spatial relations between specific instances. This is because most VLMs function as global image
parsers and do not support specifying regions for which users want to understand spatial relationships.
Second, accurately perceiving spatial relations such as direction and distance cannot rely solely on
RGB pixel data. Thus, the architecture needs to incorporate 3D inputs, such as depth information.

In this work, we propose SpatialRGPT, leveraging a data curation pipeline, along with a region and
3D-aware visual encoder architecture to improve the spatial reasoning capability of VLMs.

Our data pipeline automatically generates 3D, region-aware annotations from 2D images at scale by
constructing a 3D scene graph for each image, where nodes represent object instances and edges
denote spatial relationships. This is achieved through three scalable components: (i) open-vocabulary
detection and segmentation for instance extraction, (ii) metric depth estimation, and (iii) camera
calibration for projecting objects into 3D space. These scene graphs are subsequently transformed
into region-aware spatial QA tasks using both template-based and large language model (LLM)-based
approaches. This dual approach provides region-based VLMs with the necessary spatial knowledge
and advanced reasoning capabilities to interpret complex environments. We use the collected data to
train SpatialRGPT. While SpatialRGPT is designed to support region prompts, it effectively avoids
the ambiguity issues found in SpatialVLM. In SpatialVLM, multiple similar objects in an image can
confuse caption labels. In contrast, our pipeline naturally handles these scenarios without requiring
carefully crafted rules or extensive post-processing.

Similar to RGPT [19], SpatialRGPT introduces a region representation module that allows region
proposals to be included as additional inputs alongside the image. This approach enables the LLM
to leverage both regional and global contexts, allowing the model to reason about relationships
between local regions while maintaining an understanding of the overall scene. In addition, we
propose a novel architecture that features a flexible “plugin” module for integrating relative-depth
information into the visual encoder of existing VLMs. This design allows a pre-trained visual encoder
to optionally learn additional depth representation while still functioning effectively when depth
inputs are absent. Our experiments demonstrate that this design can substantially improve the spatial
reasoning capabilities compared to VLMs that only use RGB images as input. Furthermore, we
highlight practical applications enabled by SpatialRGPT, such as serving as a region-aware dense
reward annotator and a stand-alone complex spatial reasoner. Our work has four main contributions:

1. We present SpatialRGPT, a framework that enhances region-level spatial reasoning in
VLMs by enabling effective representation of regional information and acquisition of spatial
knowledge. Our novel architecture also integrates depth information flexibly, significantly
improving 3D perception and analysis.

2. To facilitate model training, we introduce a scalable data pipeline that constructs region-
aware spatial reasoning QAs from existing datasets. With the pipeline, we create the Open
Spatial Dataset (OSD), encompassing 8.7M spatial concepts grounded in 5M unique regions.
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3. To address the absence of a benchmark for evaluating spatial cognition in VLMs, we present
SpatialRGPT-Bench, a comprehensive benchmark based on ground-truth 3D annotations
that span indoor, outdoor, and simulated environments.

4. We demonstrate downstream applications of SpatialRGPT. Leveraging SpatialRGPT’s region
capabilities, we develop a region-aware dense reward annotator for robotics. Additionally,
we show that SpatialRGPT can function as a stand-alone complex spatial reasoner, as well
as its capacity to perform multi-hop reasoning.

2 Related work
Spatial Reasoning via Large Language Models. Recently, there has been a significant push to
obtain spatial reasoning capabilities using LLMs. Initiatives [20, 21] have focused on reconstructing
scenes from multi-view images, such as point clouds or neural fields, and enhancing these represen-
tations with dense semantic features. The resulting 3D representation and dense features are then
integrated into an LLM. However, multi-view images are not always available, and constructing
a scene explicitly with dense semantic features is resource-intensive. Additionally, the modal gap
between 3D representations and language often results in decreased performance. ConceptGraph [22]
avoids directly incorporating 3D representations into LLMs. Instead, it constructs a scene graph and
integrates this with the LLM. Yet, recent studies [10] indicate that LLMs struggle to utilize coordinate
information effectively when presented in text, which can undermine their ability to understand and
reason about spatial relationships. Our research is most aligned with SpatialVLM [17], which uses
2D VLMs to understand spatial relationships and metric distances. Unlike the above approaches,
the spatial understanding is encoded implicitly. The VLM directly handles the spatial relationship
problem without an explicit 3D representation or scene graph. However, SpatialVLM relies on
language descriptions of objects as input, while LLMs can already resolve some spatial queries even
without visual data [23]. The responses can be inferred directly from the questions or derived from the
world knowledge embedded in LLMs. This reliance on textual cues suggests that the training may not
effectively teach VLMs to learn spatial reasoning from visual data. Additionally, SpatialVLM lacks
the capability to specify regions precisely. This is particularly problematic in real-world scenarios
where describing ambiguous locations or objects in language can be challenging.
Region-level Visual Language Models. KOSMOS-2 [24], Shikra [25], MiniGPT-2 [26],
CogVLM [27], SPHINX [28], and LLaVA [29] have enabled MLLMs to achieve region-based
image understanding. However, these methods provide region information in textual form, such as
bounding box coordinates. This method heavily depends on the language decoder to understand
the position. In contrast, VisionLLM [30], GPT4RoI [31], [32], and Ferret [33, 34], along with
GLaMM [35], use spatial boxes with ROI-aligned features to map region-level features into the LLM
word embedding space. However, bounding boxes can include unwanted background features, leading
to inaccurate alignment between region descriptions and text, which complicates spatial reasoning.
Recently, RegionGPT [19] and Osprey [36] have introduced visual spatial-aware modules that can
directly extract pixel-level features. These models support using input masks that can accommodate
regions of any shape. Despite these advancements, none of these approaches specifically focus on
enhancing spatial reasoning at the region level in VLMs. Our framework is based on RegionGPT’s
ability to process pixel-level inputs, with the aim of deepening spatial reasoning within region VLMs.

3 Method
SpatialRGPT is a powerful multimodal language model adept at understanding both 2D and 3D
spatial arrangements. It can process any region proposal, such as boxes or masks, and provide answers
to spatial reasoning questions. While effective training dataset is the key to learn spatial-aware region
representation, we introduce: (i) how to build 3D scene Graph from a single image, in Sec. 3.1, and
(ii) how to facilitate visual representation learning from these scene graphs in Sec. 3.2. We propose a
novel SpatialRGPT visual encoder architecture that flexibly leveraging monocular depth information
into an existing 2D VLM, in Sec. 3.3, with training detail explained in Sec. 3.1.

