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Abstract

Recurrent neural networks (RNNs) have emerged as a
powerful model for a broad range of machine learning
problems that involve sequential data. While an abundance
of work exists to understand and improve RNNs in the con-
text of language and audio signals such as language mod-
eling and speech recognition, relatively little attention has
been paid to analyze or modify RNNs for visual sequences,
which by nature have distinct properties. In this paper, we
aim to bridge this gap and present the first large-scale ex-
ploration of RNNs for visual sequence learning. In partic-
ular, with the intention of leveraging the strong generaliza-
tion capacity of pre-trained convolutional neural networks
(CNNs), we propose a novel and effective approach, Pre-
RNN, to make pre-trained CNNs recurrent by transforming
convolutional layers or fully connected layers into recur-
rent layers. We conduct extensive evaluations on three rep-
resentative visual sequence learning tasks: sequential face
alignment, dynamic hand gesture recognition, and action
recognition. Our experiments reveal that PreRNN consis-
tently outperforms the traditional RNNs and achieves state-
of-the-art results on the three applications, suggesting that
PreRNN is more suitable for visual sequence learning.

1. Introduction
Recurrent neural networks (RNNs) have achieved ex-

cellent performance on a variety of sequential learning
problems including language modeling [27], handwriting
recognition [16], machine translation [6], speech recogni-
tion [17], polyphonic music modeling [8], and intelligent
video analytics [10]. A vanilla recurrent neural network
(VRNN) [2] extends the conventional feedforward network
to handle a variable-length sequence by accumulating the
context of previous inputs in its internal state to influence
proceeding outputs. However, the range of context that can
be accessed in VRNN is limited as the gradients tend to
either vanish or explode [2]. Unlike the gradient exploding
problem which is relatively easy to address through gradient
norm clipping [32], the gradient vanishing problem involves

devising more sophisticated gating mechanism. As an ear-
liest attempt in this direction, the long short-term memory
(LSTM) [21] adopts a memory cell to maintain the internal
state over time and employs gating functions to modulate
the information flow into and out of the cell. A simpler al-
ternative to LSTM, the gated recurrent unit (GRU) [6] mod-
ifies the functional gates and has been growing increasingly
popular. Recently, there have been a number of attempts to
understand and further improve these basic recurrent struc-
tures for language and speech modeling as seen with the
memory network [47], the massive evolutionary architec-
ture search [23], the content based soft attention scheme
[1], and the ablation study of removing various gates and
connections [18].

RNNs have also been widely applied for visual sequence
learning tasks to model dynamic evolutions and provide
temporal contexts. However, visual sequences have by na-
ture distinct properties compared to other sequential data.
In contrast to language and speech, the processing unit of
a visual sequence is in a more structured format such as an
image or a short video snippet. Therefore, convolutional
neural networks (CNNs) usually serve as the backbone net-
works to extract semantic features, which RNNs are then
built on top. A key advantage of the feature extraction for
visual sequences is to exploit the extremely expressive CNN
models that are pre-trained on large-scale image or video
datasets such as ImageNet [9] and Sports1M [25]. How-
ever, it remains an open question how to construct RNNs
to better leverage the representational power and general-
ization ability of these pre-trained CNNs. In addition, vi-
sual sequences typically exhibit large redundancy [36] and
have diverse temporal dependencies depending on different
applications [19, 28, 29]. As a result, it is still poorly un-
derstood which recurrent structure and which gating mech-
anism is best suited.

Our main contributions in this paper are as follows. First,
we propose PreRNN, which is an effective approach to
make pre-trained CNNs recurrent by directly transforming
pre-trained convolutional layers or fully connected layers
into recurrent layers. PreRNN is applicable to all three ba-
sic recurrent structures (i.e., VRNN, LSTM and GRU) and



can fully take advantage of the strong generalization capa-
bility of pre-trained CNNs. Second, a simplified alterna-
tive PreRNN-SIH is proposed to refine the gating functions
and reduce the number of recurrent parameters. Third, we
systematically analyze the internal mechanism of the gat-
ing units and demonstrate this can be used as an insightful
guidance to better understand and design recurrent architec-
tures for visual sequence learning. Fourth, we extensively
evaluate a variety of recurrent convolutional architectures
on the three representative visual sequence learning tasks:
sequential face alignment, dynamic hand gesture recogni-
tion, and action recognition. As summarized in Table 1, our
evaluations represent a large diversity of applications, visual
sequence types, pre-trained backbone CNNs, and objective
functions. To our knowledge, this work provides the first
large-scale exploration of different recurrent convolutional
networks for visual sequence learning.

