PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume SUPPLEMENTARY MATERIAL

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz NVIDIA

Section 1 provides more ablation and visual results. Section 2 summarizes the details of our network. Section 3 shows the screenshot of the MPI Sintel final pass, KITTI 2012, and KITTI 2015 public tables at the time of submission (November 15th, 2017). Section 4 shows the learned features at the first level of the feature pyramid extractor.

1. More Ablation and Visual Results

Figure 1 shows the enlarged images of Figure 1 in the main manuscript. PWC-Net outperforms all published methods on the MPI Sintel final pass benchmark in both accuracy and running time. It also reaches the best balance between size and accuracy among existing end-to-end CNN models.

Table 1 shows more ablation results, in particular, the full results for models trained on FlyingChairs (Table 1a) and then fine-tuned on FlyingThings3D (Table 1b). To further test the dilated convolutions, we replace the dilated convolutions of the context network with plain convolutions. Using plain convolutions has worse performance on Chairs and Sintel, and is slightly better on KITTI. We also have independent runs of the same PWC-Net that only differ in the random initialization. As shown in Table 1d, the two independent runs lead to models that have close performances, although not exactly the same.

Figures 2 and 3 provide more visual results by PWC-Net on the MPI Sintel final pass and KITTI 2015 test sets. PWC-Net can recover sharp motion boundaries in the presence of large motion, severe occlusions, and strong shadow and atmospheric effects. However, PWC-Net tends to produce errors on objects with thin structures that rarely occur in the training set, such as the wheels of the bicycle in the third row of Figure 3.

2. Network Details

Figure 4 shows the architecture for the 7-level feature pyramid extractor network used in our experiment. Note that the bottom level consists of the original input images. Figure 5 shows the optical flow estimator network at pyramid level 2. The optical flow estimator networks at other

levels have the same structure except for the top level, which does not have the upsampled optical flow and directly computes cost volume using features of the first and second images. Figure 6 shows the context network that is adopted only at pyramid level 2.

3. Screenshots of MPI Sintel and KITTI Public Table

Figures 7-9 respectively show the screenshots of the MPI Sintel final pass, KITTI 2015, and KITTI 2012 public tables at the time of submission (November 15th, 2017). Among all optical flow methods, PWC-Net is ranked 1st on both MPI Sintel final and KITTI 2015, and 2nd on KITTI 2012. Note that the 1st-ranked method on KITTI 2012, SDF [1], assumes a rigidity constraint for the background, which is well-suited to the static scenes in KITTI 2012. PWC-Net performs better than SDF on KITTI 2015 that contains dynamic objects and is more challenging.

4. Learned Features

Figure 10 shows the learned filters for the first convolution layer by PWC-Net and the feature responses to an input image. These filters tend to focus on regions of different properties in the input image. After training on FlyingChairs, fine-tuning on FlyingThings3D and Sintel does not change these filters much.

References

 M. Bai, W. Luo, K. Kundu, and R. Urtasun. Exploiting semantic information and deep matching for optical flow. In *European Conference on Computer Vision (ECCV)*, 2016. 1, 7

Figure 1. Left: PWC-Net outperforms all published methods on the MPI Sintel final pass benchmark in both accuracy and running time. Right: PWC-Net reaches the best balance between size and accuracy among existing end-to-end CNN models.

	Chairs		Sintel	KITT	I 2012	KITTI 2015					Chairs	Sintel	Sintel	KITTI 2012		KITTI 2015	
	Chairs	Clean	Final	AEPE	Fl-all	AEPE	Fl-all				Chairs	Clean	Final	AEPE	Fl-all	AEPE	Fl-all
Full model	2.00	3.33	4.59	5.14	28.67%	13.20	41.79%		Full mo	del	2.30	2.55	3.93	4.14	21.38%	10.35	33.67%
No context	2.06	3.09	4.37	4.77	25.35%	12.03	39.21 %		No con	text	2.48	2.82	4.09	4.39	21.91%	10.82	34.44%
No DenseNet	2.23	3.47	4.74	5.63	28.53%	14.02	40.33%		No Den	seNet	2.54	2.72	4.09	4.91	24.04%	11.52	34.79%
Neither	2.22	3.15	4.49	5.46	28.02%	13.14	40.03%		Neither		2.65	2.83	4.24	4.89	24.52%	12.01	35.73%
	(a) Trained on FlyingChairs.						(b) Fine-tuend on FlyingThings3D after FlyingChairs.										
	Sintel Sintel KITTI 2012 KITTI 2015								Sin Sin		Sintel	KITT	TI 2012 KITTI 20		T 2015		
	Chairs Clean Final AEPE Fl-all AEPE		Fl-all		Chairs		Clean	Final	AEPE	Fl-all	AEPE	Fl-all					
Dilated conv	2.00	3.33	4.59	5.14	28.67%	13.20	41.79%		Run 1	2.00	3.33	4.59	5.14	28.679	6 13.20	41.79	%
Plain conv	2.03	3.39	4.85	5.29	25.86%	13.17	38.67%		Run 2	2.00	3.33	4.65	4.81	27.129	6 13.10	40.84	%
(c) Dila	ted vs pl	ain conv	olutions	for the c	context ne	etwork.			(d) T v	vo indep	endent	runs res	ult in slig	tly diff	erent mo	dels.	

