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Section | provides more ablation and visual results. Sec-
tion 2 summarizes the details of our network. Section 3
shows the screenshot of the MPI Sintel final pass, KITTI
2012, and KITTI 2015 public tables at the time of submis-
sion (November 15th, 2017). Section 4 shows the learned
features at the first level of the feature pyramid extractor.

1. More Ablation and Visual Results

Figure 1 shows the enlarged images of Figure 1 in
the main manuscript. PWC-Net outperforms all published
methods on the MPI Sintel final pass benchmark in both
accuracy and running time. It also reaches the best balance
between size and accuracy among existing end-to-end CNN
models.

Table 1 shows more ablation results, in particular, the full
results for models trained on FlyingChairs (Table 1a) and
then fine-tuned on FlyingThings3D (Table 1b). To further
test the dilated convolutions, we replace the dilated con-
volutions of the context network with plain convolutions.
Using plain convolutions has worse performance on Chairs
and Sintel, and is slightly better on KITTI. We also have in-
dependent runs of the same PWC-Net that only differ in the
random initialization. As shown in Table 1d, the two inde-
pendent runs lead to models that have close performances,
although not exactly the same.

Figures 2 and 3 provide more visual results by PWC-
Net on the MPI Sintel final pass and KITTI 2015 test sets.
PWC-Net can recover sharp motion boundaries in the pres-
ence of large motion, severe occlusions, and strong shadow
and atmospheric effects. However, PWC-Net tends to pro-
duce errors on objects with thin structures that rarely occur
in the training set, such as the wheels of the bicycle in the
third row of Figure 3.

2. Network Details

Figure 4 shows the architecture for the 7-level feature
pyramid extractor network used in our experiment. Note
that the bottom level consists of the original input images.
Figure 5 shows the optical flow estimator network at pyra-
mid level 2. The optical flow estimator networks at other

levels have the same structure except for the top level, which
does not have the upsampled optical flow and directly com-
putes cost volume using features of the first and second im-
ages. Figure 6 shows the context network that is adopted
only at pyramid level 2.

3. Screenshots of MPI Sintel and KITTI Public
Table

Figures 7-9 respectively show the screenshots of the MPI
Sintel final pass, KITTI 2015, and KITTI 2012 public tables
at the time of submission (November 15th, 2017). Among
all optical flow methods, PWC-Net is ranked Ist on both
MPI Sintel final and KITTI 2015, and 2nd on KITTI 2012.
Note that the 1st-ranked method on KITTI 2012, SDF [1],
assumes a rigidity constraint for the background, which is
well-suited to the static scenes in KITTI 2012. PWC-Net
performs better than SDF on KITTI 2015 that contains dy-
namic objects and is more challenging.

4. Learned Features

Figure 10 shows the learned filters for the first convo-
lution layer by PWC-Net and the feature responses to an
input image. These filters tend to focus on regions of dif-
ferent properties in the input image. After training on Fly-
ingChairs, fine-tuning on FlyingThings3D and Sintel does
not change these filters much.
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Figure 1. Left: PWC-Net outperforms all published methods on the MPI Sintel final pass benchmark in both accuracy and running time.
Right: PWC-Net reaches the best balance between size and accuracy among existing end-to-end CNN models.

‘ Chairs Sintel ~ Sintel ~ KITTI 2012 KITTI 2015 ‘ Chairs Sintel ~ Sintel ~ KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all Clean Final AEPE Fl-all AEPE
Full model 200 333 459 514 28.67% 1320 41.79% Full model 230 255 393 414 21.38% 1035 33.67%
No context 206 3.09 437 477 2535% 12.03 39.21% No context 2.48 282 409 439 2191% 10.82 34.44%
No DenseNet | 223 347 474 563 28.53% 14.02 40.33% No DenseNet | 2.54 272 4.09 491 24.04% 11.52 34.79%
Neither 222 315 449 546 28.02% 13.14 40.03% Neither 265 283 424 489 2452% 12.01 35.73%
(a) Trained on FlyingChairs. (b) Fine-tuend on FlyingThings3D after FlyingChairs.
‘ Chairs Sintel ~ Sintel ~ KITTI 2012 KITTI 2015 ‘ Chairs Sintel ~ Sintel ~ KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all Clean Final AEPE Fl-all AEPE Fl-all
Dilatedconv | 2.00 333 459 514 28.67% 1320 41.79% Runl| 2.00 333 459 514 28.67% 1320 41.79%
Plain conv 203 339 485 529 25.86% 13.17 38.67% Run 2 ‘ 200 333 465 481 27.12% 13.10 40.84%

(c) Dilated vs plain convolutions for the context network.

(d) Two independent runs result in slightly different models.