3.1 3D Scene Graph from Single 2D Images
Our scene graph construction pipeline (Figure1) begins with a filtering process to remove any
unsuitable images (Appx.F.1). Using open-vocabulary models, we identify and ground candidate
objects, followed by lifting them into 3D space using metric depth estimation and camera calibration.
We then process the point clouds (Appx. F.3) to construct the final 3D scene graph.
Open-Vocabulary Detection & Segmentation. Segmenting objects is the initial stage of building
a scene graph. Our models must satisfy two criteria: (i) object descriptions, e.g., class labels, should
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Reasoning QA

Open-Vocab. 3D Scene Graph

RGB Image

Region Masks Metric Depth Pitch, Roll, Intrinsics
Point Cloud Processing

Image Collections

Open-Vocabulary
Detection & Seg.

Metric Depth 
Estimation

Camera 
Calibration

Filtering

Template QA
LLM

Figure 1: 3D scene graph construction via automatic data curation pipeline.
adhere to an open-world setting for better generalization; (ii) mask proposals need to be highly
accurate, ensuring precise contour outlines. This precision is crucial, as even small deviations can
lead to significant inaccuracies in the resulting 3D bounding boxes. To this end, we first employ an
open-vocabulary image tagging model [37] to identify all the object classes present in the image.
Next, we use GroundingDino [38], an open-vocabulary 2D detector to determine the corresponding
object bounding boxes. Finally, we apply segmentation models [39] to refine these bounding boxes
into precise masks. We do not use existing dataset annotations since they either fall short due to
vocabulary limitations, or use polygon annotations [40] or compressed masks [41] for segmentation.
Metric Depth Estimation. Several studies have explored the recovery of metric depth from a single
image. The main challenge is to address the scale ambiguity, and one common approach [42, 43]
is to use relative depth along with metric heads fine-tuned on specific metric datasets. However,
these methods may tend to overfit the depth scale for particular datasets such as KITTI [44] or
NYU [45], which makes them less robust for in-the-wild images. Recently, Metric3Dv2 [46] takes
focal length as input and is trained end-to-end to predict metric depth and surface normals. The
model is trained jointly on diverse indoor and outdoor scenes, making it less prone to overfitting
to the depth distribution of specific datasets. We adopt Metric3Dv2 as our metric depth estimator
and found that Metric3Dv2 together with WildCamera [47]’s camera intrinsic, is robust for images
taken in real-world settings. Additionally, thanks to the joint depth-normal optimization training in
Metric3Dv2, the recovered geometry is improved particularly around object edges.
Camera Calibration. Camera calibration includes (i) intrinsic estimation to back-project depth
maps to 3D point clouds, and (ii) scene canonicalization to ensure that scene relations are described in
a shared space. To estimate the camera intrinsic, we use the WildCamera model [47], which estimates
four DoF intrinsic parameters (focal point and focal length in two dimensions). This model excels in
real-world scenarios due to its scale-awareness and ability to detect image cropping. To convert the
camera coordinates of the point cloud into a canonicalized geodetic coordinate system for each scene,
we leverage PerspectiveFields [48], which provides per-pixel up-vectors and latitude values that
can be transformed into camera extrinsics, such as pitch and roll. Using these, we derive a rotation
matrix to convert the point cloud from camera coordinates to geodetic coordinates. We note that
while SpatialVLM [17] uses surface segmentation (e.g., "floor," "tabletop") to identify a horizontal
plane and then uses the normal axis of this plane to align the point cloud to the horizontal plane, this
approach is limited by the presence of specific classes, such as floors or tables. Additionally, the
plane segmentation may fail if there are not enough points for RANSAC.
Constructing 3D Scene Graph. The 3D scene graph is a collection of tuples where the nodes
represent specific 3D object instances, and the edges represent the spatial relationships between
the nodes. Each node is defined by the object’s class, width, and height in metric scale. To
create the node, we start by using the instance mask to deproject the object points from the depth
map. Then, we perform canonicalization and denoising, and build 3D axis-aligned bounding boxes
for each object. With the 3D bounding box, we calculate the width and height of the objects in
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How wide is Region [1]?

The width of Region [1] is 7.73 feet.

Is Region [1] behind Region [4]?

No, it is in front of Region [4].

You are a visitor in a museum and 
see two sculptures, one in Region 
[0] and the other in Region [1]. If 
you walk from one sculpture to 
the other, how far will you have 
walked?

You will have walked 4.85 meters.

You are a helicopter pilot 
flying over the city and you 
see Region [1] and Region 
[7]. Which one is higher?

The tower in Region [1] is 
higher than the skyscraper 
in Region [7].

Between Region [0] and Region [2], which 
one has more height?
Region [2] is taller.

Figure 2: Example data entries from our Open Spatial Dataset. The first row contains template-based
QAs, and the second row shows LLM-based entries.

real-world units. The edges represent the spatial relationships between the nodes within two types of
relations: relative and metric. Relative relations contain left, right, above, below, behind,
front, wide, thin, tall, short, big, and small. Metric relations include direction,
direct distance, horizontal distance, and vertical distance between the two
objects. We then traverse all the object nodes and use the point cloud centroids and bounding boxes
to calculate their spatial relationships.
3.2 Learning Spatial-aware VLMs from 3D Scene Graph
In this section, we discuss converting the constructed 3D scene graph into textual representations for
VLM training. One simple approach is through template-based methods via predefined handcrafted
instructions. However, this approach limits the diversity of instructions and hinder the model’s
reasoning capabilities. Thus, we employ additional complex QAs to enhance the model’s reasoning
ability. Our results in Figure 4 show that blending these two types of data can lead to a generalized
and complex spatial reasoning model.
Template-based Question Answering. These QAs serve as the foundation for learning basic
spatial knowledge. We extract information about node attributes such as width and height, as well
as relative and metric relations from the edge attributes. We create both qualitative and quantitative
templates to generate questions and answers for each type of attribute, using entities in the form of
Region [X]. This approach results in examples shown in the first row of Figure 2. We provide
detailed templates for each attribute in Appx. F.4.
LLM-based Complex Reasoning Question Answering. We employ Llama3-70B to generate
complex spatial reasoning questions to enhance the model’s spatial reasoning capabilities. One
approach is to input the scene graph directly into the LLMs. However, LLMs struggle to utilize 3D
coordinate information effectively [10], so we opt for an alternative approach. We first construct
spatial descriptions in a language format. Similar to the template-based approach, we extract attributes
from the scene graph and then construct template-based spatial descriptions based on these attributes.
We combine the spatial descriptions and the region tags as inputs to the LLM. The LLM is then
tasked with creating a complex reasoning question and answer that is based on the description and
matches the context. Examples of LLM-generated QAs are shown in the second row of Figure 2. Our
LLM prompts for generating QAs are provided in Appx. F.5.

We use our automated annotation pipeline to annotate images from the OpenImages [49] dataset,
which covers a wide range of subjects and is of high resolution. The resulting Open Spatial Dataset
(OSD) contains 1M unique images and 5M open-vocabulary regions, each associated with a bounding
box and segmentation mask. Furthermore, the dataset includes 8M template-based QAs and 700K
LLM-based QAs.
3.3 VLM Architecture
An overview of SpatialRGPT’s VLM architecture is shown in Figure 3. SpatialRGPT consists of a
visual encoder (Appx. G.1) to encode vision features, a region-feature extractor [19] to obtain region-
level embeddings (Appx. G.2), linear connectors (Appx. G.3) to project multi-modal embeddings into
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Large Language Model

Visual Backbone

Input RGB(D)

They are around 45 centimeters apart.