Table 1. More ablation experiments. Unless explicitly stated, the models have been trained on the FlyingChairs dataset.

Figure 2. More PWC-Net results on the MPI Sintel final pass dataset.

Figure 3. More PWC-Net results on KITTI 2015 test set. PWC-Net can recover sharp motion boundaries despite large motion, strong shadows, and severe occlusions. Thin structures, such as the bicycle, are challenging to PWC-Net, probably because the training set has no training samples of bicycles.

Figure 4. The feature pyramid extractor network. The first image (t = 1) and the second image (t = 2) are encoded using the same Siamese network. Each convolution is followed by a leaky ReLU unit. The convolutional layer and the $\times 2$ downsampling layer at each level is implemented using a single convolutional layer with a stride of 2. \mathbf{c}_t^t denotes extracted features of image t at level l;

Figure 6. The context network at pyramid level 2. Each convolutional layer is followed by a leaky ReLU unit except the last (light green) one that outputs the optical flow. The last number in each convolutional layer denotes the dilation constant.

Figure 5. The optical flow estimator network at pyramid level 2. Each convolutional layer is followed by a leaky ReLU unit except the last (light green) one that outputs the optical flow.

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+	
GroundTruth [1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Visualize Results
PWC-Net [2]	5.042	2.445	26.221	4.636	2.087	1.475	0.799	2.986	31.070	Visualize Results
	5.119	2.283	28.228	4.665	2.108	1.440	1.052	3.434	29.351	Visualize Results
FlowFieldsCNN [4]	5.363	2.303	30.313	4.718	2.020	1.399	1.032	3.065	32.422	Visualize Results
MR-Flow ^[5]	5.376	2.818	26.235	5.109	2.395	1.755	0.908	3.443	32.221	Visualize Results
FTFlow (6)	5.390	2.268	30.841	4.513	1.964	1.366	1.046	3.322	31.936	Visualize Results
S2F-IF ^[7]	5.417	2.549	28.795	4.745	2.198	1.712	1.157	3.468	31.262	Visualize Results
InterpoNet_ff ^[8]	5.535	2.372	31.296	4.720	2.018	1.532	1.064	3.496	32.633	Visualize Results
PGM-C ^[0]	5.591	2.672	29.389	4.975	2.340	1.791	1.057	3.421	33.339	Visualize Results
RicFlow ^[10]	5.620	2.765	28.907	5.146	2.366	1.679	1.088	3.364	33.573	Visualize Results
InterpoNet_cpm [11]	5.627	2.594	30.344	4.975	2.213	1.640	1.042	3.575	33.321	Visualize Results

Figure 7. Screenshot of the MPI Sintel final pass public table. PWC-Net has the lowest average end-point error (EPE) among all evaluated methods as of November 15th, 2017.

