
Supplemental
Filtering Environment Illumination for Interactive

Physically-Based Rendering in Mixed Reality

Soham Uday Mehta1,2 Kihwan Kim2 Dawid Pająk2 Kari Pulli3 Jan Kautz2 Ravi Ramamoorthi4
1University of California, Berkeley 2NVIDIA Corporation 3Light 4University of California, San Diego

1 Two-mode Sampling Algorithm
We propose a two-mode path-tracer that traces OptiX rays to intersect only virtual geometry, and screen-
space rays to intersect only real geometry. Our sampling algorithm is explained in Algorithm 1. For
brevity, we omit obvious function arguments. Position and normal are abbreviated to ‘pos’ and ‘n’; real
and virtual quantities are separated with suffixes ‘_r’ and ‘_v’ respectively.

The main blocks in the code are explained below:
Lines 3-12: The outer loop consists of 4 samples per pixel (spp) anti-aliasing, and we determine whether
a real or a virtual object is visible at the current sample and update the mask M.
Line 13: This loop computes 4 secondary samples for each of the 4 primary samples, so we compute a
total of 16 spp for each of direct and indirect illumination.
Lines 14-25: For direct illumination, we importance sample the environment map, as this gives the least
amount of noise for very little overhead. In line 15, an environment map importance sample is obtained,
and in lines 18-19, the functions trace_optix_sray and trace_ss_sray return hit distances (−1 if no hit)
for OptiX and screen-space shadow rays respectively.
Lines 26-40: For indirect illumination, we sample the cosine hemisphere for diffuse surfaces (real and
virtual) and a Phong lobe for glossy surfaces (virtual only). Line 27 samples the BRDF to produce a
sampling direction, and in lines 28-29, trace_optix_iray and trace_ss_iray return the indirect radiance
and hit distance for OptiX and screen-space indirect rays respectively. In line 28, for screen-space rays,
radiance from the secondary hit is computed by Lcam image look-up. In line 29, radiance from the
secondary hit for OptiX rays (that intersect only virtual surfaces) is computed by tracing a secondary
shadow ray to an environment map sample.

Although not shown in Algorithm 1, we also save the (average) world location, normal, virtual tex-
ture kV . We also record the minimum hit distance for direct and indirect illumination; these are required
for filtering. Since texture is multiplied with irradiance after filtering, we require the approximation
〈k ·E〉 ≈ 〈k〉 · 〈E〉, where 〈〉 denotes the mean of the quantity at a pixel.

This algorithm can be implemented in a single Optix pixel-shader kernel execution. However, Optix
kernels are optimized only for ray intersection testing, and thread divergence reduces speed of this one-
kernel approach significantly due to the screen-space ray-tracing component. Hence, we implement the
algorithm in two passes. A first Optix pass traces only the Optix rays, storing the intersection results in
a buffer. A second CUDA pixel shader pass traces the screen-space rays and also combines the result of
screen-space and Optix ray-tracing, per lines 21-26 and 32-42 of the pseudo-code.

1

Algorithm 1

1: for each pixel do
2: E_dir_r = E_dir_rv = E_ind_r = E_ind_rv = 0, M = 0

3: for i = 1 : 4 do . Anti-aliasing

4: is_real = false
5: {pos_v ,n_v ,depth_v} = trace_primary_ray_optix(...)
6: {pos_r ,n_r ,depth_r} = real_world_map(...)
7: if depth_v =−1 OR depth_r < depth_v then
8: is_real = true, M += 0.25

9: pos = pos_r, n = n_r

10: else
11: pos = pos_v, n = n_v

12: end if
13: for j = 1 : 4 do . Secondary Samples

14: // Direct Illumination

15: sample = get_importance_sample(...)
16: L_env = env_map[sample.xy]

17: ray_dir = {pos, sample_to_direction(sample.xy)}
18: hit_dist_v = trace_optix_sray(ray_dir)
19: hit_dist_r = trace_ss_sray(ray_dir)
20: if is_real and hit_dist_r =−1 then
21: E_dir_r += L_env * cos_theta / sample.pdf

22: end if
23: if hit_dist_r =−1 and hit_dist_v =−1 then
24: E_dir_rv += L_env * cos_theta / sample.pdf

25: end if
26: // Indirect Illumination

27: ray_ind = {pos, sample_BRDF(...)}
28: {hit_dist_v, L_ind_v} = trace_optix_iray(ray_ind)

29: {hit_dist_r, L_ind_r} = trace_ss_iray(ray_ind)

30: if hit_dist_r > 0 and hit_dist_v> 0 then
31: if hit_dist_r > hit_dist_v then
32: E_ind_rv += L_ind_v

33: else
34: E_ind_rv += L_ind_r

35: end if
36: end if
37: // Cases where dist=−1 not shown

38: if is_real and hit_dist_r > 0 then
39: E_ind_r += L_ind_r

40: end if
41: end for
42: end for
43: E_{dir|ind}_{r|rv} /= 16 // normalize quantities

44: end for

2

Our Pre-computed Importance Sampling, 1024 spp BRDF Importance Sampling, 4096 spp (Ground Truth)

Figure 1

1.1 Comparing our Importance Sampling to Ground Truth
As explained in Sec 5.2 in the paper, we pre-compute 4096 importance samples and render the image
by choosing samples from this pre-computed set. In Fig. 1, we compare a 1024 spp image rendered
with the pre-computed importance samples, to a ground truth image with 4096 spp BRDF importance
sampling. There is no visual difference, and the numeric (RMS, per channel) error is 10−5.

