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Human and camera motion in global space

Input video

Figure 1. Human and camera motion reconstruction from in-the-wild videos: given a video of multiple people, PACE is able to
reconstruct the motions of all humans and the camera in a coherent global space. To achieve this, we leverage the benefits of both camera
localization methods and human motion priors, exploiting the complementary nature of these approaches, i.e., dynamic foreground motion
vs. static background features, to address each other’s limitations.

Abstract

We present a method to estimate human motion in a
global scene from moving cameras. This is a highly chal-
lenging task due to the coupling of human and camera mo-
tions in the video. To address this problem, we propose a
joint optimization framework that disentangles human and
camera motions using both foreground human motion pri-
ors and background scene features. Unlike existing meth-
ods that use SLAM as initialization, we propose to tightly
integrate SLAM and human motion priors in an optimiza-
tion that is inspired by bundle adjustment. Specifically, we
optimize human and camera motions to match both the ob-
served human pose and scene features. This design com-
bines the strengths of SLAM and motion priors, which leads
to significant improvements in human and camera motion
estimation. We additionally introduce a motion prior that is
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suitable for batch optimization, making our approach sig-
nificantly more efficient than existing approaches. Finally,
we propose a novel synthetic dataset that enables evaluat-
ing camera motion in addition to human motion from dy-
namic videos. Experiments on the synthetic and real-world
RICH datasets demonstrate that our approach substantially
outperforms prior art in recovering both human and cam-
era motions.

1. Introduction

Jointly estimating global human and camera motion from
dynamic RGB videos is an important problem with numer-
ous applications in areas such as robotics, sports and mixed
reality. However, it is a very challenging task because the
observed human and camera motions in the video are en-
tangled. Estimating human motion by itself from videos is
highly under-constrained since subject and camera motion
are interchangeable. Analogously, camera motion estima-
tion is more challenging in dynamic scenes due to spurious
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correspondences. Finally, pure monocular approaches can
only estimate camera trajectories up to scale.

There are only a few works that address the problem
of global pose estimation [55, 106, 107]. These methods
leverage the insight that the global human root trajectory is
correlated with the local body movements; e.g., observing
a running motion is indicative of forward motion. Hence,
they suggest that global root trajectories can be estimated
by exploiting learned motion priors [107] or by enforcing
physics-based constraints on the reconstructed human mo-
tion [55, 106]. While this idea can help to estimate global
human trajectories, motion priors or physical constraints
are not enough to fully resolve the ambiguity in the map-
ping from local motion to global trajectories, especially
under root rotations. Others utilize SLAM methods (e.g.,
COLMAP) to estimate camera poses [63, 105], then keep
the camera poses fixed and estimate the global scale. How-
ever, in-the-wild videos often contain moving objects which
can degrade the camera pose localization and subsequently
affect the human motion estimates.

In this paper, we propose a novel approach, called PACE
(Person And Camera Estimation), to tackle the above prob-
lems. We formulate the problem as a global optimization
and jointly optimize human and camera motions, leverag-
ing a bundle adjustment objective to match both human pose
and background scene features. In this way, the SLAM al-
gorithm uses mostly static scene features, that do not corre-
spond to human motion. Simultaneously, the human motion
prior helps correct inaccurate camera trajectories that are
incompatible with the local body movements, and informs
about the global scale based on human motion statistics. We
show that this formulation provides robustness to inaccurate
initial human or camera motion estimates.

A further contribution lies in the human motion prior
itself. Commonly used human priors e.g., HuMoR [86]
are typically autoregressive and become prohibitively slow
when incorporated in a per-frame optimization, in particular
for long motion sequences. In this work, we show that neu-
ral motion field (NeMF [30]) can be used to design a par-
allel motion prior that drastically improves computational
efficiency. We divide the entire sequence into overlapping
clips and maximize the likelihood of the human motion un-
der the prior. This results in a significantly more efficient
implementation without compromising reconstruction qual-
ity. Notably, the parallel motion prior allows the runtime of
PACE to grow sub-linearly w.r.t. the sequence length in con-
trast to the linear rate in prior work.

Since it is difficult to obtain ground-truth human and
camera poses for in-the-wild videos, we also propose a new
synthetic dataset for benchmarking human and camera mo-
tion estimation from dynamic videos called the Human and
Camera Motion (HCM) dataset. It is the first dataset that
provides ground-truth human and camera motion informa-

tion for this task. We will make the dataset publicly avail-
able to facilitate research in this direction.

We evaluate PACE on two datasets: the newly proposed
synthetic HCM dataset and the RICH dataset [34], which
contains a moving camera with ground truth 3D human pose
and shape. Results show that our method substantially out-
performs state-of-the-art (SOTA) approaches in accurately
recovering human motions from dynamic cameras. No-
tably, our method also significantly improves camera mo-
tion estimation over SOTA SLAM algorithms for this task,
which demonstrates the advantage of our global optimiza-
tion framework. Additionally, we conduct extensive abla-
tion studies to validate the impact of various design choices
on performance.