2. Notation and Related Work

In this section, we introduce the notation used through-
out this paper and summarize the related work. RNNs have
been well studied for decades in sequence learning, which
mainly includes language modeling [27], machine transla-
tion [6] and speech recognition [17]. VRNN [2] contains a
recurrent or self-connected hidden state ht, whose activa-
tion depends on that of the previous time step:

ht = H(W ihyt +W hhht−1), (1)

where H is an activation function, W ih is the input-to-
hidden matrix, W hh is the hidden-to-hidden matrix, yt is
the input to this recurrent layer. We omit the bias vector for
brevity. In order to enhance the capability to use contextual
information, a great amount of efforts have been made to
mitigate the gradient vanishing problem for VRNN. Among
the most successful variants are LSTM and GRU, which
incorporate gating functions into their state dynamics. At
each time, LSTM [21] maintains a memory cell ct and a
hidden state ht that are carefully regulated by the gates:

it = sigm(W iiyt +W hiht−1),

f t = sigm(W ifyt +W hfht−1),

ot = sigm(W ioyt +W hoht−1),

c̃t = tanh(W icyt +W hcht−1),

ct = f t � ct−1 + it � c̃t,
ht = ot � tanh(ct).

(2)

Similarly W i· are the input-to-hidden matrices and W h·
are the hidden-to-hidden matrices. Here it, f t and ot are
respectively the input, forget and output gates, c̃t is the new
memory state, and � is the element-wise product. GRU [6]
simplifies LSTM primarily by merging the hidden state and

memory cell and combining the forget and input gates into
a single update gate:

rt = sigm(W iryt +W hrht−1),

zt = sigm(W izyt +W hzht−1),

h̃t = tanh(W ihyt +W hh(rt � ht−1)),

ht = (1− zt)� ht−1 + zt � h̃t,

(3)

where rt and zt are the reset and update gates, and h̃t is the
candidate hidden state. Note that for the above three basic
recurrent structures in Eqs. (1-3) multiple recurrent layers
can be stacked on top of each other to perform deep and
hierarchical recurrent processing.

In recent years, there has been a growing interest in un-
derstanding the properties of RNNs and modifying the func-
tional components to improve upon the three basic recurrent
structures. In [8] Chung et al. empirically evaluate GRU
with comparison to LSTM and find the two gating strategies
to be comparable. Greff et al. in [18] present a large-scale
analysis on the importance of different gates and variations
of LSTM, and show that the forget gate and output activa-
tion function are the most crucial elements. Jozefowicz et
al. [23] perform an extensive search of over ten thousand
RNN structures to determine whether better structures ex-
ist by means of mutating network components. Karpathy et
al. [24] investigate the predictions, representations, and er-
ror types presented in RNNs. Pascanu et al. in [31] provide
a few different ways to build and interpret deep extensions
of RNNs. All these studies are conducted in the context of
language and audio sequence modeling, while in this paper
we focus on visual sequence learning.