<rgb> <depth>

What is the distance between     and     ?

<rgb> <depth>

Region 
Masks/Boxes Region Feature Extractor

RGB Connector Depth Connector

❄

🔥

🔥 🔥

🔥

Figure 3: An architecture overview of Spatial RGPT. ❄ 🔥 denotes freezed/trainable parameters.

the word embedding space, and a large language model using LLaMA2-7B for language processing.
In this section, we will explain why and how we incorporate depth information into SpatialRGPT, as
well as how SpatialRGPT handles tokenizations.

Plugin Module for Relative-depth Inputs. VLMs that learn solely from RGB pixels are ineffective
for 3D perception tasks. Direct learning from 3D data, like point clouds, presents challenges due
to issues with scale and diversity. To bridge this gap, we propose using relative depth maps, which
can be obtained through off-the-shelf models [43], to provide additional depth information alongside
RGB images as input to our network. Our goal is to elicit geometric reasoning capability through
depth guidance. However, this goal is non-trivial. Most VLM’s visual encoders are typically only
trained with text and 2D images, and simply concatenating RGB and depth features may negatively
impact performance. To address this, we introduce an add-on module that seamlessly incorporates
the depth information. We use the same image encoder to process the depth map and generate depth
feature maps. Then, we employ an additional depth-to-language connector to project the features into
the language domain. The depth connector’s weights are initialized from the RGB connector and
trained only on spatial-related QAs. This flexible design allows the 2D visual encoder to leverage
additional depth representation while still functioning when depth inputs are not presented, thus
avoiding the need for a vast amount of training data.

Tokenization and Prompt Format. We generate multi-turn conversation data following [29, 19]
for each image and make the image the initial input for the first instruction, providing contextual
information. Specifically, we incorporate a prefix prompt: “<image>\n". The <image> is a
special token that acts as a placeholder, which would be replaced by the image-level embedding
from the vision encoder. When specific mask regions are mentioned in the user input, we use
special tokens <region> and <depth> as placeholders. Each region token will be substituted
with the corresponding region RGB embedding and depth embedding. All image-level, region-
level RGB/depth tokens and text tokens are interleaved and fed as the input to the LLM for an
auto-regressive generation.

3.4 Training and Inference Paradigm
SpatialRGPT training includes three stages [50]: (i) Connector Feature Alignment, (ii) Visual
Language Pre-training, and (iii) Visual Instruction-tuning. During the first stage, CC3M image-
caption pairs are used to pretrain the RGB connector as [29, 51, 52]. In the second stage, the
visual language corpus from MMC4 [53] and COYO [54] is used to pretrain the LLM and the RGB
connector. The RGB connector and LLM parameters are then frozen, with only the depth connector
trainable and pre-trained on our OSD dataset. Finally, at stage three, we fine-tune the pre-trained
model on visual language instruction-following datasets, using a combination of the instruction
tuning dataset from [29], region-level instruction tuning data [19], and our OSD dataset. Detailed
data blend of the visual instruction data is in Appx. H.1. For training region-level data and our OSD,
we randomly sample from different modalities (e.g., box, mask) for each sample to ensure the model
is versatile to the input modality. At inference time, SpatialRGPT can take both boxes or masks as
input. For the results shown in the main paper, if the segmentation is available, we use the mask; if
not, we use the box provided and apply SAM to segment the corresponding mask.

4 Experiments
We evaluate the effectiveness of our proposed SpatialRGPT in three aspects: (1) spatial reasoning
benchmarks (Section 4.1), (2) standard vision-language benchmarks (Section 4.2), and (3) real-world
applications (Section 4.3).
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Below/
Above

Left/
Right

Big/
Small

Tall/
Short

Wide/
Thin

Behind/
Front

Avg.

GPT-4 [55] 64.16 42.85 42.85 61.60 61.60 49.09 57.83

GPT-4V [55] 63.34 46.67 64.15 60.71 68.26 45.45 58.14
LLaVA-v1.6-34B [56] 44.16 45.71 36.79 53.57 37.50 45.45 43.98

GPT-4V [55]+SoM [57] 75.00 55.23 42.45 54.46 49.03 47.27 54.33
LLaVA-v1.6-34B [56]+SoM [57] 44.16 40.01 33.96 47.32 41.34 46.36 42.31
KOSMOS-2 [8] 28.33 15.23 4.71 26.78 12.50 12.72 17.04
RegionVILA-7B [19] 30.83 47.61 35.84 44.64 35.57 49.09 40.48

SpatialRGPT-7B(rgb) 99.17 99.04 79.24 89.28 83.65 87.27 89.80
SpatialRGPT-7B 99.17 99.04 80.19 91.96 87.50 91.81 91.78
SpatialRGPT-VILA-1.5-3B 99.17 100.0 81.13 88.39 85.57 93.63 91.47
SpatialRGPT-VILA-1.5-8B 99.17 100.0 84.90 89.28 91.34 90.90 92.69

Direct
Distance

Horizontal
Distance

Vertical
Distance

Width Height Direction

GPT-4 [55] 21.6 / 1.29 11.5 / 2.08 33.0 / 0.65 52.3 / 0.52 48.1 / 1.40 34.6 / 83.7°

GPT-4V [55] 29.7 / 0.92 25.4 / 2.75 33.0 / 0.48 51.1 / 0.37 68.4 / 1.57 43.9 / 69.9°
LLaVA-v1.6-34B [56] 24.3 / 0.76 24.5 / 1.59 30.1 / 0.62 30.8 / 0.40 42.8 / 1.96 33.6 / 78.2°

GPT-4V [55]+SoM [57] 25.7 / 1.02 22.1 / 2.36 33.9 / 0.64 45.8 / 0.70 62.4 / 1.08 54.2 / 55.5°
LLaVA-v1.6-34B [56]+SoM [57] 12.8 / 1.15 20.4 / 1.79 11.3 / 0.95 9.0 / 0.91 7.5 / 3.11 12.8 / 33.3°
KOSMOS-2 [8] 4.1 / >10 4.91 / >10 1.9 / 2.26 3.0 / 5.42 1.5 / 3.82 1.9 / 104°
RegionVILA-7B [19] 22.3 / 1.30 24.6 / 3.26 17.9 / >10 36.8 / >10 49.6 / 1.61 35.5 / 79.8°

SpatialRGPT-7B(rgb) 35.1 / 0.35 59.0 / 0.27 53.8 / 0.27 51.9 / 0.31 54.9 / 0.63 95.3 / 17.1°
SpatialRGPT-7B 41.2 / 0.33 65.6 / 0.25 51.9 / 0.27 49.6 / 0.31 57.9 / 0.61 95.3 / 15.4°
SpatialRGPT-VILA-1.5-3B 44.6 / 0.30 63.1 / 0.22 50.9 / 0.28 42.9 / 0.33 63.2 / 0.60 93.5 / 10.4°
SpatialRGPT-VILA-1.5-8B 45.9 / 0.31 68.0 / 0.22 56.6 / 0.28 48.9 / 0.28 61.7 / 0.41 95.3 / 9.7°

Table 1: SpatialRGPT-Bench results. are Blind LLMs with Language Referral. are VLMs with
Language Referral. are Region-aware VLMs. Numbers in the top table represent success rates (↑),
while the bottom table includes success rates (↑) and absolute relative error (↓).