In summary, our contributions are as follows:
• We present a novel approach for precise global human

and camera motion estimation from dynamic cam-
eras, which tightly integrates human motion priors
and SLAM into a unified optimization framework that
leverages both human pose and scene information.

• We propose a parallel motion prior optimization
scheme, which significantly improves efficiency with-
out sacrificing accuracy, and allows the runtime to
grow sub-linearly w.r.t. the sequence length.

• We introduce HCM, a synthetic dataset for bench-
marking global human and camera motion estimation.

• Our method outperforms the SOTA methods signifi-
cantly in recovering both human and camera motions,
achieving 52% and 74% improvements respectively,
which fully demonstrate the synergy of our unified ap-
proach.

2. Related Work
Camera-Space Human Pose Estimation. Due to the dif-
ficulty in monocular depth estimation, most existing meth-
ods estimate human poses in the coordinate frame centered
around the pelvis of the human body [3, 7, 10–12, 24, 41,
43, 44, 48, 50–54, 62, 65, 75–78, 80, 86, 88, 91, 92, 94,
100, 103, 113, 117, 122, 128]. These methods adopt an or-
thographic camera projection model and ignore the absolute
3D translation of the person with respect to the camera. To
overcome this limitation, recent methods estimate human
meshes in the camera coordinates [37, 40, 58, 63, 82, 85,
89, 101, 114, 116, 118]. Some methods use an optimization
framework to recover the absolute translation of the per-
son [70–72, 87, 115] or exploit various scene constraints to
improve depth prediction [99, 114]. Others employ physics-
based constraints to ensure the physical plausibility of the
estimated poses [13, 21, 38, 89, 101, 112], use limb-length
constraints [36] or approximate depth using the bounding
box size [40, 74, 118]. Several approaches employ inverse
kinematics to estimate human meshes with absolute trans-



lations in the camera coordinates [37, 58]. Heatmap-based
representations have also been used to directly predict the
absolute depths of multiple people [19, 93, 126]. A few
methods learn to also predict the camera parameters from
the image, which are used for absolute pose regression in
the camera coordinates [49, 60, 116]. While these methods
achieve impressive results for camera-relative pose estima-
tion, they fail to decouple human and camera motions from
dynamic videos, and therefore cannot recover global human
trajectories as our method does.

Global Human Pose Estimation. The majority of cur-
rent methods for estimating 3D poses in world coordinates
rely on synchronized, calibrated, and static multi-view cap-
ture setups [6, 14–16, 18, 33, 42, 84, 85, 123, 124, 127].
Huang et al. [8] use uncalibrated cameras but still assume
time synchronization and static camera setups. Hasler et
al. [27] handle unsynchronized moving cameras but assume
multi-view input and rely on an audio stream for synchro-
nization. Recently, Dong et al. [17] proposed to recover 3D
poses from unaligned internet videos of different actors per-
forming the same activity from unknown cameras, assum-
ing that multiple viewpoints of the same pose are available
in the videos. Luvizon et al. [67] estimate the global hu-
man poses of multiple people using the scene point cloud
for static cameras. In contrast, our approach estimates hu-
man meshes in global coordinates from monocular videos
recorded with dynamic cameras. Several methods rely on
additional IMU sensors or pre-scanned environments to re-
cover global human motions [25, 79, 98], which is imprac-
tical for large-scale adoption. Another line of work has re-
cently focused on estimating accurate human-scene inter-
action [29, 34, 66, 106]. Recent work uses human motion
priors [107] and physics-based constraints [55, 106] to de-
couple human and camera motions but does not consider
background scene features, which limits performance on
in-the-wild videos. Liu et al. [63] obtain global human
pose using SLAM and convert the pose from the camera
to global coordinates. BodySLAM [31] uses features of
both humans and scenes, but it only demonstrates results
of a single unoccluded person slowly walking in an indoor
scene. Along this line, a recent work [105] obtains initial
camera trajectories with SLAM and optimizes the scale of
the camera trajectories using a human motion prior [86]. In
contrast, our approach tightly integrates SLAM and human
motion priors into a joint optimization framework, where
the entire SLAM camera trajectories (not only scale) are
optimized jointly to match observed human pose and back-
ground scene features. This not only leads to more accurate
human trajectory estimation but also improves full camera
trajectory estimation over SLAM significantly, which has
not been achieved by prior work. Additionally, our parallel
motion optimization scheme also makes our approach sub-
stantially (50 times) faster than [105] for a sequence of 1000

frames. Our parallel scheme also allows PACE’s time cost
to grow sub-linearly w.r.t. sequence length in contrast to the
linear rate of [105].