RNNs are mostly attached on top of the last layer of
pre-trained CNNs in visual sequence learning tasks, as this
can harness the strong representational ability of these pre-
trained models and capture the long-term temporal con-
texts. In [29] a few LSTM layers are stacked upon the
pre-trained AlexNet [26] and GoogLeNet [41] for action
recognition. Donahue et al. [10] also place LSTM after a
fully connected layer of the pre-trained ZFNet [51] for ac-
tivity recognition. Yang et al. [48] merge VRNN with the
pre-trained VGG16 [38] and C3D [43] for video classifica-
tion. VRNN in [28] is employed with the pre-trained C3D
to enable online detection and classification of dynamic
hand gestures. Peng et al. [30] accompany LSTM with the
pre-trained VGG16 for facial landmark detection in videos.
In [52] LSTM is combined with the pre-trained AlexNet for
video based person re-identification. Tokmakov et al. [42]
append GRU on top of the pre-trained network DeepLab [5]
for video object segmentation. In contrast to the previous
work, we aim to propose a more effective and generalized
approach to directly make the pre-trained CNNs recurrent
and obtain an in-depth understanding of the internal mech-
anism for visual sequence learning.



Figure 1. A schematic overview of the traditional RNN and the proposed PreRNN. Each colored arrow represents the corresponding
network weights: blue arrows are the weights of pre-trained CNNs and red arrows denote the randomly initialized weights introduced by
the recurrent layers. In accordance with different backbone CNN architectures, the traditional RNN in (a, c) stacks the recurrent layer on
top of the last fc layer or conv layer, while our PreRNN in (b, d) makes the pre-trained CNNs recurrent by directly transforming the
pre-trained fc layer or conv layer into the recurrent layer.

3. Methods
RNNs coupled with pre-trained CNNs are powerful tools

to exploit the important temporal connections in visual se-
quence learning tasks. It is well explored in the literature
[11, 34] that CNN models, pre-trained on large-scale im-
age or video datasets, retain strong semantic and generality
properties. Prior methods typically introduce a single or a
stack of recurrent layers on top of the last layer1 of a pre-
trained CNN and then train the whole network together. It
thus requires the entire recurrent layers to be trained from
scratch, even though a pre-trained CNN is used for fea-
ture extraction. In order to maximize the representational
power and generalizing capacity of pre-trained CNNs, we
propose PreRNN to directly transform pre-trained convo-
lutional (conv) layers or fully connected (fc) layers into
recurrent layers. This can mitigate the difficulty of training
RNNs, as we reuse parts of a pre-trained CNN as a par-
tially pre-trained RNN. It therefore pushes the generaliza-
tion ability of a pre-trained CNN onto the RNN and ulti-
mately improves the overall performance.

PreRNN is a generic approach that can be applied to
various architectures of pre-trained 2D and 3D CNNs. As
illustrated in Figure 1(a, b), it transforms CNNs such as
VGG [38] and C3D [43] with fc layers at the end of the
convolutional networks, meanwhile it also converts CNNs
such as ResNet [20] and DenseNet [22] with conv and
global average pooling layers at the end, as depicted in Fig-
ure 1(c, d). PreRNN is also able to adapt to all three basic

1This denotes the last layer after removing the output layer of a pre-
trained backbone CNN.

recurrent structures including VRNN, LSTM and GRU. Ad-
ditionally, an alternative PreRNN-SIH can be used to sim-
plify gating functions and reduce recurrent parameters.

3.1. Transformations for VRNN

To be comprehensive in term of different backbone CNN
architectures, we assume that the last fc or conv layer of
a pre-trained CNN has the structure:

y = H(W xy ◦ x), (4)

whereW xy are the pre-trained feedforward weights, x and
y are the input and output of this layer, and ◦ indicates ma-
trix multiplication for the fc layer or convolution opera-
tion for the conv layer. In order to take advantage of the
pre-trained layer, we reformulate this feedforward layer as
a recurrent layer using PreRNN. It is straightforward to re-
model the fc layer through:

yt = H(W xyxt +W hhyt−1), (5)

where xt and yt are reformed to be the input and hidden
state of this recurrent layer at time t. As for the conv layer,
PreRNN performs the transformation by:

yt = H(P(B(W xy ∗ xt) + γt) +W hhyt−1), (6)

where ∗ is the convolution operation, B represents the batch
normalization with the pre-computed mini-batch statistics,
γt indicates an optional shortcut connection in residual net-
works, and P is the global average pooling.