VQAv2 GQA SQAI VQAT POPE MME MMB

VILA-1.5-3B 80.4 61.5 69.0 60.4 85.9 1442 63.4
SpatialRGPT-VILA-1.5-3B 81.1 62.3 71.0 61.7 85.5 1424 65.6

MMB-CN SEED SEEDI MMMUV MMMUT LLaVAB MMVet

VILA-1.5-3B 52.7 60.9 67.9 33.3 30.8 75.9 35.4
SpatialRGPT-VILA-1.5-3B 53.6 61.8 69.0 33.0 31.3 71.5 38.2

Table 2: Comparison of SpatialRGPT and base model performance on general VLM benchmarks.

4.1 3D Spatial Reasoning Benchmarks
Currently, there are no visual-language benchmarks that specifically focus on VLM’s ability to
understand 3D spatial concepts like metric distance or size differences between objects. Recently,
SpatialVLM created a spatial reasoning VQA benchmark using human labelers to annotate spatial
information on 2D images, but this benchmark is not publicly available. To address this gap, we
develop SpatialRGPT-Bench, a spatial reasoning VQA benchmark using data from both urban
(nuScenes [58], KITTI [59]) and indoor (SUNRGBD [60], ARKitScenes [61]) environments, as well
as simulated scenes (Hypersim [62]). These datasets cover various potential applications and include
diverse object types, enhancing our benchmark’s thoroughness. We use preprocessed 3D cuboids
for each object from Omni3D [63], all positioned within a unified 3D camera coordinate system and
categorized by object classes. With these 3D cuboid annotations, we developed a conversational
benchmark using our data generation pipeline. This benchmark comprises 657 qualitative and 749
quantitative VQA pairs, covering 88 distinct classes. All the samples come from the validation or test
splits of the original datasets and are unseen by SpatialRGPT during the training phase. Please see
Appx. E for statistics and examples of SpatialRGPT-Bench.
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Can you estimate the age of Region 
[1]? Think step by step.

The height of Region [1] is 3.77 feet. 
Since the average height of a 
3-year-old is around 3.5 feet, so 
Region [1] is likely a 3-year-old.

In Region [1], the individual appears 
to be a toddler, possibly around 1 to 
3 years old, judging from their size, 
posture, and the style of walking, 
which suggests early childhood.

GPT4-V

How many people do you think can 
sit on Region [1]? Explain why.

The width of Region [1] is 1.2 
meters. Since the average human 
width is around 0.5 meters, two 
people can sit on Region [1].

Region [1] highlights a purple sofa 
with a vibrant pattern, capable of 
comfortably seating three people. 
This estimation is based on the stan-
dard dimensions of sofas that usual-
ly accommodate three adults when 
the size and arrangement resemble 
what is shown in the image.

GPT4-V

Can you estimate how much time it will take 
for the person in Region [1] to reach the loca-
tion where Region [2] is now? Say if the 
person is Usain Bolt.

The distance between Region [1] and Region 
[2] is 10.84 meters. If Usain Bolt can run at a 
speed of 10 meters per second, it will take 
him 1.084 seconds to reach the location 
where Region [2] is now.

Considering that the person is Usain Bolt, we 
would need some additional information 
such as the distance between the two regions 
and the average speed Usain Bolt could 
maintain over that distance in a running set-
ting.

GPT4-V

If you were the person at Region [1], 
consider Region [2], Region [3], and 
Region [4], which one is standing at 
your 10'oclock direction?

The person in Region [1] will see the 
person in Region [2] at 10 o clock.

For the person in Region [1], Region 
[3] is in the 10 o'clock direction. This 
region is to the upper left from their 
perspective, aligning with the general 
direction indicated by the 10 o'clock 
position on a clock.

GPT4-V

Based on the spatial dimension of Region 
[1], what kind of vehicles would not fit in?

The Region [1] is 2.7 meters in height, so 
vehicles taller than 2.7 meters would not 
fit in.

In the image you've shown, Region [1] 
covers the garage area. To determine what 
type of vehicles might not fit in this garage 
based on its spatial dimensions, we need 
to estimate the size of the garage. From the 
image, the garage appears to be a typical 
residential garage. Standard single-car ga-
rages usually have a width of about 10 to 
12 feet and a depth of about 20 to 24 feet.

GPT4-V

Figure 4: SpatialRGPT is capable of complex spatial reasoning, addressing gaps that current leading
vision language models, such as GPT-4V, struggle with.

We consider three categories of models as baselines:
Blind LLMs w/ Language Referral. The blind [10] LLM model relies solely on text and generates

answers using only the content of the question. To enhance this approach, we prepend the object
class to each question. This method serves as a baseline to gauge how much spatial reasoning can be
derived from purely existing world knowledge. We choose GPT-4 to represent this baseline, as it is
the most advanced model for encapsulating comprehensive world knowledge.
VLMs w/ Language Referral. The setup is similar to the blind LLMs but includes access to visual

content, which could allow the model to answer better than a blind LLM. We employ current
state-of-the-art VLMs, GPT-4V and LLaVA-v1.6-34B [56], as baselines for this category.
Region-aware VLMs. This category explores models with region-level capabilities similar to our

method. The models do not receive any language captions or object class information related to the
region of interest; they rely solely on their visual processing capabilities. We equip GPT-4V [55] and
LLaVA-v1.6-34B with Set of Marks (SoM) [57] to enable region-referring capabilities. Additionally,
we include KOSMOS-2 [24], a VLM capable of taking bounding box inputs to reference objects, and
RegionVILA (RegionGPT [19] with VILA [50] pre-training). RegionVILA-7B also serves as an
ablation baseline to our method; it shares the same model architecture as our SpatialRGPT-7B(rgb)
variant but is trained without our specialized spatial VQA dataset.