Human Motion Prior. There has been a significant amount
of research on 3D human dynamics for various tasks, in-
cluding motion prediction and synthesis [4, 5, 9, 20, 23,
28, 39, 61, 69, 81, 83, 97, 104, 108–110]. Recently, hu-
man pose estimation methods have started to incorporate
learned human motion priors to help resolve pose ambi-
guity [48, 86, 121]. Motion-infilling approaches have also
been proposed to generate complete motions from partially
observed motions [26, 32, 45, 46]. Diffusion models [90]
have also been used as priors for motion synthesis and infill-
ing [35, 96, 111, 119]. Recently, He et al. [30] proposes the
neural motion field (NeMF), which expresses human mo-
tion as a time-conditioned continuous function and demon-
strates superior motion synthesis performance. Our ap-
proach extends NeMF by leveraging it as a motion prior for
human pose estimation. Additionally, our proposed parallel
motion optimization scheme enables efficient optimization
of human motions.

3. Method

The input to PACE is an in-the-wild RGB video
I={I1, · · · , IT } with T frames captured by a moving cam-
era. Our goal is to estimate both the camera motion and the
motion of all visible people in the video in a global world
coordinate system. The camera motion {Rt,Tt}Tt=1 con-
sists of the camera rotation Rt ∈ R3×3 and translation
Tt ∈ R3 for every timestep t in the video. The global
motion Qi={Qi

t={Φi
t, τ

i
t , θ

i
t, β

i}}eit=si for person i con-
sists of the global translation τ it ∈ R3, global orientation
Φi

t ∈ R3×3, and the body pose parameters θit ∈ R23×3

for all time steps t ∈ {si · · · ei}, where si and ei corre-
spond to the first and last frame in which person i is vis-
ible. The body shape parameters βi are shared across all
time steps. We use the SMPL body model [64] to obtain the
articulated body meshes Vi={V i

t }e
i

t=si from Qi. Specifi-
cally, SMPL consists of a linear function M(Φ, τ, θ, β) that
maps the body motion Qi

t=(Φi
t, τ

i
t , θ

i
t, β

i
t) to a triangulated

body mesh V i
t ∈ R6890×3 with 6890 vertices. In the rest of

this paper, we drop the superscript i from all variables for
brevity but always assume the visibility of multiple people.

Our key insight is to harness the complementary proper-
ties of SLAM and human motion priors. The human mo-
tion prior can be used to explain foreground human motion,
which typically is dynamic and therefore has been treated
as unwanted noise in existing SLAM algorithms. Leverag-
ing the motion prior in a joint optimization regularizes the
camera trajectories to be in agreement with plausible human
motion and provides information about the global scale. On
the other hand, SLAM leverages mostly static background
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Figure 2. PACE overview. Given a video with dynamic human and camera motions, we first use off-the-shelf methods to obtain initial
2D human pose, 3D human motion, and camera motions. We propose a unified optimization framework that optimizes the global human
motions and full camera trajectories to reduce 2D pose errors, increase motion likelihood under human motion prior, and match background
features. The final output is coherent human and camera motion in global space.

features, which provide information about the camera mo-
tion and can be leveraged to resolve ambiguity in the motion
space of the human motion priors.

We introduce a novel unified framework, illustrated in
Fig. 2, that simultaneously recovers the camera and human
motion using a joint optimization objective (Sec. 3.3). Since
this is a highly ill-posed problem, we exploit data-driven
models to initialize our objective (Sec. 3.1) and use human
motion priors to constrain the solution space (Sec. 3.2).

3.1. Initialization

We start by obtaining bounding box sequences for all vis-
ible subjects using an off-the-shelf multi-object tracking
and re-identification algorithm [125]. We then estimate
body pose information for each detected bounding box us-
ing the state-of-the-art method HybrIK [58]. HybrIK pro-
vides body poses in the camera coordinate frame which we
represent as Q̂c

t=(Φ̂c
t , τ̂

c
t , θ̂t, β̂t). The super-script c corre-

sponds to the camera coordinate frame. Note that the local
body pose θt and shape βt are agnostic to camera motion.
For videos recorded with dynamic cameras, the estimated
translation τ̂ ct and root orientation Φ̂c

t must be transformed
from camera coordinates to a consistent world coordinate
frame. This requires knowledge of the per-frame camera-
to-world transforms {Rt, Tt}Tt=1. For this, we leverage a
data-driven SLAM method, namely DROID-SLAM [95],
which uses the information of the static scene to estimate
per-frame camera-to-world transforms {R̂t, T̂t}Tt=1. SLAM
methods, however, provide camera translations T̂t up to
scale. Hence, at this stage, we only use the camera ro-
tation information to obtain a person’s root orientation in
the world coordinate frame: Φ̂t = R̂−1

t Φ̂c
t . We then use

a neural network similar to [30, 56] to estimate the initial
global root translations {τ̂t}et=s from the local pose param-
eters {Φ̂t, θ̂t}et=s. We use a single value for shape param-
eters β for each person that we initialize with the average

of the per-frame estimates from HybrIK i.e., β̂=
∑e

t=s β̂t

e−s .

This forms our initial estimate of the global human motion
Q̂={Q̂t=(Φ̂t, τ̂t, θ̂t, β̂)}et=s in the world coordinate frame.
In the remainder of this paper, our goal is to refine these ini-
tial estimates via human motion priors and the background
scene features, while recovering accurate global camera tra-
jectories.