2 Derivation of equation 11
Here we prove eqn. 11. Taking the 1D Fourier transform of eqn. 10 gives:

Ê(Ωx) =
∫∫

Le(θ +κx)H(θ −θocc +λx) f (θ)e− jxΩx dθ dx

=
∫ (∫∫

Le(θ +κx)H(θ −θocc +λx)e− jxΩx e− jθΩθ dxdθ

)
f̂ (−Ωθ)dΩθ

=
∫

Ĝ(Ωx,Ωθ) f̂ (Ωθ)dΩθ

(1)

In the second step, we have used the inverse Fourier transform f (θ) =
∫

f̂ (−Ωθ)e− jθΩθ dθ , and the
Fourier transform of f satisfies f̂ (−Ωθ) = f̂ (Ωθ).

Since both Le and H are 1D functions sheared along constant slopes, their Fourier transforms are straight
lines through the origin. The spectrum of the product Ĝ(Ωx,Ωθ) is then a convolution of two lines of
different slopes. We now derive Ĝ explicitly:

Ĝ(Ωx,Ωθ) =
∫∫

Le(θ +κx)H(θ −θocc +λx)e− jxΩx e− jθΩθ dxdθ

=F {Le(θ +κx)}∗F {H(θ −θocc +λx)}

=
∫∫

L̂e(ωθ)δ (ωx−κωθ)

Ĥ(Ωθ −ωθ)δ (Ωx−ωx−λ (Ωθ −ωθ))e− jθoccΩθ dωx dωθ

(2)

3

We use the property
∫

f (x)δ (ax−b)dx = f (b/a)/|a| to simplify the integral of the product of two delta
functions. ∫

δ (ωx−κωθ)δ (Ωx−ωx−λ (Ωθ −ωθ))dωx = δ (Ωx−κωθ −λ (Ωθ −ωθ)) (3)

Substituting this into eqn. 2 and applying the delta function integral property once again, we get:

Ĝ(Ωx,Ωθ) = e− jθoccΩθ

∫
L̂e(ωθ)Ĥ(Ωθ −ωθ)δ (Ωx−κωθ −λ (Ωθ −ωθ))dωθ

=
e− jθoccΩθ

λ −κ
L̂e

(
−Ωx +λΩθ

λ −κ

)
Ĥ
(

Ωθ −
−Ωx +λΩθ

λ −κ

)
=

e− jθoccΩθ

λ −κ
L̂e

(
−Ωx−λΩθ

λ −κ

)
Ĥ
(

Ωx−κΩθ

λ −κ

) (4)

3 Verification of equation 17
In the main paper, Fig. 4 verifies eqn. 13 for a particular diffuse flatland set-up. Here, we provide a
similar verfication for eqn. 17, the glossy case. As shown in Fig. 2 below, eqn. 17 over-estimates the
true bandwidth, since we simply combine eqn. 16 and eqn. 13. However, this estimate works well for
filtering glossy surfaces as shown in Fig. 6.

4

x

θ

0 0.5 1
−π/2

0

π/2

(a) Li×V ×ρ

Ω

xΩ

θ

−5 0 5 10

5

0

−5

−10

(b) ||Ĝ||2

−5 0 5
0

0.5

1.0

Ωθ

||L ||e
2

||ρ||2

B

ρB

e

(c) ||L̂e||2, ||ρ̂||2

−4 −2 0 2 4
0

0.5

1.0

Ωx

||E
||2

^

Bx *

(d) ||Ê||2

Figure 2: Verification of eqn. 17 for the simple flatland setup of Fig. 3(c) with a glossy (n = 32) surface
with κ = 0.5 and one occluder at θocc = π/4 and z = 2 (cos2 θocc/z = 0.25), under high-frequency
illumination. (a) shows the product Li×V (x,θ) for this setup. (b) shows the power spectrum ||Ĝ||2 of
(a). In (c) we show the 1D power spectra of Le and ρ , showing bandlimits Be = 4 and Bρ = 3.5. (d)
shows the 1D power spectrum Ê of the surface irradiance, showing the true bandwidth B∗x ≈ 3. Eqn. 17
(B f = 1)gives Bx = 4+0.25×12 = 7. Our estimate is conservative but not tight.

5