We use GPT-4 to evaluate the response for each model; please see Appx. J for details. For qualitative
QAs, GPT-4 scores the alignment between the model’s response and the correct answer as 0 or 1. For
quantitative QAs, GPT-4 standardizes numerical values across units into meters; we then calculate
accuracy and error metrics. We present the results in Table 1. The upper rows of the table show
accuracy (correct vs incorrect or failed to answer) for qualitative QAs. The lower rows report on
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Model mAP (↑) Acc. (%)

CLIP [64] 58.9 -
RegionCLIP [65] 58.3 -

LLaVA-7B [29] - 40.0
Shikra-7B [25] - 53.9
GPT4RoI-7B [31] - 64.0
PVIT-7B [66] - 64.5
ASM-7B [32] 69.3 -
RegionGPT-7B [19] 70.0 80.6
SpatialRGPT-7B 69.7 79.9
SpatialRGPT-VILA-1.5-3B 72.5 82.5
SpatialRGPT-VILA-1.5-8B 72.9 82.9

Table 3: Region-level classification results. We
follow the evaluation in RegionCLIP [65] and Re-
gionGPT [19], report the results of object clas-
sification with ground-truth box on COCO-2017
validation set.

Model Acc. (%)

Qwen-VL-Max [67] 58.9
Gemini Pro [68] 50.0
Claude 3 OPUS [69] 57.3
GPT-4V-preview [55] 58.9
GPT-4V-Turbo [55] 66.9
GPT-4o [55] 64.5

InstructBLIP-13B [51] 50.0
Yi-VL-34B [70] 53.2
LLaVA-v1.5-13B-xtuner [71] 54.0
LLaVA-v1.6-34B [56] 64.5

MiniGPT-4-v2-7B [26] 49.2
InstructBLIP-7B [51] 50.8
LLaVA-v1.5-7B-xtuner [71] 50.8
CogVLM-7B [27] 50.8
LLaVA-v1.5-7B [72] 51.6
LLaVA-internLM2-7B [73] 52.4
SpatialRGPT-7B 82.3
SpatialRGPT-VILA-1.5-8B 87.9

Table 4: BLINKRelativeDepth results.

quantitative QAs, detailing their success rate (answers within ±25% of the ground truth value) and the
absolute relative error [43, 42]. We exclude answers that failed to produce a numerical response from
the relative error calculations. The results show that SpatialRGPT significantly outperforms baselines
in terms of success rate for qualitative QAs and maintains the lowest error rate for quantitative QAs.
Interestingly, we found that blind LLMs and VLMs with language referrals achieved commendable
success rates for quantitative QAs, especially for questions related to width and height. This suggests
that LLMs can accurately answer specific spatial questions using their extensive world knowledge.
Additionally, our SpatialRGPT-7B variant demonstrates improved performance over the SpatialRGPT-
7B(rgb) variant, especially in scenarios where relative depth information can be used to resolve
ambiguities, such as distinguishing between behind/front, wide/thin, and estimating distances.

4.2 Public Vision-language Benchmarks
General Benchmarks. In this section, we evaluate whether integrating spatial VQA data and depth
information affects performance on other VQA tasks. We compared our models with VILA-1.5-3B,
which is trained on general VQA datasets. As shown in Table 2, our variants performed similarly
to the baselines and slightly better on the VQA-v2 and MMVet datasets. These results align with
findings from [17], indicating that VLMs generally underperform on spatial reasoning tasks but can
improve with specific spatial VQA training without compromising general VQA performance.

Region & Spatial Benchmarks. We follow the evaluation protocol from RegionGPT [19] and
report object classification results using ground-truth boxes on the COCO-2017 validation set. As
shown in Table 3, SpatialRGPT outperforms the baselines, demonstrating its strong region cognition
capabilities. We further evaluate SpatialRGPT on BLINK [9]’s Relative Depth Benchmark. This
benchmark is particularly challenging as it assesses point-level depths, while both the point-level
region input and point-level questions were not specifically included in the training of SpatialRGPT.
We use bounding boxes to mark the target points and evaluate the test set online with the EvalAI
server. As shown in Table 4, SpatialRGPT significantly outperforms the state-of-the-art, achieving
over 20% accuracy gain compared to GPT-4V-Turbo. Our model demonstrated strong performance,
highlighting its ability to generalize to new tasks without explicit training.

4.3 Real-world Applications
Complex Spatial Reasoning. In this application, we aim to explore whether SpatialRGPT can
function as a complex spatial reasoner on its own. Unlike the system mentioned in [17], which
uses GPT-4 to handle reasoning tasks and employs VLM solely for answering basic spatial queries,
SpatialRGPT directly integrates these capabilities. We provide examples in Figure 4, where we
compare SpatialRGPT’s responses to those from GPT-4V using real-world samples. Our model
demonstrates the ability to address complex spatial questions based on its own spatial knowledge.
This suggests that SpatialRGPT has developed a robust representation of spatial learning and that this
knowledge has effectively generalized to enhance its intrinsic language reasoning abilities.
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What is the object on the table to the 
right of Region [0], and what is its 
height and width?

The object on the table to the right of 
Region [0] is a coffee maker. It is 19.1 
inches in height and 12.4 inches in 
width.

What is the object on the table to the 
right of Region [0], and what is its dis-
tance to Region [0]?

The object on the table to the right of 
Region [0] is a potted plant, and it is 
13.9 inches away from Region [0].

What is the object to the left of Region 
[0], and what is its height and width?

The object to the left of Region [0] is a 
candle, and it is 10.49 inches in height 
and 3.39 inches in width.

What is the object in the basket to the 
right of Region [0], and how far is it?

The object in the basket to the right of 
Region [0] is a peach, and it is 10.42 
inches away.

Figure 5: Examples of SpatialRGPT performing multi-hop reasoning.

00 22 44
Frame Index

D
istance (inches)

Figure 6: SpatialRGPT functions as a region-aware reward annotator. The estimated distance
decreased monotonically as the fingertip moves towards the target.