	Method	Setting	Code	Fl-bg	Fl-fg	<u>Fl-all</u>	Density	Runtime	Environment	Compare
1	<u>PSPO</u>	ďď		4.35 %	15.21 %	6.15 %	100.00 %	5 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
2	<u>ISF</u>	ďď		5.40 %	10.29 %	6.22 %	100.00 %	10 min	1 core @ 3 Ghz (C/C++)	
	ıl, O. Jafari, S. Musti g <u>Scenarios?</u> . Interna					g Boxes, Segr	nentations and	Object Coordina	ates: How Important is Recognition for 3D Scene Flow Estim	ation in Autonomo
3	PRSM	ŏŏ 🔗	<u>code</u>	5.33 %	13.40 %	6.68 %	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	
. Vog	el, K. Schindler and	S. Roth: 3D Scen	e Flow Est	imation with	a Piecewise	Rigid Scene N	<u>Iodel</u> . ijcv 2015	i.		t
4	OSF+TC	ŏŏ Ø		5.76 %	13.31 %	7.02 %	100.00 %	50 min	1 core @ 2.5 Ghz (C/C++)	
A. Neo	oral and J. Šochman:	: Object Scene Fl	ow with T	emporal Con	istency. 22nd	d Computer V	ision Winter Wo	orkshop (CVWW)	2017.	
5	<u>SSF</u>	ŏŏ		5.63 %	14.71 %	7.14 %	100.00 %	5 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
. Ren	ı, D. Sun, J. Kautz ar	nd E. Sudderth: C	ascaded S	cene Flow Pr	ediction using	g Semantic Se	gmentation. In	ternational Conf	ference on 3D Vision (3DV) 2017.	
6	<u>SOSF</u>	ŏŏ		5.42 %	17.24 %	7.39 %	100.00 %	55 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
7	<u>OSF</u>	ŏŏ	<u>code</u>	5.62 %	18.92 %	7.83 %	100.00 %	50 min	1 core @ 2.5 Ghz (C/C++)	
A. Mer	nze and A. Geiger: <u>O</u>	bject Scene Flov	/ for Autor	omous Vehic	les. Conferer	ice on Compu	ter Vision and I	Pattern Recognit	tion (CVPR) 2015.	
8	PWC-Net			9.66 %	9.31 %	9.60 %	100.00 %	0.03 s	NVIDIA Pascal Titan X	
9	<u>MirrorFlow</u>	_		8.93 %	17.07 %	10.29 %	100.00 %	11 min	4 core @ 2.2 Ghz (C/C++)	
. Hur	and S. Roth: MirrorF	Flow: Exploiting S	ymmetrie	s in Joint Opt	ical Flow and	Occlusion Es	timation. ICCV	2017.		
10	FlowNet2			10.75 %	8.75 %	10.41 %	100.00 %	0.12 s	GPU Nvidia GeForce GTX 1080	
11	<u>SDF</u>			8.61 %	23.01 %	11.01 %	100.00 %	TBA	1 core @ 2.5 Ghz (C/C++)	
A. Bai	*, W. Luo*, K. Kundu	and R. Urtasun:	Exploiting	Semantic In	formation and	d Deep Match	ing for Optical	Flow, ECCV 2016	5.	
12	<u>UnFlow</u>			10.15 %	15.93 %	11.11 %	100.00 %	0.12 s	GPU @ 1.5 Ghz (Python + C/C++)	
. Mei	ster, J. Hur and S. R	oth: <u>UnFlow: Uns</u>	upervised	Learning of (Optical Flow y	with a Bidired	tional Census L	oss. AAAI 2018.		
13	FSF+MS	前米名		8.48 %	25.43 %	11.30 %	100.00 %	2.7 s	4 cores @ 3.5 Ghz (C/C++)	
. Tan	iiai, S. Sinha and Y. S	Sato: <u>Fast Multi-f</u>	rame Ster	eo Scene Flov	v with Motion	n Segmentatio	on. IEEE Conference	ence on Comput	er Vision and Pattern Recognition (CVPR 2017) 2017.	
14	CNNF+PMBP			10.08 %	18.56 %	11.49 %	100.00 %	45 min	1 cores @ 3.5 Ghz (C/C++)	
15	MR-Flow	8	code	10.13 %	22.51 %	12.19 %	100.00 %	8 min	1 core @ 2.5 Ghz (Python + C/C++)	

J. Wulff, L. Sevilla-Lara and M. Black: Optical Flow in Mostly Rigid Scenes. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2017.

Figure 8. Screenshot of the KITTI 2015 public table. PWC-Net has the lowest percentage of error (Fl-all) among all optical flow methods, only inferior to scene flow methods that use additional stereo input information.