Table 1. More ablation experiments. Unless explicitly stated, the models have been trained on the FlyingChairs dataset.
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Figure 2. More PWC-Net results on the MPI Sintel final pass dataset.
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Figure 3. More PWC-Net results on KITTI 2015 test set. PWC-Net can recover sharp motion boundaries despite large motion, strong
shadows, and severe occlusions. Thin structures, such as the bicycle, are challenging to PWC-Net, probably because the training set has
no training samples of bicycles.
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Figure 4. The feature pyramid extractor network. The first image
(t =1) and the second image (¢ = 2) are encoded using the same
Siamese network. Each convolution is followed by a leaky ReLU
unit. The convolutional layer and the X2 downsampling layer at
each level is implemented using a single convolutional layer with
a stride of 2. ¢k denotes extracted features of image t at level [;
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Figure 6. The context network at pyramid level 2. Each convolu-
tional layer is followed by a leaky ReL U unit except the last (light
green) one that outputs the optical flow. The last number in each
convolutional layer denotes the dilation constant.
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Figure 5. The optical flow estimator network at pyramid level 2.
Each convolutional layer is followed by a leaky ReL.U unit except
the last (light green) one that outputs the optical flow.



Final = Clean

EPE all EPE matched EPE unmatched do-10 d10-60  d60-140 5010 s10-40  s40+
GroundTruth (1! 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PWC-Net 12 5.042 2.445 26.221 4636 2087 1475 0.799 2,936 31.070
DCFlow & 5119 2283 28228 4665 2108 1.440 1.052 3434 29351
FlowFieldsCNN 5363 2303 30.313 4718 2020 1.399 1032 3.065 32422
MR-Flow ©I 5376 2818 26.235 5.109 2395 1.755 0.908 3.443 32221
FTFlow @ 5.390 2268 30.841 4513 1.964 1.366 1.046 3322 31.936
S2F-IF ™ 5417 2549 28.795 4745 2198 1712 1.157 3.468 31.262
InterpoNet_ff I 5535 2372 31.296 4720 2018 1532 1.064 3.496 32633
PGM-C ©I 5591 2672 29.389 4975 2340 1791 1.057 3.421 33.339
RicFlow "2 5620 2765 28.907 5.146 2366 1679 1.088 3.364 33573
InterpoNet_cpm (1! 5627 2594 30.344 4975 2213 1640 1.042 3575 33.321

Figure 7. Screenshot of the MPI Sintel final pass public table. PWC-Net has the lowest average end-point error (EPE) among all evaluated
methods as of November 15th, 2017.

Evaluation ground truth |AII pixels v Evaluation area | All pixels v

Method Setting | Code | Fl-bg Fl-fg Fl-all Density . Runtime Environment Compare
1 PSPO 435%  1521%  6.15%  100.00% : 5min 1 core @ 2.5 Ghz (Matlab + C/C++) =]
ISE 5.40%  10.29%  6.22%  100.00% | 10min 1 core @ 3 Ghz (C/C++) O

A. Behl, 0. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous
Driving Scenarios?. International Conference on Computer Vision (ICCV) 2017,

: PRSM == icode  5.33%  13.40%  6.68% | 100.00% 3005 | 1 core @ 2.5 Ghz (C/C++) @
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015,
OSF+TC & D 576%  13.31%  7.02%  100.00% | 50min 1 core @ 2.5 Ghz (C/C++) O
M. Neoral and J. Sochman: Object Scene Flow with Temporal Consistency. 22nd Computer Vision Winter Workshop (CVWW) 2017.
SSF P 5.63%  1471%  7.44%  100.00% | Smin 1 core @ 2.5 Ghz (Matlab + C/C++) 0
Z. Ren, D. Sun, J. Kautz and E. Sudderth: Cascaded Scene Flow Prediction using Semantic Segmentation. International Cenference on 3D Vision (3DV) 2017.
SOSF L 5.42%  17.24%  7.39% | 100.00% = 55min | 1 core @ 2.5 Ghz (Matlab + C/C++) O
OSF ‘code  5.62% 18.92% 7.83% = 100.00% = 50min | 1 core @ 2.5 Ghz (C/C++) O
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
8 | PWCNet I S 9.66%  9.31%  9.60% | 100.00% | 0.03s | NVIDIA Pascal Titan X 8]
Mirrorflows . 8.93%  17.07%  10.29% . 100.00% . 11min 4 core @ 2.2 Ghz (C/C++) O
J. Hur and S. Reth: Mirrorflow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation. ICCV 2017.
10 FlowNet2 110.75%  8.75%  10.41% | 100.00% | 0.12s | GPU Nvidia GeForce GTX 1080 0
" SDF ©8.61%  23.01%  11.01% . 100.00% = TBA 1 core @ 2.5 Ghz (C/C++) O
M. Bai*, W. Luo*, K. Kundu and R. Urtasun: Exploiting Semantic Information and Deep Matching for Optical Flow. ECCV 2016.
UnFlow 110.15% | 15.93%  11.11% | 100.00% | 0125 | GPU @ 1.5 Ghz (Python + C/C++) 8]
S. Meister, J. Hur and S. Roth: UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss. AAAI 2018,
ESEsMS  (ESSE[S) | B48%  25.43%  11.30%  100.00% = 275 4 cores @ 3.5 Ghz (C/C++)
T. Taniai, S. Sinha and Y. Sato: Fast Multi-frame Stereo Scene Flow with Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) 2017.
" CNNF+PMBP | - 10.08% | 18.56% | 11.49% = 100.00% | 45min | 1 cores @ 3.5 Ghz (C/C++) @
MRFlow [ ‘code | 10.13%  22.51%  12.19% | 100.00% @ 8min | 1 core @ 2.5 Ghz (Python + C/C++) w]