Multi-hop Reasoning. In Figure 5, we show examples of SpatialRGPT handling multi-hop rea-
soning. In the upper left sample, the model first identifies what’s to the right of Region [0] (a single
apple), finds the basket there, determines what’s inside the basket, and then provides spatial details
about the object inside. Even though our training data doesn’t specifically include such multi-hop
tasks, SpatialRGPT can still manage them effectively. This indicates that the model has developed a
strong understanding of spatial relationships.
Region-aware Dense Reward Annotator. Recently, [17] has shown that VLMs can function as
dense reward annotators for robotics tasks by specifying tasks in natural language and having the
model annotate rewards for each frame in a trajectory. However, this approach can be constrained by
the language’s ambiguity, especially when multiple identical objects are present or when targeting a
small, specific region in a scene, which can be difficult to describe precisely with language alone.
Given that SpatialRGPT is equipped with region-aware capabilities, we can directly specify the
regions of interest. To study this application, we conducted a real robot experiment. Specifically, we
defined two regions using bounding boxes (one for the fingertip and one for a green cube) and tasked
SpatialRGPT to annotate rewards using the distance between the two regions. The results, shown
in Figure 6, indicate that the estimated distance between the fingertip and its target cube decreased
monotonically as the fingertip moved towards its goal. Also, our depth variant performs slightly
better than the RGB variant. This demonstrates SpatialRGPT ’s effectiveness as a region-aware dense
reward annotator, offering a more precise and efficient alternative to language-only approaches.
5 Discussion
Conclusion. We introduce SpatialRGPT, a novel framework designed to enhance the spatial
reasoning capabilities of Vision Language Models (VLMs). By integrating a region representation
module and a flexible plugin for depth information, SpatialRGPT allows VLMs to effectively perceive
spatial arrangement at both local and global scopes. Our data curation pipeline facilitates the learning
of 3D spatial knowledge from scene graphs, while SpatialRGPT-Bench provides a comprehensive
benchmark for evaluating spatial cognition across diverse environments. The results demonstrate
significant improvements in spatial reasoning tasks while showcasing the model’s ability to reason
complex spatial relations and perform as dense reward annotators for robotic applications.
Limitations. One limitation of our work is the use of Axis-Aligned Bounding Boxes (AABBs),
which can result in inaccuracies in label representation. A more accurate alternative is oriented
bounding boxes (OBBs), but implementing them requires precise object pose estimation, which
remains challenging due to the lack of open-world solutions. The most accurate approach would be
human labeling [74], although this requires significant effort. We leave these for future work.
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A Ablation Study on Augmented SpatialRGPT-Bench

We conduct additional experiments by augmenting and rephrasing both questions and answers
in SpatialRGPT-Bench using GPT-4. The results are shown in Table 5. The results show that
SpatialRGPT consistently outperforms the baseline models, even when the questions and answers are
different from the training data.

Below/
Above

Left/
Right

Big/
Small

Tall/
Short

Wide/
Thin

Behind/
Front

Qualitative
Average

GPT-4V-Turbo 66.7 47.6 66.0 64.2 71.1 47.2 60.5
SpatialRGPT-7B 95.8 99.0 77.4 92.9 82.7 90.9 90.0

Direct
Distance

Horizontal
Distance

Vertical
Distance

Width Height Direction

GPT-4V-Turbo 30.4 / 0.87 26.2 / 2.66 33.9 / 0.51 48.8 / 0.35 69.1 / 1.35 40.1 / 70.0°
SpatialRGPT-7B 43.2 / 0.32 63.9 / 0.27 52.8 / 0.26 51.1 / 0.31 54.1 / 1.02 95.3 / 15.3°

Table 5: Augmented SpatialRGPT-Bench results. Numbers represent success rates (↑) and absolute
relative error (↓).

B Ablation Study on Metric-Scale Width and Height Data

We conduct an ablation study to see if adding width and height data affects other types of questions.
As shown in Table 6, adding this data slightly improved the accuracy for questions about size (like
big/small, tall/short, wide/thin) but slightly worsened the accuracy for questions about the distance
between objects (horizontal and vertical). This suggests that information about object size helps with
size-related questions but might make distance measurements less clear.

Below / Above Left / Right Big / Small Tall / Short Wide / Thin Behind / Front Avg.

- width & height 99.1 99.0 75.8 90.8 82.8 92.1 90.5
+ width & height 99.1 +0 99.0 +0 80.1 +4.3 91.9 +1.1 87.5 +4.7 91.8 -0.3 90.5 +1.2

Direct Distance Horizontal Distance Vertical Distance Width Height Direction

- width & height 41.2 69.3 54.8 22.8 21.2 95.1
+ width & height 41.2 +0 65.6 -3.7 51.9 -2.9 49.6 +26.8 57.9 +36.7 95.3 +0.2

Table 6: Ablation study on the impact of width and height data on the performance of other categories.
Numbers represent success rates (↑).

C Ablation Study on Bounding Box Types

We conduct an ablation study to examine the effect of using axis-aligned bounding boxes (AABB)
versus PCA-based oriented bounding boxes (OBB). For this study, we use human-labeled OBBs from
the Omni3D test set as the ground truth. We then compare the mean-square error of the width and
height measurements for AABBs and PCA-based OBBs labeled by our 3D scene graph pipeline. The
results are shown in Table 7. PCA-based OBB often lacks accuracy due to the incomplete and noisy
nature of point clouds captured from a single view.

BBox Type Width (↓) Height (↓)

Oriented BBox 17.09 4.83
Axis-aligned BBox 8.27 2.35

Table 7: Ablation study on axis-aligned vs. oriented bounding boxes. Numbers indicate MSE
comparing to Omni3D ground truth.
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D Ablation Study on Different Input Modalities

As mentioned in Section 3.4, SpatialRGPT can take both boxes and masks as input during the inference
phase. In this study, we aimed to test the impact of box and mask inputs on our SpatialRGPT-Bench.
We presented the results in Table 8, where we observed a slight drop in performance when using
boxes, but in general, the performance was very close. This suggests that the random modality
strategy used during training is effective.

Below/
Above

Left/
Right

Big/
Small

Tall/
Short

Wide/
Thin

Behind/
Front

Avg.

SpatialRGPT-7B-Mask 99.17 99.04 80.19 91.96 87.50 91.81 91.78
SpatialRGPT-7B-Box 99.17 98.09 83.01 91.96 82.69 92.72 91.47

Direct
Distance

Horizontal
Distance

Vertical
Distance

Width Height Direction

SpatialRGPT-7B-Mask 41.2 / 0.33 65.6 / 0.25 51.9 / 0.27 49.6 / 0.31 57.9 / 0.61 95.3 / 15.4°
SpatialRGPT-7B-Box 39.2 / 0.35 63.1 / 0.25 56.6 / 0.27 48.8 / 0.36 60.1 / 1.06 94.3 / 10.2°

Table 8: Ablation study on effect of different input modalities to Spatial RGPT. Numbers in the
top table represent success rates (↑), while the bottom table includes success rates (↑) and absolute
relative error (↓).

E Statistics and Samples of SpatialRGPT-Bench

Figure 7 presents key statistics from our SpatialRGPT-Bench, including counts for QA categories, data
sources, and objects. We categorize the QA data into 12 distinct types, evenly divided between relative
relationships and metric measurements. Notably, some datasets, such as SUNRGBD, emphasize close-
object scenarios. To reduce bias, we source our data from a diverse range of datasets following [63].
We also show six samples from our SpatialRGPT-Bench in Figure 8.
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Figure 7: SpatialRGPT-Bench statistics. Left: Category count and source count. Right: Object count.

F Implementation Details for Data Pipeline

In this section, we aim to provide a detailed implementation of our data annotation pipeline and
intermediate results obtained through each component.
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How far is......from......horizontally?

and are 31.21 feet apart horizontally.

00 11

00 11

Could you tell me the vertical size of......?

is 3.67 feet tall.

00

00

How tall is in terms of height?

is 4.65 inches in height.

00

Does have a larger size compared to ?

Correct, is larger in size than .