PreRNN essentially transforms the feedforward weights
W xy and output y in Eq. (4) as the input-to-hidden weights



W xy and hidden state yt in Eqs. (5-6). In comparison
to the traditional VRNN in Eq. (1), which introduces two
randomly initialized weight matrices, PreRNN in Eqs. (5-
6) only brings in a single hidden-to-hidden weight matrix
W hh to be trained from scratch, while the input-to-hidden
weights W xy inherited from Eq. (4) have been pre-trained
and can be just fine-tuned. As a result, PreRNN can fully
make use of the robust generalization of a pre-trained CNN
and preserve its architecture to the greatest extent.

3.2. Transformations for LSTM and GRU

A prominent feature shared by LSTM and GRU is the
additive nature in updating the hidden state from t to t+ 1,
i.e., keep the existing state and add changes on top of it
through their gating functions. This helps each hidden state
unit to remember the existence of a specific feature for a
long series of steps, and more importantly, to create short-
cut paths to allow the error to be back-propagated easily
through multiple steps without vanishing too quickly. Here
we aim to extend PreRNN to accommodate the gating func-
tions of LSTM and GRU. For this purpose, we split each
gating function to two components and fuse the pre-trained
feedforward layer into them.

3.2.1 Gate-Dependent Input-to-Hidden State

We follow the same principle to convert a pre-trained feed-
forward layer into a recurrent layer, as we did for trans-
forming VRNN. In Eqs. (2-3) each gate2 is composed of
two components that are the input-to-hidden state and the
hidden-to-hidden state. We define the gate-dependent input-
to-hidden state for PreRNN as:

ut(g) =

{
W p

igxt a fc layer,
P(B(W p

ig ∗ xt) + γt) a conv layer, (7)

where g is a gate index, g = {i, f, o, c} for LSTM and
g = {r, z, h} for GRU, ut(g) is the input-to-hidden state of
gate g at time t, andW p

ig is the pre-trained input-to-hidden
weights of gate g. Concretely, we convert the pre-trained
feedforward weightsW xy in Eq. (4) to the input-to-hidden
weights for one gate and use the pre-trained values to ini-
tialize the input-to-hidden weights for other gates. So we
redefine the gating functions of LSTM in Eq. (2) as:

it = sigm(ut(i) +W hiht−1),

f t = sigm(ut(f) +W hfht−1),

ot = sigm(ut(o) +W hoht−1),

c̃t = tanh(ut(c) +W hcht−1),

(8)

where only the hidden-to-hidden weights W h· are ran-
domly initialized, and we follow the same updating func-
tions in Eq. (2) to renew the memory cell ct and hidden

2For notational simplicity, we also call LSTM’s new memory state c̃t
and GRU’s candidate hidden state h̃t gate here.

state ht. Correspondingly, the gating functions of GRU in
Eq. (3) can be redefined as:

rt = sigm(ut(r) +W hrht−1),

zt = sigm(ut(z) +W hzht−1),

h̃t = tanh(ut(h) +W hh(rt � ht−1)),

(9)

and the hidden state ht is updated in the same manner as
in Eq. (3). By fusing the pre-trained feedforward layer into
the input-to-hidden state of each gate, PreRNN introduces
fewer input-to-hidden parameters and only needs to train
the hidden-to-hidden weights from scratch.

3.2.2 Single Input-to-Hidden State

In the aforementioned transformation scheme, each gate
learns its own input-to-hidden weights W p

ig , though they
start from the same initial state W xy . In order to simplify
the gating functions and fully utilize the pre-trained feed-
forward layer, we take our idea further and bind all gates to
the same input-to-hidden state:

vt =

{
W xyxt a fc layer,

P(B(W xy ∗ xt) + γt) a conv layer, (10)

where vt is the single input-to-hidden (SIH) state that is
adopted by all the gates, and we call this transformation
PreRNN-SIH. Compared to the gate-dependent input-to-
hidden state in Eq. (7), PreRNN-SIH directly converts the
pre-trained feedforward layer to be the unified input-to-
hidden state for all the gates. We thus change the gating
functions of LSTM in Eq. (2) to:

it = sigm(vt +W hiht−1),

f t = sigm(vt +W hfht−1),

ot = sigm(vt +W hoht−1),

c̃t = tanh(vt +W hcht−1),

(11)

where all the gates hinge on the same input-to-hidden state
vt. In the same way, the gating functions of GRU in Eq. (3)
are reformulated as:

rt = sigm(vt +W hrht−1),

zt = sigm(vt +W hzht−1),

h̃t = tanh(vt +W hh(rt � ht−1)).