	Method S	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	PRSM (ŏŏ <i>8</i> 7	<u>code</u>	2.46 %	4.23 %	0.7 рх	1.0 px	100.00 %	300 s	1 core @ 2.5 Ghz (Matlab + C/C++)	
Vog	gel, K. Schindler and S	. Roth: <u>3</u> [) Scene I	Flow Estimat	ion with a Pi	ecewise Rigid	Scene Mode	<u>l</u> . ijcv 2015.			
2	VC-SF	ŏŏ <i>8</i> 7		2.72 %	4.84 %	0.8 px	1.3 px	100.00 %	300 s	1 core @ 2.5 Ghz (Matlab + C/C++)	
Vog	gel, S. Roth and K. Sch	nindler: <u>Vi</u>	ew-Cons	istent 3D Sce	ene Flow Esti	mation over <i>I</i>	Aultiple Fran	nes. Proceedin	gs of European (Conference on Computer Vision. Lecture Notes in, Comput	er Science 2014.
3	<u>SPS-StFl</u>	<u>ж</u> Ж		2.82 %	5.61 %	0.8 px	1.3 px	100.00 %	35 s	1 core @ 3.5 Ghz (C/C++)	
Yar	maguchi, D. McAlleste	r and R. U	rtasun:	Efficient Joir	it Segmentat	ion, Occlusior	n Labeling, S	tereo and Flow	<u>/ Estimation</u> . EC	CV 2014.	****
4	SPS-FL	Ж		3.38 %	10.06 %	0.9 px	2.9 px	100.00 %	11 s	1 core @ 3.5 Ghz (C/C++)	
Yar	maguchi, D. McAlleste	r and R. U	rtasun:	Efficient Joir	it Segmentat	ion, Occlusion	n Labeling, S	tereo and Flov	<u>/ Estimation</u> . EC	CV 2014.	
5	<u>OSF</u>	ŏŏ	<u>code</u>	3.47 %	6.34 %	1.0 px	1.5 px	100.00 %	50 min	1 core @ 3.0 Ghz (Matlab + C/C++)	
Me	nze and A. Geiger: Ob	ject Scen	e Flow f	or Autonomo	us Vehicles.	Conference o	n Computer	Vision and Pati	tern Recognition	(CVPR) 2015.	
5	PR-Sf+E	ŏŏ		3.57 %	7.07 %	0.9 px	1.6 px	100.00 %	200 s	4 cores @ 3.0 Ghz (Matlab + C/C++)	
Vog	gel, K. Schindler and S	. Roth: <u>Pi</u>	ecewise	Rigid Scene	Flow. Interna	ational Confer	ence on Con	nputer Vision (ICCV) 2013.		
7	PCBP-Flow	Ж		3.64 %	8.28 %	0.9 px	2.2 px	100.00 %	3 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	
Yar	maguchi, D. McAlleste	r and R. U	rtasun:	Robust Mono	cular Epipola	r Flow Estima	tion, CVPR 2	013.			
8	PR-Sceneflow	ŏŏ		3.76 %	7.39 %	1.2 px	2.8 px	100.00 %	150 sec	4 core @ 3.0 Ghz (Matlab + C/C++)	
Vog	gel, K. Schindler and S	5. Roth: <u>Pi</u>	ecewise	Rigid Scene	Flow. Interna	ational Confer	ence on Con	nputer Vision (ICCV) 2013.		
9	<u>SDF</u>			3.80 %	7.69 %	1.0 px	2.3 px	100.00 %	TBA s	1 core @ 2.5 Ghz (C/C++)	
Bai	i*, W. Luo*, K. Kundu a	and R. Urt	asun: <u>Ex</u>	ploiting Sem	antic Inform	ation and Dee	p Matching f	for Optical Flo	w. ECCV 2016.		*****
0	MotionSLIC	釆		3 .91 %	10.56 %	0.9 px	2.7 px	100.00 %	11 s	1 core @ 3.0 Ghz (C/C++)	
Yar	maguchi, D. McAlleste	r and R. U	rtasun:	Robust Mono	cular Epipola	r Flow Estima	tion. CVPR 2	013.			
1	PWC-Net			4.22 %	8.10 %	0.9 px	1.7 px	100.00 %	0.03 s	NVIDIA Pascal Titan X	
2	TBR			4.24 %	7.50 %	0.9 px	1.5 px	100.00 %	1750 s	4 cores @ 2.5 Ghz (Matlab + C/C++)	
3	<u>UnFlow</u>			4.28 %	8.42 %	0.9 px	1.7 px	100.00 %	0.12 s	GPU @ 1.5 Ghz (Python + C/C++)	
Mei	ister, J. Hur and S. Ro	th: UnFlow	w: Unsup	ervised Lear	ning of Optic	al Flow with	a Bidirection	al Census Loss	. AAAI 2018.		
14	MirrorFlow			4.38 %	8.20 %	1.2 px	2.6 px	100.00 %	11 min	4 core @ 2.2 Ghz (C/C++)	

Error threshold 3 pixels

Evaluation area All pixels

Figure 9. Screenshot of the KITTI 2012 public table. SDF [1] is the only optical flow method that has lower percentage of outliers in non-occluded regions (Out-Noc) than PWC-Net. However, SDF assumes a rigidity constraint for the background, which is well-suited for the static scenes in the KITTI 2012 set.

(c) Feature responses Figure 10. Learned filters at the first convolutional layer of PWC-Net and the filter responses to an input image.