00

00

11

11

Is the position of less distant than ?

No.

00 11Does have a lesser width compared to ?

No, is not thinner than .00 11

00 11

00

Figure 8: Samples in SpatialRGPT-Bench.

F.1 Filtering.

Recent VLMs often benefit from the broad capabilities gained through training with large-scale 2D
image datasets [75, 49]. However, many images in these datasets are unsuitable for developing
spatial reasoning QA. For instance, some images may be computer screenshots, paintings, collages,
or simply a piece of text. Similar to SpatialVLM [17], we use a CLIP-based open-vocabulary
classification model [76] to identify and exclude these unsuitable images. We follow the labeling
used in SpatialVLM but have made a few adaptations to better suit the data distribution of the
OpenImage [49] dataset. We show the labels we use in Listing 1. With this process, we filtered out
700K samples from the 1.7M OpenImage samples.

Listing 1: CLIP labels used during filtering.
positive_labels = [

"a DSLR photo of an indoor scene",
"a DSLR of an outdoor scene",
"an iphone photo of an indoor scene",
"an iphone photo of an outdoor scene",

]

negative_labels = [
"a close up shot of a single object",
"a product displayed in front of a white back ground",
"a painting",
"a collage of images",
"a screenshot of graphics user interface",
"a piece of text"

]

F.2 Metric Depth Estimation

As stated in the main paper, we choose Metric3Dv2 as our metric depth estimator. We have
observed that Metric3Dv2 and WildCamera’s camera intrinsic perform well on images taken in
natural environments. In this section, we present the predicted normal maps from the depth model on
OpenImages. These normal maps can be viewed as a proxy to estimate the quality of the reconstructed
geometry’s edges.
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Figure 9: Predicted normal maps using Metric3Dv2 and WildCamera.

F.3 Point Cloud Processing

Here, we detailed how we process the point clouds into scene graphs.

Canonicalization. Our canonicalization method is straightforward. After obtaining the pitch and
roll through PerspectiveFields, we transform the point cloud into a canonicalized space using the
inverse of the rotation matrix. Figure 10 illustrates the successful alignment of the ground surface
with the z-axis angle after canonicalization. This process ensures that the axis-aligned bounding box
accurately represents the vertical information of the objects, such as height and vertical distance. Our
simple yet effective approach liberates our method from surface segmentation and RANSAC. We
have empirically found this procedure robust for most natural images taken by cameras in real-world
conditions.

Before Canonicalization

After Canonicalization

Figure 10: Canonicalization Results.

Denoising and constructing axis-aligned bounding box. The point clouds obtained from single-
view depth may contain noise. Following [17, 22], we carry out several denoising steps based on the
approach to filter out outliers and unwanted points, thereby improving the robustness and accuracy
of the bounding box. Initially, we eliminate statistical outliers from the object points and then
downsample the data to a lower resolution. Subsequently, we use DBSCAN to further remove noise.
If the points of an object are fewer than ten after DBSCAN clustering, we exclude that object area.
Finally, we employ Open3D to create axis-aligned bounding boxes for each object. The pseudocode
for our denoising process is as in Listing 2.

Listing 2: Point cloud denoising steps.
def process_pcd(pcd):

scale = norm(pcd).std * 3.0 + 1e-6
[pcd, _] = pcd.remove_statistical_outlier(nb_neighbors=10, std_ratio

=1.2)
pcd = pcd.voxel_down_sample(voxel_size=max(0.01, scale/40))
pcd = pcd_denoise_dbscan(
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pcd, eps=0.2, min_points=10
)
return pcd

]

F.4 Open Spatial Dataset QA Templates

We provide samples for each category of QA in the templates that we use to generate QAs mentioned
in Section 3.1.

Listing 3: Template for QA synthesis.
distance_template_questions = [

"What is the distance between [A] and [B]?",
"How far away is [A] from [B]?",
"Can you provide the distance measurement between [A] and [B]?",

]
distance_template_answers = [

"[A] and [B] are [X] apart.",
"A distance of [X] exists between [A] and [B].",
"[A] and [B] are [X] apart from each other.",

]
left_predicate_questions = [

"Is [A] to the left of [B] from the viewer’s perspective?",
"Does [A] appear on the left side of [B]?",
"Can you confirm if [A] is positioned to the left of [B]?",

]
left_true_responses = [

"Yes, [A] is to the left of [B].",
"Indeed, [A] is positioned on the left side of [B].",
"Correct, you’ll find [A] to the left of [B].",

]
left_false_responses = [

"No, [A] is not to the left of [B].",
"In fact, [A] is to the right of [B].",
"Incorrect, [A] is not on the left side of [B].",

]
direction_questions = [

"If you are at [A], where will you find [B]?"
]
direction_responses = [

"[B] is roughly at [X] o’clock from [A].",
"[A] will find [B] around the [X] o’clock direction."

]

F.5 LLM Prompts for Complex QA

G Implementation Details for SpatialRGPT Architecture

G.1 Visual Backbone.

We adopt a pre-trained OpenAI CLIP-L model [64] as the visual backbone. We use 336×336 image
resolutions to include more visual details for the model, which can help with vision language tasks
that require fine-grained details [50] and are beneficial for region-level representations [34].

G.2 Region-feature Extractor.

We adopt the region feature extraction technique in [19]. To begin with, we use a feature refinement
module consisting of a 2-layer deconvolution network designed to upscale the original feature map.
Then, we employ MaskPooling to extract and average the refined features from the masked area.
Note that we also employ a separate feature refinement module for the depth feature. Similar to the
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messages = [ {"role":"system", "content": f""" You are a helpful assistant tasked
with generating spatial reasoning-based questions and answers from provided descriptions of scenes.
Always craft a question without directly revealing specific details from the description. Always
generate questions related to the description using <regionX>. The description should always be used
to answer and not leak into the question. When mentioning the objects or regions, use <regionX>
instead of the objects or regions. Speak like you are the observer’s perspective. Always make sure all
the description objects or regions are mentioned with <regionX> in the question. """}
]
for sample in fewshot_samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]}
)

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 9: Llama-3 prompts for complex QA synthesis.

projector, the weight for the depth feature refinement module is initialized from the RGB feature
refinement module.

G.3 Multi-modal Connector

To bridge representations from various modalities (e.g., image to language, depth to language), we
employ a simple linear layer. Following the approach suggested in [50], using a straightforward
connector helps the LLM to concentrate more on processing visual inputs, thereby enhancing
generalization. We implement two separate connectors, one for image embeddings and another for
depth embeddings, to ensure that each modality is handled distinctly. This separation prevents the
mixing of modalities, which could otherwise compromise the effectiveness of the model.

H Implementation Details for Training SpatialRGPT

H.1 Instruction Tuning Data

Here, we list the instruction tuning data we use in addition to the OSD dataset. Includes general
instruction tuning datasets from LLAVA-1.5 [29], LAN-style instructions from VILA [50] (listed in
Table 10) and the region-level instruction tuning data from [19] (listed in Table 11) that we use in
stage three of the training.