(12)

Hence, PreRNN-SIH in Eqs. (11-12) only introduces the
hidden-to-hidden weightsW h· that need to be trained from
scratch. In addition, since the pre-trained feedforward layer
is set to be the joint input-to-hidden state for all the gating
functions of LSTM and GRU, PreRNN-SIH can therefore
significantly reduce the number of recurrent parameters and
consequently the computational cost.



Applications Sequences CNNs Datasets Objectives

Sequential Face Alignment Color VGG16 [38] 300VW [7] `2

Hand Gesture Recognition Color & Depth C3D [43] NVGesture [28] CTC [15]

Action Recognition Color & Flow ResNet50 [20] UCF101 [39] NLL

Table 1. Summary of the diverse experiments conducted in this paper in terms of applications, visual sequence types, pre-trained backbone
CNNs, benchmark datasets, and objective functions.

Traditional PreRNN PreRNN-SIH

1 layer 2 layers fc6 fc7 fc6/7 fc6 fc7 fc6/7

VRNN 0.704 0.716 0.757 0.742 0.763 - - -

LSTM 0.718 0.671 0.769 0.754 0.746 0.743 0.746 0.719

GRU 0.722 0.698 0.772 0.755 0.761 0.768 0.748 0.762

Table 2. AUC of the traditional RNNs and our proposed PreRNN and PreRNN-SIH on the 300VW dataset.

4. Applications

In this section, we exemplify our proposed methods for
visual sequence learning with three applications: sequen-
tial face alignment, dynamic hand gesture recognition, and
action recognition. As summarized in Table 1, our evalu-
ations represent a large diversity of visual sequences, pre-
trained backbone CNNs, benchmark datsets, and objective
functions. To compare the performance of each basic recur-
rent structure in a controlled setting, we carefully choose
the hidden state dimensions of different recurrent models so
that the total number of parameters in each case is as close
as possible (see supplementary material for more details).
We train the models using mini-batch stochastic gradient
descent with momentum, and implement our networks in
Theano and PyTorch on an NVIDIA DGX-1. In the follow-
ing, we use PreVRNN, PreLSTM and PreGRU to indicate
the three basic recurrent structures created by the proposed
PreRNN, and denote the ones constructed by the traditional
RNNs as TraVRNN, TraLSTM and TraGRU.

4.1. Sequential Face Alignment

We start from the video based face alignment, which is
fundamental to many applications such as face recognition,
expression analysis, facial animation capturing, etc. We ex-
periment on the benchmark dataset 300VW [7], which con-
tains 114 videos and 218,595 frames in total, with 68 an-
notated facial landmarks per frame. We follow the same
experimental setting as [19] to split the dataset into 80% for
training and 20% for testing. A Faster R-CNN [35] based
face detector is used as a preprocess to detect the facial re-
gion on each frame.

We employ the pre-trained VGG16 [38] on ImageNet
[9] as the backbone CNN and the `2 loss as our objective
function, and change the output layer to 136 units corre-

sponding to the locations of 68 facial landmarks. We use
the same evaluation metric, i.e., area under the curve (AUC)
for quantitative performance comparison. AUC is the area
under the cumulative error distribution curve (see Figure 3),
which describes the proportion of frames with the normal-
ized point-to-point error less than a given threshold.

Since there are two fc layers in VGG16, we first trans-
form both of them (fc6 and fc7) into recurrent layers with
PreRNN. As a comparison, we follow the traditional RNNs
to build two recurrent layers on top of fc7 in VGG16. As
shown in Table 2, PreRNN with fc6/7 significantly out-
performs the traditional RNNs with 2 layers for the three
basic recurrent structures.