3.2. Human Motion Prior

Our goal is to develop a human motion prior that ensures
that the estimated human motion is plausible and also helps
constrain the solution space during joint optimization of hu-
man and camera motion. For this, we use a variational au-
toencoder (VAE) [47], which learns a latent representation
z of human motion and regularizes the distribution of the la-
tent code to be a normal distribution. We want the decoder
D of the VAE to be non-autoregressive for faster sampling
while not sacrificing accuracy. This is important because we
want to use the motion prior in an iterative optimization, and
auto-regressive motion priors (e.g., HuMoR [86]) are pro-
hibitively slow when processing large motion sequences. In
contrast, a non-autoregressive decoder can be evaluated for
the entire sequence in parallel. To this end, we adopt a Neu-
ral Motion Field (NeMF) [30] based decoder to represent
body motion as a continuous vector field of body poses via
a NeRF-style MLP [73]. In Sec. 3.3, we show that NeMF
can be extended to a parallel motion prior that enables effi-
cient optimization. We follow [30] and only model the local
body motion via the prior. Specifically, D is an MLP that
takes the latent codes {zΦ, zθ} and a time step t as input
and produces the orientation Φ̂t, local body pose θ̂t, and
joint contacts κ̂t for a given time step:

D : (t, zΦ, zθ) → (Φ̂t, θ̂t, κ̂t), (1)

where zΦ and zθ control the root orientation Φ and the local
body pose θ of the person, respectively. For a given pair of
zΦ and zθ the entire sequence can be sampled in parallel by
simply varying the values of t. To incorporate the motion



priors during global optimization, we optimize the latent
codes {zΦ, zθ} instead of directly optimizing the local body
motion {Φt, θt}et=s. We initialize the latent codes using the
pre-trained encoders of the VAE; i.e., zΦ=EΦ({Φ}et=s) and
zθ=Eθ({θ}et=s). We refer to [30] for training details.

Global Translation Estimation. We use a fully convolu-
tional network to generate the global translation τ it of the
root joint, based on the local joint positions, velocities, ro-
tations, and angular velocities as inputs. All quantities can
be computed from joint rotations. Our approach, which is
similar to [57, 129], takes into account the fact that the sub-
ject’s global translation is conditioned on its local poses.
In order to avoid any ambiguity in the output, we pre-
dict the velocity τ̇t rather than τt directly, and then inte-
grate the velocity using the forward Euler method to obtain
τt+1=τt+ τ̇t∆t. We also predict the height of the root joint
using the same convolutional network to prevent any cumu-
lative errors that could cause the subject to float above or
sink into the ground.

Since changing the latent codes {zΦ, zθ} also impacts
the global translations τt, for simplicity, we refer to the
mapping from latent codes to global human motion as

P : (t, zΦ, zθ) → (Φ̂t, θ̂t, τ̂t). (2)

3.3. Global Optimization

Here we detail the proposed optimization formulation for
the joint reconstruction of global human and camera mo-
tion. Our goal is to optimize the latent code z={zΦ,
zθ} and camera-to-world transforms {Rt, sTt} with correct
scale s. Note that SLAM methods assume the camera at the
first frame (t = 0) to be at the origin. To align all coordinate
frames, we also optimize the camera height h0 and orienta-
tion R0 for the first frame. More specifically, we optimize
the following objective function:

min
β,z

s,h0,R0,{Rt,Tt}T
t=1

Ebody + Escene + Ecamera, (3)

where

Ebody = E2D + Eβ + Epose + Eb
smooth

+ EVAE + Econsist,

Escene = Econtact + Eheight,

Ecamera = EPCL + Ec
smooth.

The error term Ebody ensures that the reconstructed hu-
man motion is plausible and agrees with the image evi-
dence. E2D measures the 2D reprojection error between the
estimated 3D motion and 2D body joints xt obtained using
a state-of-the-art 2D joint detector [102]:

E2D =

N∑
i=1

ei∑
t=si

ωtζ(Π(R0RtJ
i
t+sTt+

 0
0
h0

) − xi
t). (4)

Here ωt are the body joint detection confidences, ζ is the ro-
bust Geman-McClure function [22], Π corresponds to per-
spective projection using the known camera intrinsic matrix
K, and J i

t corresponds to 3D body joints that are obtained
from the SMPL body mesh via a pre-trained regressor W:

J i
t = W(M(P(z, t), βi

t)). (5)

The error term Epose penalizes large deviations of the local
body pose θ̂t from the HybrIK predictions, Eβ is prior over
body shapes [43], and EVAE a motion prior loss defined as:

EVAE = −
N∑
i

logN (ziΦ;µΦ({Φi
t}), σΦ({Φi

t})) +

logN (ziθ;µθ({θit}), σθ({θit})).

