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In this supplementary document, we provide additional
details and results on the deep joint upsampling experiments
(Sec. 1) and PAC-CRF (Sec. 2).

1. Deep Joint Upsampling with PAC
Network architecture Here we provide details of our
network architectures used in the joint upsampling exper-
iments. Our networks have three branches: Encoder, Guid-
ance, and Decoder. The layers in each branch of the joint
depth upsampling networks are listed in Tab. 1. Since we
use each PACᵀ for 2× upsampling, 4×, 8×, 16× networks
requires 2, 3, 4 PACᵀ layers respectively. The final output
from the guidance branch is equally divided in the channel
dimension for use as adapting features for the PACᵀ layers
in the decoder. All CONV and PACᵀ layers use 5 × 5 fil-
ters, and are followed by ReLU except for the last CONV.
We use Gaussian kernels for K in all PACᵀ layers.

We design two variants of our model, standard and lite.
The standard variant has a simpler design, but has vary-
ing number of parameters for different upsampling factors,
and overall consume more memory than DJF [2], a previous
state-of-the-art approach on joint depth upsampling. For the
lite variant, we reduce the number of filters and make sure
the networks roughly match the number of parameters com-
pared to DJF.

Similar network architectures are also used for optical
flow upsampling. First layer of encoder and last layer in
decoder are modified to fit the two (u, v) channels in optical
flow instead of one channel in depth maps, i.e., using “C2”
instead of “C1” in Tab. 1.

Additional examples We provide more joint upsampling
visual results for depth (Fig. 1) and optical flow (Fig. 2).

2. Conditional Random Fields
Interpretations of the formulation The pairwise po-
tentials in Full-CRF is defined as ψp(li, lj |I) =
µ(li, lj)K(fi, fj), where the kernel function K has two
terms, appearance kernel and smoothness kernel:

standard lite

4× 8× 16× 4× 8× 16×

Encoder
C32 C32 C32 C12 C12 C8
C32 C32 C32 C16 C16 C16
C32 C32 C32 C22 C16 C16

Guidance
C32 C32 C32 C12 C12 C8
C32 C32 C32 C22 C16 C16
C32 C48 C64 C24 C36 C40

Decoder

P32 P32 P32 P12 P12 P8
P32 P32 P32 P16 P16 P16
C32 P32 P32 C22 P16 P16
C1 C32 P32 C1 C20 P16

C1 C32 C1 C16
C1 C1

#Params 183K 222K 260K 56K 56K 56K

Table 1: Network architectures for joint depth upsampling.
“C” stands for regular CONV, “P” stands for PACᵀ (the transposed
convolution variant of PAC), and the number after them represents
the number of output channels.
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In comparision, our pairwise potential uses (assuming
using Guassian kernel and a single pairwise term):

K ′(fi, fj) = W[pj − pi]K(fi, fj)
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There are two major differences:
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1. The smoothness kernel is now moved out of K and is
represented using filter W. It can still be initialized as
a Gaussian, but arbitrary filter is allowed to be learned.

2. The appearance kernel now operates on f directly
without the need of decomposing it into multiple parts,
and without the individual scaling factors (θα, . . . ).

Both changes give the pairwise potential more learning
capacity. Note that f can be the output of some other net-
work layers. A simple linear layer can learn appropriate
scaling factors, while in other cases a more complex net-
work may be preferred. For input with more than RGB
channels (e.g., 3D data with color, depth, normal, curva-
ture, etc.), hand-crafting and finding parameters for kernel
functions like Eq. 1 can be time-consuming and suboptimal,
and allowing the function to be learned from data in an end-
to-end fashion is particularly desirable.

Note that in Eq. 2, W is a 2D matrix, and the corre-
sponding pairwise potential is defined as

ψp(li, lj) = µ(li, lj)W[pj − pi]K(fi, fj), (3)

where µ(li, lj) is the compatibility matrix. Our final
pairwise potential, ψp(li, lj) = K(fi, fj)Wlj li [pj − pi] ,
can be seen as a further step of generalization, where W is
now a 4D tensor. Intuitively, this formulation allows the la-
bel compatibility pattern to be spatially varying across dif-
ferent pixel locations. Eq. 3 can be seen as a special case
factorizing the 4D tensor as the product of two 2D matrices.

Mean-field inference derivation We will start from the
mean-field update equation for general pairwise CRFs,
Eq. 4. Detailed derivation for it can be found in Koller and
Friedman [1, Chapter 11.5].
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Considering that we use multiple neighborhoods (with
different dilation factors) in parallel, the update equation
becomes:
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Substituting the pairwise potential with:

ψkp(li, lj) = Kk(fi, fj)W
k
lj li [pj − pi], (6)

the update rule becomes:
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Using Eq. 7 in an iterative fashion leads to the final up-
date rule of mean-field inference:
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Mean-field inference steps Tab. 2 shows how mIoU
changes with different mean-field steps. We use 5 steps for
all other experiments in the paper.

Table 2: Impact of MF steps in PAC-CRF. Validation mIoU
when using different number of MF steps in PAC-CRF.

Mean-field steps 1 3 5 7

mIoU 68.38 68.72 68.90 68.90
time 19 ms 49 ms 78 ms 109 ms

On the contribution of dilation Just like standard convo-
lution, PAC supports dilation to increase the receptive field
without increasing the number of parameters. This capabil-
ity is leveraged by PAC-CRF to allow long-range connec-
tions. For a similar purpose, Conv-CRF applies Gaussian
blur to pairwise potentials to increase the receptive field.
To quantify the improvements due to dilation, we try an-
other baseline where we add dilation to Conv-CRF. The
improved performance (+2.13/+1.57 → +2.50/+1.91) val-
idates that dilation is indeed an important ingredient, while
the remaining gap shows that the PAC formulation is essen-
tial to the full gain.
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Figure 1: Additional examples of joint depth upsampling. Samples are from the test set of NYU Depth V2. Zoom in for full details.
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Figure 2: Additional examples of joint optical flow upsampling. Samples are from the val set of Sintel. Zoom in for full details.