Next we investigate the internal mechanism of traditional
RNNs and PreRNN to better understand the source of their
performances and shortcomings, similar to the analysis for
language modeling in [24]. Specifically, we look into the
distributions of gate activations and define a gate unit to be
left or right saturated if its activation is less than 0.1 or more
than 0.9, or unsaturated otherwise. We then infer the gat-
ing mechanism through the saturation plots or the activation
histograms as shown in Figure 2. Our consistent finding is
that the activations in the first layer of PreLSTM lie in the
more saturated regime (closer to the diagonal) than those
of TraLSTM. This implies that PreLSTM is more capable
to utilize the temporal context, e.g., the multiple frequently
right saturated forget gate units (bottom right of the forget
gate plot) correspond to the memory cells that remember
their values for long durations. Conversely, the activations
of TraLSTM are dispersed in the more unsaturated regime,
indicating that the integrated temporal information decays
rapidly. We make a similar observation for the first layer
of PreGRU where the left saturated (0.0-0.1) and right sat-
urated (0.9-1.0) bins dominate the distribution, whereas the
activations of TraGRU gather in the unsaturated bins.



Figure 2. Examples of the gate activation distribution for LSTM and GRU. Top: saturation plots of the fraction of times that each gate unit
is left or right saturated for LSTM. Bottom: activation histograms over 10 bins for GRU. This figure is best viewed on screen.

It is also interesting to note that the activations in the sec-
ond layer of both TraLSTM and PreLSTM concentrate near
the origin in the saturation plots, where the gate units are
rarely left or right saturated. This suggests that the second
recurrent layer virtually functions in a feedforward fashion
and the preceding hidden state is barely used. A similar
phenomenon is also shown in the activation histogram for
the second layer of TraGRU and PreGRU. We take this ob-
servation as a guidance to determine the hierarchy of recur-
rent layers: we transform only one fc layer (either fc6 or
fc7) into a recurrent layer and leave the other one as a feed-
forward layer for PreRNN, and correspondingly build only
one recurrent layer for the traditional RNNs. Table 2 clearly

Figure 3. Comparison of our approach with the state-of-the-art
methods on the 300VW dataset.

shows the improvements of PreRNN with fc6 and the tra-
ditional RNNs with 1 layer over their 2-layer counterparts
for both LSTM and GRU.

PreRNN-SIH substantially reduces the recurrent param-
eters as shown in Table 3, yet, it still outperforms traditional
RNNs and compares favorably with PreRNN. As for com-
paring the basic recurrent structures, GRU performs slightly
better than LSTM, which further moderately outperforms
VRNN. We finally show the cumulative error distributions
of our approach and the competing algorithms in Figure 3,
where ours (PreGRU) outperforms the other methods.

4.2. Dynamic Hand Gesture Recognition

Our second application is the online dynamic hand ges-
ture recognition, which is a natural and important form for
human computer interaction. This is a challenging task and
requires to simultaneously detect and classify the inprogress
gestures from unsegmented input streams. We experiment
with the public benchmark dataset NVGesture [28], which
contains 25 hand gesture categories and 1,532 videos cap-
tured with multiple sensors. Our experiments are based on
the color and depth modalities. We comply with the stan-
dard evaluation protocol to split the dataset by subject into
70% for training and 30% for testing.

We leverage on the method developed in [28] to use the
C3D [43] pre-trained on Sports1M [25] as the base CNN
and the connectionist temporal classification (CTC) [15] as
the loss function. CTC is an objective function proposed for



VGG16 C3D
ResNet50fc6 fc7 fc6/7 fc6 fc7 fc6/7

LSTM 0.18× 0.57× 0.27× 0.40× 0.57× 0.47× 0.84×
GRU 0.20× 0.60× 0.30× 0.43× 0.60× 0.50× 0.86×

Table 3. Number of recurrent parameters used by PreRNN-SIH compared to those by traditional RNNs or PreRNN based on the different
pre-trained backbone CNNs.