(6)

The term Econtact encourages zero velocities for joints that
are predicted to be in contact κ̂t with the ground plane:

Econtact =

N∑
i=1

ei∑
t=si

κ̂i
t||J i

t − J i
t−1||2, (7)

where κ̂i
t ∈ R24 is the contact probability output from the

motion prior decoder D for each joint. Eheight prevents in-
contact joints from being far away from the ground plane:

Eheight = κ̂i
tmax(|J i

t | − δ, 0). (8)

The ground plane is kept fixed and assumed to be xy-
plane aligned with +z-axis as the up direction. This param-
eterization allows us to optimize all variables in this consis-
tent coordinate frame without the need to optimize an addi-
tional ground plane equation.

The error term Ecamera in Eq. (3) ensures that the re-
constructed camera motion is smooth and consistent with
the static scene motion. Since DROID-SLAM is trained on
videos with static scenes only, its estimates can be noisy due
to the dynamic humans present in our target videos. Hence,
we propose to use the point cloud recovered by SLAM as a
direct constraint in our optimization, instead of directly re-
lying on the camera predictions. To ensure that the points
on dynamic humans do not influence camera reconstruction,
we remove all points that lie inside the person bounding
boxes. The term EPCL then computes the re-projection er-
ror of the pruned point cloud similar to Eq. (4). The term
Eb

smooth ensures that the optimized parameters are tempo-
rally smooth.

We empirically chose the weights of different error terms
in our objective and provide more details in the appendix
(Table 5).
Parallel Motion Optimization. Our specific choice of hu-
man motion prior, NeMF [30], allows us to design a parallel
motion prior that is suitable for batch optimization, which



Stages Opt. Variables Loss Functions Description

Stage-1 s, h0, R0, β E2D + Eβ camera traj. transform

Stage-2 s, h0, R0, β, zΦ Ebody + Escene + global human orientation

Stage-3 s, h0, R0, β, zΦ, zϕ Ebody + Escene + local body pose

Stage-4 β, zΦ, zϕ, Rt, Tt Ebody + Escene + Ecamera + full camera trajectory

Table 1. Optimization stages.

significantly enhances the efficiency of our approach. Con-
cretely, we split a motion sequence into overlapping win-
dows of T=128 frames. We use 16 overlapping frames to
help reduce jitter and discontinuities across windows. Di-
viding motions into overlapping windows also allows the
latent codes of the prior to model a fixed length of motion.
Since our motion prior is non-autoregressive, we can opti-
mize all windows in parallel. To ensure smooth transitions
between clips we additionally compute a batch consistency
term Econsist, defined as the ℓ2 distance between 3D joints
J i
t of overlapping frames.

Multi-Stage Optimization. The task of reasoning about
the camera and human motion from a video is inherently
ill-posed, as optimizing both camera motion Rt.Tt and mo-
tion prior latent codes {zΦ, zθ} simultaneously can result in
local minima. To address this challenge, we adopt a multi-
stage optimization pipeline, with different parameters opti-
mized in different stages to avoid bad minima. After ob-
taining initial camera motion results from SLAM and hu-
man motion results from the motion prior, the optimization
process is carried out in four stages, as outlined in Table 1.
In Stage-1, we optimize only the first frame camera param-
eters (R0, h0), camera scale s, and the subjects’ body shape
β based on the initial camera and human motion. In Stage-
2, we incorporate the global orientation latent code zΦ to
jointly adjust the subjects’ global orientation and camera.
In Stage-3, we optimize the local body motion zθ as well.
Finally, in Stage-4, we jointly optimize the full camera tra-
jectory along with zΦ and zθ. Each stage is run for 500
steps. The λ coefficients used for each objective term can
be found in the appendix (Table 5).

Occlussion Handling. Our approach offers a natural solu-
tion for occlusions due to subjects in the scene. We achieve
this by excluding error terms for occluded frames during
optimization and solely optimize the latent codes {zΦ, zθ}
for visible frames. After optimization, we sample motions
from the motion prior to infill the missing poses which will
be consistent with their visible neighbors.

4. Experiments

We design our experiments to answer the following ques-
tions: (1) Can our unified approach, PACE, achieve SOTA
human motion estimation performance for dynamic videos?
(2) Can PACE improve camera motion estimation of a
SOTA SLAM method? (3) What are the critical compo-
nents in PACE that significantly impact performance?

Figure 3. Some examples of our proposed HCM dataset. (ani-
mated figure, see in Adobe Acrobat).

4.1. Datasets and Metrics

HCM Synthetic Dataset. Currently, available datasets that
provide dynamic videos (e.g., [63, 98]) for evaluating hu-
man pose and shape estimation have been primarily focused
on evaluating the accuracy of local body estimation while
neglecting the importance of global human motion estima-
tion. Furthermore, evaluation datasets for simultaneous lo-
calization and mapping (SLAM) algorithms do not feature
humans and do not provide human motion information. As
such, there is a need to create a comprehensive dataset that
provides accurate labels for global human and camera mo-
tion. To address this need, we have created the HCM (Hu-
man and Camera Motion) dataset, which enables the evalu-
ation of both human and camera motion. We use the char-
acters from the RenderPeople [1] dataset and animate them
in the scenes obtained from Unreal Engine marketplace [2].
We obtain motion capture (MoCap) clips from the AMASS
dataset [68]. For camera trajectory, we designed heuristics
to replicate typical camera movements observed in every-
day videos and professional movies. Final images were
rendered using NVIDIA Omniverse. Additional informa-
tion regarding the data generation process can be found in
the appendix (Sec. A.3). Some example sequences can be
seen in Fig 3.