J. Wulff, L. Sevilla-Lara and M. Black: Optical Flow in Mostly Rigid Scenes. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2017.

Figure 8. Screenshot of the KITTI 2015 public table. PWC-Net has the lowest percentage of error (Fl-all) among all optical flow methods,
only inferior to scene flow methods that use additional stereo input information.



Error threshold Evaluation area

Method Setting | Code | Out-Noc | Out-All | Avg-Noc Avg-All = Density | Runtime Environment i Compare

1 PRSM code| 2.46% | 4.23% | 0.7px = 1.0px | 100.00%  300s 1 core @ 2.5 Ghz (Matlab + C/C++) @]
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Medel. ijcv 2015.
‘2 VCSE @l 00 272%  4.84% | 0.8px | 1.3px  100.00% 3005 1 core @ 2.5 Ghz (Matlab + C/C++) 0
C. Vogel, S. Roth and K. Schindler: View-Consistent 3D Scene Flow Estimation over Multiple Frames. Proceedings of European Conference on Computer Vision. Lecture Notes in, Computer Science 2014.
(3 SPSStFl  [EESE | | 2.82%  5.61%  0.8px | 1.3px  100.00% 355 1 core @ 3.5 Ghz (C/C++) o
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation. Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014,
(4, seSRL BE 0 3.38%  10.06%  0.9px | 29px  100.00% 11s 1 core @ 3.5 Ghz (C/C++) o
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation. Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014,
5 OSF B code 3.47% 634%  1.0px  1.5px  100.00%  S0min 1 core @ 3.0 Ghz (Matlab + C/C++) @)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
(6 PRSME [ | 357% | 7.07%  0.9px  1.6px  100.00% 2005 4 cores @ 3.0 Ghz (Matlab + C/C++) @
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. International Conference on Computer Vision (ICCV) 2013.
|7 PCBP-Flow B | | 3.64%  8.28% 0.9px  22px  100.00% 3min 4 cores @ 2.5 Ghz (Matlab + C/C++) o
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
. 8 PRSceneflow [ | | 3.76%  7.39% 1.2px | 2.8px  100.00% 150sec 4 core @ 3.0 Ghz (Matlab + C/C++) o
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. International Conference on Computer Vision (ICCV) 2013.
9 SDF | 3.80% | 7.69% 1.0px = 23px 100.00%  TBAs | 1 core @ 2.5 Ghz (C/C++) 8]
M. Bai*, W. Luo*, K. Kundu and R. Urtasun: Exploiting Semantic Information and Deep Matching for Optical Flow. ECCV 2016.
10| MotionsLC (B | | 3.91%  10.56% 0.9px | 2.7px  100.00% 11s | 1 core @ 3.0 Ghz (C/C++) o
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
(11| PWCNet | L 422% . 8.10%  0.9px  1.7px 100.00%  0.03s | NVIDIA Pascal Titan X 8]
12 TBR | 424%  7.50% @ 0.9px  1.5px  100.00%: 1750s 4 cores @ 2.5 Ghz (Matlab + C/C++) o
113 UnFlow | L 428%  8.42% | 0.9px  1.7px 100.00% 0.12s | GPU @ 1.5 Ghz (Python + C/C++) @
S. Meister, J. Hur and S. Roth: UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss. AAAI 2018.
14 MirrorFlow | . 438% | 8.20%  1.2px  26px  100.00%  11min 4 core @ 2.2 Ghz (C/C++) ®]

J. Hur and S. Roth: MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation. ICCY 2017.

Figure 9. Screenshot of the KITTI 2012 public table. SDF [1] is the only optical flow method that has lower percentage of outliers in
non-occluded regions (Out-Noc) than PWC-Net. However, SDF assumes a rigidity constraint for the background, which is well-suited for
the static scenes in the KITTI 2012 set.
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(a) Learned filters

(c) Feature responses
Figure 10. Learned filters at the first convolutional layer of PWC-Net and the filter responses to an input image.