Traditional PreRNN PreRNN-SIH

1 layer 2 layers fc6 fc7 fc6/7 fc6 fc7 fc6/7

VRNN 83.3% 80.8% 81.9% 82.9% 84.4% - - -

LSTM 81.3% 81.3% 81.7% 81.9% 82.7% 80.0% 81.7% 84.2%

GRU 81.9% 82.5% 82.1% 81.0% 83.1% 84.4% 79.8% 83.8%

Table 4. Classification accuracy of the traditional RNNs and our proposed PreRNN and PreRNN-SIH on the NVGesture dataset.

speech recognition to label unsegmented audio sequence. It
is applied in this task to support predicting gestures from
the unsegmented color and depth streams.

We transform the fc layers of C3D (fc6 and or fc7)
into recurrent layers with PreRNN and PreRNN-SIH. As a
comparison, we construct recurrent layers after fc7 for the
traditional RNNs. Table 4 demonstrates that both PreRNN
and PreRNN-SIH outperform the traditional RNNs, espe-
cially for LSTM and GRU. PreRNN-SIH yields superior
performance and also significantly reduces the number of
parameters required by recurrent layers by more than half,
as shown in Table 3.

In addition to improving the classification accuracy, Pre-
RNN is also found to converge faster than the traditional
RNNs during training. Figure 4 demonstrates the training
curves of different networks. As shown in this figure, Pre-
VRNN greatly expedites the training process and reduces
overfitting. PreLSTM also exhibits faster convergence than
TraLSTM (see the slope at the early training stage). We at-
tribute the faster convergence of our approach to fusing the
pre-trained feedforward layers into recurrent layers so that
our RNNs are partially pre-trained and therefore they can
accelerate the convergence.

Figure 4. Comparison of the training processes between the tra-
ditional RNNs and our proposed PreRNN and PreRNN-SIH for
VRNN (left) and LSTM (right).

Comparing the basic recurrent structures, we observe
that VRNN is on a par with LSTM and GRU on this dataset.
We hypothesize this is due to approximately 20% of the ges-
ture categories, e.g., “thumb up” and “index finger”, being
almost still and lacking a strong temporal dependency. We
then compare our approach with the state-of-the-art meth-
ods in Table 6. We achieve superior results on each individ-
ual modality and the combination of them, and significantly
outperform the baseline by 4.0%. Notably, our approach us-
ing the single depth modality already produces an accuracy
that is better than other competitors by a clear margin, and
even consistently outperforms the ones that combine more
modalities, highlighting the advantage of PreRNN to make
use of the temporal connections.

4.3. Action Recognition

We also apply our approach to model the dynamic mo-
tions for action recognition, which plays an important role
in surveillance event detection, content based video search,
health care monitoring, etc. We experiment on the public
benchmark dataset UCF101 [39], which consists of 101 ac-
tion classes and 13,320 videos in total. We use the standard
three training and testing splits as in [39] to perform our
evaluations, and report results on the first split for our inter-
nal comparisons.

We follow the original two-stream method [37] to adopt
two separate CNNs to operate on the spatial (color) and
temporal (optical flow) streams. Our temporal network em-
ploys the pre-computed optical flow [50] stacking with 10
frames. CNNs of each stream in our approach are then
equipped with RNNs to capture the temporal dynamics over
the whole video sequence. We use the ResNet50 model [20]
pre-trained on ImageNet [9] as the backbone CNN and the
negative log likelihood (NLL) as the loss function.



Traditional PreRNN PreRNN-SIH

Color Flow Comb Color Flow Comb Color Flow Comb

VRNN 82.9% 83.6% 91.6% 83.8% 84.6% 92.7% - - -

LSTM 83.4% 84.0% 92.5% 85.3% 84.8% 93.2% 85.0% 84.6% 93.5%

GRU 83.6% 83.8% 92.2% 84.3% 85.2% 93.7% 84.9% 84.7% 93.3%

Table 5. Classification accuracy of the traditional RNNs and our proposed PreRNN and PreRNN-SIH on the first split of UCF101 dataset.