RICH Dataset. The RICH dataset [34] was collected us-
ing a total of 7 static and one moving camera. While the
ground truth poses are available for the persons and static
cameras, the ground truth poses of the moving camera are
not available. As such, we only assess the performance of
global human motion estimation using this dataset.

Metrics. We report various metrics for both human and
camera motion, with an emphasis on those that compute the
error in world coordinates. Regarding human motion eval-
uation, the W-MPJPE metric is used to report MPJPE after
aligning the first frames of the predicted and ground truth
data. The WA-MPJPE metric is used to report MPJPE after
aligning the entire trajectories of the predicted and ground
truth data using Procrustes Alignment. Additionally, the



Human Motion Estimation Camera Motion Estimation
Methods W-MPJPE ↓ WA-MPJPE ↓ W-RJE ↓ PA-MPJPE ↓ ACCEL ↓ ATE ↓ ATE-S ↓ CAM ACCEL ↓
Initialization 1116.3 650.0 1083.1 67.6 54.3 155.8 1670.7 17.1

Stage-1 (cam. traj. transform) 1116.3 650.0 1083.1 67.6 54.3 155.8 643.0 17.1
Stage-2 (+ global human orientation) 937.0 488.2 901.9 67.6 54.6 155.8 504.9 18.1
Stage-3 (+ local body pose) 904.5 478.2 877.9 66.6 17.6 155.8 501.3 17.3
Stage-4 (+ full cam. traj.) w/o EPCL 870.1 487.4 844.1 67.6 53.2 166.4 505.0 15.4

Stage 2-4 978.6 566.2 939.7 89.9 16.1 164.0 550.6 19.7
Stage 3-4 953.2 490.0 923.7 68.8 18.4 160.1 523.2 17.1

HybrIK [58] + SLAM [95] 1137.3 780.3 1100.9 67.6 51.3 155.8 1670.7 17.1
GLAMR [107] 1977.6 653.8 1958.0 86.0 33.4 1295.2 1714.6 282.9
SLAHMR [105] 888.9 483.5 862.2 69.9 14.9 155.8 506.5 17.6
PACE (Ours) 861.2 478.3 839.5 65.3 16.7 137.5 459.7 16.2

Table 2. State-of-the-art comparison and ablation studies on the HCM dataset.

Methods W-MPJPE ↓
WA-MPJPE ↓ W-RJE ↓ PA-MPJPE ↓ ACCEL ↓
HybrIK + SLAM 1073.1 404.4 1066.2 46.7 20.2
GLAMR 653.7 365.1 646.6 79.9 107.7
SLAHMR 571.6 323.7 400.5 52.5 9.4
PACE 380.0 197.2 370.8 49.3 8.8

Table 3. State of the art results on RICH dataset

PA-MPJPE metric is employed to report the MPJPE error
after aligning every frame of the predicted and ground truth
data. We also include an ACCEL metric that measures the
joint acceleration difference between ground-truth and pre-
dicted human motion. For camera motion evaluation, we
follow SLAM methods and report the average translation
error (ATE) after rigidly aligning the camera trajectories,
the average translation error without scale alignment (ATE-
S), and the CAM ACCEL camera acceleration error. The
ATE-S metric provides a more accurate reflection of inac-
curacies in the captured scale of the scene.

4.2. Comparison with State-of-the-Art Methods

Human Motion Estimation. We compare PACE with
the following baselines on the HCM and RICH datasets:
GLAMR [107], SLAHMR [105], SOTA global hu-
man and camera estimation approaches; HybrIK [58] +
SLAM, which estimates the camera motions using DROID-
SLAM [95] and then transforms the human motion esti-
mated by HybrIK from camera to world space. As observed
in Tables 2 and 3, PACE outperforms GLAMR, SLAHMR
and HybrIK in human motion estimation significantly. In
particular, PACE drastically reduces the global pose errors,
i.e., decreasing W-MPJPE by 24% and WA-MPJPE 27%
on the HCM dataset, and reducing W-MPJPE by 40% and
WA-MPJPE by 52% on the RICH dataset. PACE can also
recover accurate local human pose, as indicated by better
PA-MPJPE on HCM and competitive PA-MPJPE on RICH.
Additionally, PACE estimates much smoother motion by re-
ducing the acceleration error (ACCEL) by 50% on HCM
and 56% on RICH.
Camera Motion Estimation. The new HCM dataset pro-
vides ground-truth camera trajectories that allow us to