Categories Datasets

Captioning Image Paragraph Captioning [77], MSR-VTT [78], TextCaps [79]
Reasoning CLEVR [80], NLVR [81], VisualMRC [82]
Translation Multi30k [83]
VQA ActivityNet-QA [84], DocVQA [85], GQA [86], iVQA [87], MSRVTT-QA [78],

MSVD-QA [78], OCR-VQA [88], ST-VQA [89], ViQuAE [90], VQAv2 [91],
Visual Dialog [92]

Table 10: The general SFT blend [50] we used.

Categories Datasets

Classification V3Det [93], COCO [40], LVIS [94]
Caption V3Det [93] VG [95], RefCOCO [96]
Relationship VG [95]
REC RefCOCO [96]

Table 11: The region-level SFT blend [19] we used.
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H.2 Hyperparameters

Please refer to VILA’s paper on the implementation of the hyperparameters used in the first two
stages. For pre-training the depth connector, we use a maximum learning rate set at 1e-4, with a
weight decay of 0 and a warm-up ratio of 0.03. The connector is trained with a batch size of 32 for
one epoch. In the instruction fine-tuning stage, the maximum learning rate is reduced to 5e-5, and the
batch size is adjusted to 16. All other hyperparameters remain the same as in the pre-training stage.

I Experimental Setting and Details

I.1 Experiments Compute Resources

Open Spatial Dataset. Our Open Spatial Dataset uses images from OpenImages, which contains a
total of 1.7 million images. Our data preprocessing pipeline was tested on a system with 8 GPUs. The
filtering process for 1.7 million images takes 4 hours and results in 1 million samples. The camera
calibration and metric depth estimation each took around 4 hours. Note that the depth estimation
requires our estimated camera intrinsics as input, so these two processes cannot be parallelized. The
open-vocabulary detection and segmentation process takes 8 hours. As the process involves sequential
operations, we did not specifically optimize it for parallelization. For LLM-based QA synthesis, we
employ LLama3-70b using sglang backend, which takes 12 hours. In general, the total time required
to convert OpenImages into 3D scene graphs is within a day, and constructing the QAs takes another
half.

SpatialRGPT Training. The first two stages of Spatial RGPT are inherited from VILA [50], which
is trained on 16 A100 GPU nodes, with each node having 8 GPUs. The training times for each stage
of the 7B model are as follows: connector initialization takes 4 hours, visual language pre-training
takes 30 hours. The depth connector is further pre-trained using 2 A100 GPU nodes, taking 4 hours.
The final visual instruction-tuning is also experimented on 2 A100 GPU nodes, taking 12 hours.

SpatialRGPT-Bench. The SpatialRGPT-Bench dataset is created from ground truth 3D cuboids and
human-annotated labels. Masks only need to be generated when bounding boxes are provided. We use
SAM-HQ in our data pipeline to convert the bounding boxes into masks, which takes approximately
4 hours to process 10,000 samples. After this, we synthesize QA and randomly select 1,500 samples.
Subsequently, we conduct human verification to filter out incorrect annotations, which takes a day to
complete.

J Benchmark Evaluation Details

Our benchmark poses a challenge in evaluation due to the possibility of multiple correct answers in
different units. Typically, human trials, like those used by [17], could handle this but are often too
slow and costly, mainly as our benchmarks include over a thousand samples. As an alternative, we
employ GPT-4 [55] to assess correctness. The evaluation process involves providing a question, the
correct answer, and the model’s response to the LLM. For qualitative questions, GPT-4 determines if
the model’s response aligns with the correct answer by assigning a score of 0 or 1. For quantitative
questions, GPT-4 extracts numerical values from both the correct answer and the model’s response,
converting them to the same unit (such as meters). We then measure the accuracy and error of the
model’s response based on this standardized unit. We provide prompts we use in Table 13 and
Table 12.

K More Discussion on Limitations

For the most accurate object detection, oriented bounding boxes (OBB) are preferred over axis-aligned
bounding boxes (AABB). As illustrated in Figure 11, the dimensions obtained from AABBs can
differ from those obtained with OBBs. There are two methods to compute an OBB. A simple method
involves calculating the OBB using Principal Component Analysis (PCA) of the object’s convex
hull, which provides an approximate minimal bounding box. However, this approximation often
lacks accuracy due to the incomplete and noisy nature of point clouds captured from a single view.
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messages = [ {"role":"system", "content": f"""You are a helpful assistant designed
to output JSON.

You should help me to evaluate the response given the question and the correct answer.
To mark a response, you should output a single integer between 0 and 1.

(1) means that the response perfectly matches the answer.
(0) means that the response is completely different from the answer."""}
]
for sample in fewshot_samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]}
)

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 12: GPT-4 prompts for SpatialRGPT-Bench qualitative evaluation.

messages = [ {"role":"system", "content": f"""You are a helpful assistant designed
to output JSON.

You should help me to evaluate the response given the question and the correct answer.
You need to convert the distance of the correct answer and response to meters.
The conversion factors are as follows:
1 inch = 0.0254 meters. 1 foot = 0.3048 meters. 1 centimeter (cm) = 0.01 meters.
You should output two floats in meters, one for the answer, and one for the response."""}
]
for sample in fewshot_samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]}
)

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 13: GPT-4 prompts for SpatialRGPT-Bench quantitative evaluation.

Furthermore, this method still cannot handle extreme cases when objects are partially elevated (see
Appdx C). The most precise method involves determining the OBB based on the object’s pose, which
is currently challenging due to limitations in obtaining accurate object poses. Future improvements
could include integrating available pose estimation approaches. However, currently, there are no
open-vocabulary solutions for object pose estimation, so this remains an area for future research.
Another direction, explored in subsequent work (e.g., Q-Spatial Bench [74]), addresses this limitation
by leveraging human labeling.

L Broader Impacts

SpatialRGPT serves as a general-purpose visual assistant, similar to other VLMs. It offers potential
benefits and risks due to its integration of LLMs. SpatialRGPT shares similar concerns with LLMs,
such as output hallucinations, inherited biases from base models, and energy consumption during
upscaling. Evaluating SpatialRGPT’s performance is also challenging, particularly in accurately
measuring the spatial information. This is an area for future enhancement, especially in the field
of robotics, which values safety. Despite these challenges, releasing SpatialRGPT to the research
community would be beneficial, as it would foster further development and improvement of robotics
applications.

M Licenses

1. The training data we use, OpenImages [49], is released under Apache License 2.0.
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Oriented Bounding Box

Axis-aligned Bounding Box

Figure 11: Different types of bounding box.

2. Our paper contain images from Unsplash [97], which is released under Unsplash
License, allowing use of photos for free, including for commercial purposes, without
attributing the photographer or Unsplash.
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