Method Modality Accuracy

C3D [43] Color 69.3%
R3DCNN [28] Color 74.1%
Ours Color 76.5%

SNV [49] Depth 70.7%
C3D [43] Depth 78.8%
R3DCNN [28] Depth 80.3%
Ours Depth 84.4%

Two-Stream [37] Color + Flow 65.6%
iDT [45] Color + Flow 73.4%
R3DCNN [28] Five Modalities 83.8%
Baseline (w/o RNN) Color + Depth 81.0%
Ours Color + Depth 85.0%

Table 6. Comparison of our approach with the state-of-the-art
methods on the NVGesture dataset, which consists of five modali-
ties including color, depth, optical flow, IR image and IR disparity.

We transform the last conv layer of ResNet50 into a re-
current layer with PreRNN and PreRNN-SIH. As defined
in Eqs. (6, 7, 10), we fuse the pre-trained weights and mini-
batch statistics of res5c-branch2c as well as the short-
cut connection from res5b into the recurrent layer. As a
comparison, traditional RNNs build a recurrent layer on top
of pool5 in ResNet50. Table 5 demonstrates that PreRNN
and PreRNN-SIH both outperform traditional RNNs by up
to 1.9% and 1.4% on the color and optical flow streams, re-
spectively. Combining the two streams through simple av-
eraging softmax scores boosts the classification results for
all methods. Apart from improving the accuracy, PreRNN-
SIH reduces the recurrent parameters by around 15%, as
shown in Table 3. In comparison, among the three basic re-
current structures, LSTM produce similar results to GRU,
which both outperform VRNN.

We finally compare with the most recent competing al-
gorithms in Table 7, where our approach achieves the state-
of-the-art classification accuracy 94.3%, which is 2.6% im-
provement over the baseline. In particular, we note that
[13, 46] also produce the competitive results. However,
[13] employs a more powerful CNN (i.e., ResNet152) to the
temporal stream, and [46] relies on two more input modali-
ties (i.e., warped flow in iDT and difference images). More
importantly, these methods are specifically designed for ac-

Method Accuracy

Dynamic Image Nets [3] 76.9%
Long-Term Recurrent ConvNet [10] 82.9%
Composite LSTM Model [40] 84.3%
C3D [43] 85.2%
iDT [45] 86.4%
Two-Stream ConvNet [37] 88.0%
Multilayer Multimodal Fusion [48] 91.6%
Long-Term ConvNets [44] 91.7%
Two-Stream Fusion [14] 92.5%
Spatiotemporal ResNets [12] 93.4%
Inflated 3D ConvNets [4] 93.4%
Temporal Segment Networks [46] 94.2%
Spatiotemporal Multiplier Nets [13] 94.2%

Baseline (w/o RNN) 91.7%
Ours 94.3%

Table 7. Comparison of our approach with the state-of-the-art
methods on the average of three splits of UCF101 dataset.

tion recognition, while our approach is generic for various
visual sequence learning problems and can be potentially
combined with other methods to obtain further gains.

5. Conclusion
In this paper, we have proposed PreRNN and PreRNN-

SIH to make pre-trained CNNs recurrent for visual se-
quence learning by directly transforming pre-trained feed-
forward layers into recurrent layers. Our approach fits for
all basic recurrent structures and various architectures of
CNNs. Extensive experiments on three applications find
PreRNN and PreRNN-SIH to produce consistently better
results than traditional RNNs, in addition to a significant
reduction of recurrent parameters by PreRNN-SIH. This
clearly shows that our method is not just geared to a par-
ticular dataset but is generally applicable to different visual
sequence learning tasks. We also provide the insight of un-
derstanding the internal gating mechanism and demonstrate
that this can be used to improve the design of recurrent ar-
chitecture. In the future work, we intend to explore and ap-
ply our method to more visual sequence learning problems
such as sequential human pose estimation, semantic video
segmentation, and multi-frame optical flow estimation.
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