benchmark camera motion estimation. Table 2 shows that
PACE substantially improves the camera motion estimated
by a SOTA SLAM algorithm, DROID-SLAM. Specifically,
PACE reduces the camera translation error metric, ATE, by
12% with scale alignment and 74% without scale alignment.
The above results show that our unified optimization ap-
proach can improve both human and camera motion esti-
mation significantly, which answers the first two questions
raised at the beginning of this section.
Qualititative Comparison. We also provide qualitative re-
sults to visualize the estimated human and camera motions
in Fig. 4. Please also refer to the project page for more qual-
itative results.
Runtime. It is worth noting that the runtime of our opti-
mization framework increases sub-linearly w.r.t. sequence
length since we can optimize multiple chunks of the motion
sequence simultaneously thanks to the parallel motion prior.
On average, we can process sequences that are 1000 frames
long in less than eight minutes. Notably, SLAHMR [105]
reports a runtime of 40 minutes for 100 frames, and this
increases linearly with sequence length.

4.3. Ablation Study

We also conduct extensive ablation studies to investigate the
effect of each optimization stage and important designs. As
shown in Table 2, we compare the performance of PACE
after each optimization stage: from stage-1 to stage-4, we
gradually add variables to the global optimization – camera
trajectory transformation, global human orientation, local
body pose, and full camera trajectory (see Sec. 3.3) We ob-
serve that gradually adding additional variables to the op-
timization improves the human motion estimation results.
We also try combining stages 2-4 and stages 3-4 to show the
importance of multi-stage optimization. Combining these
stages drops the performance compared to our 4-stage ap-
proach. We also compare PACE against the variant not us-
ing the point cloud loss (Stage-4 w/o EPCL) in Table 2. We
find that both human and camera motion estimation perfor-
mance deteriorates when we do not use the point cloud loss,

https://nvlabs.github.io/PACE/
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Figure 4. Qualitative results on HCM (row 1), RICH (row 2), and in-the-wild videos (rows 3 & 4). PACE can estimate more accurate
human and camera motion than the SOTA, GLAMR [107], for both datasets and in-the-wild videos.
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Figure 5. Comparison of camera motion estimation on HCM
dataset. PACE estimates more accurate camera motions compared
to GLAMR.

which shows that it is essential to use the background scene
features in our unified optimization framework. During our
experiments, we also evaluated the case when all variables
are optimized from the beginning without stagewise opti-
mization. We found that the optimization does not converge
at all in this case.

5. Conclusion

We presented PACE, a novel approach for accurate global
human and camera motion estimation from dynamic cam-

eras. Our approach leverages the complementary benefits
of human motion priors and SLAM methods and integrates
them into a unified optimization framework that jointly op-
timizes human and camera motions. We also introduced a
new synthetic dataset called HCM for benchmarking global
human and camera motion estimation. We demonstrated
that our approach achieves superior performance as com-
pared to the state-of-the-art methods in accurately recover-
ing both human and camera motion.

Although our method can refine camera trajectories ob-
tained from SLAM, it may not be effective in scenarios
where SLAM methods fail catastrophically. We believe that
the integration of physics-based constraints to prevent cam-
era errors from overriding human motion priors would be
an interesting future direction. Another limitation of our
method is the assumption of a planar ground caused by the
lack of scene annotation in the AMASS dataset. Also, while
our proposed optimization is efficient, it is not real-time and
requires batch processing to exploit future and past tempo-



Methods W-MPJPE ↓ WA-MPJPE ↓ PA-MPJPE ↓ ACCEL ↓ Runtime (per 1000 imgs)

GLAMR [107] 416.1 239.0 114.3 173.5 7min
SLAHMR [105] 141.1 101.2 79.13 25.78 400min
PACE (Ours) 147.9 101.0 66.5 6.7 8min

Table 4. State-of-the-art results on the EgoBody dataset.

ral information. Jointly solving camera and human motion
in real-time and online fashion is a significant challenge.

A. Appendix
In this appendix, we provide results on an additional dataset,
EgoBody [120], and also provide additional implementa-
tion details.

A.1. Experiments on EgoBody dataset

EgoBody [120] is a large-scale dataset capturing ground-
truth 3D human motions during social interactions in 3D
scenes. EgoBody is captured with a head-mounted camera
on an interactor, who sees and interacts with a second inter-
actee. The camera moves as the interactor moves, and the
ground truth 3D poses of the interactee are recorded in the
world coordinate frame. We follow [105] and use the val-
idation split of the dataset for evaluation. We use DROID-
SLAM with the ground-truth camera intrinsics provided by
the dataset.

Table 4 compares PACE with the state-of-the-art meth-
ods GLAMR [107] and SLAHMR [105]. As the results
indicate, PACE significantly outperforms GLAMR while
achieving performance on par with SLAHMR in terms of
accuracy. However, PACE offers a significant computa-
tional advantage over SLAHMR, being up to 50 times faster
for a sequence with 1000 frames. Note that the runtime of
SLAHMR grows linearly with the sequence length, whereas
our runtime increases sub-linearly. This improvement in ef-
ficiency demonstrates the potential of PACE as a practical
and effective solution for human and camera motion esti-
mation from videos.

A.2. Global optimization implementation details

We empirically chose the weights of all error terms involved
in the optimization, as summarized in Table 5.

A.3. HCM dataset generation

To create our HCM (Human and Camera Motion) dataset
we used the characters from the RenderPeople [1] dataset
with 3D scenes from the Unreal Engine Marketplace [2].
We manually labeled the navigable areas in each 3D scene
i.e., sufficiently large, unobstructed flat areas within the
scene. To generate a sequence, we randomly selected a
3D scene and a navigable area within it. We also ran-
domly chose the number of people to be animated in the
scene, ranging from 1 to 8 individuals. For each person, we

selected a motion sequence from the validation set of the
AMASS [68] dataset. To ensure that each person’s motion
sequence was optimized for the scene, we iteratively added
one person at a time. We optimized their global translation
to ensure that they remained within the bounds of the navi-
gable area and did not intersect with existing people in the
scene. We also check the terrain height of the navigable
area and adjusted each character’s root translation accord-
ingly to ensure they were at the correct height relative to the
terrain. Finally, we rendered the animated 3D scene into a
video sequence using a moving camera. To generate cam-
era trajectories, we designed heuristics to replicate typical
camera movements observed in everyday videos and pro-
fessional movies. More specifically, we used dolly zoom,
random arc motion towards a person, camera motions from
the MannequinChallenge dataset [59], cameras tracking a
specific person, etc. This approach allowed us to generate
a diverse set of sequences with varying numbers of people
and diverse body and camera motions. In total, we gener-
ated 25 video sequences for evaluation. Some examples can
be seen in the project page. We believe our HCM dataset
will be extremely useful for evaluating human and camera
motion estimation methods and furthering research in this
direction.
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Stages Opt. Variables Error Functions Learning rate (lr) & Weights
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Stage-4 β, zΦ, zϕ, Rt, Tt Ebody + Escene + Ecamera lr = 0.001, λ2D = 0.001, λβ = 1, λcontact = 100, λheight = 10, λVAE = 0.1, λconsist = 1, λsmooth = 1, λpose = 1, λPCL = 1e−4

Table 5. Optimization stages and weights.
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Safroshkin, Tsvetelina Alexiadis, Senya Polikovsky, Daniel
Scharstein, and Michael J Black. Capturing and inferring
dense full-body human-scene contact. In CVPR, 2022. 2,
3, 6

[35] Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu
Liu, Yixin Zhu, Wei Liang, and Song-Chun Zhu. Diffusion-
based generation, optimization, and planning in 3d scenes.
In CVPR, 2023. 3

[36] Umar Iqbal, Pavlo Molchanov, and Jan Kautz. Weakly-
supervised 3d human pose learning via multi-view images
in the wild. In CVPR, 2020. 2

[37] Umar Iqbal, Kevin Xie, Yunrong Guo, Jan Kautz, and Pavlo
Molchanov. KAMA: 3D keypoint aware body mesh articu-
lation. In 3DV, 2021. 2, 3

[38] Mariko Isogawa, Ye Yuan, Matthew O’Toole, and Kris M
Kitani. Optical non-line-of-sight physics-based 3d human
pose estimation. In CVPR, 2020. 2

[39] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh
Saxena. Structural-rnn: Deep learning on spatio-temporal



graphs. In CVPR, 2016. 3
[40] Wen Jiang, Nikos Kolotouros, Georgios Pavlakos, Xiaowei

Zhou, and Kostas Daniilidis. Coherent reconstruction of
multiple humans from a single image. In CVPR, 2020. 2

[41] Hanbyul Joo, Natalia Neverova, and Andrea Vedaldi. Ex-
emplar fine-tuning for 3d human pose fitting towards in-
the-wild 3d human pose estimation. In 3DV, 2021. 2

[42] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total cap-
ture: A 3d deformation model for tracking faces, hands, and
bodies. In CVPR, 2018. 3

[43] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, 2018. 2, 5

[44] Angjoo Kanazawa, Jason Y. Zhang, Panna Felsen, and Ji-
tendra Malik. Learning 3d human dynamics from video. In
CVPR, 2019. 2

[45] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece,
Remo Ziegler, and Otmar Hilliges. Convolutional autoen-
coders for human motion infilling. In 3DV, 2020. 3

[46] Tarasha Khurana, Achal Dave, and Deva Ramanan. Detect-
ing invisible people. In ICCV, pages 3174–3184, 2021. 3

[47] Diederik P Kingma and Max Welling. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114, 2013. 4

[48] Muhammed Kocabas, Nikos Athanasiou, and Michael J
Black. VIBE: Video inference for human body pose and
shape estimation. In CVPR, 2020. 2, 3

[49] Muhammed Kocabas, Chun-Hao P. Huang, Joachim Tesch,
Lea Müller, Otmar Hilliges, and Michael J. Black. SPEC:
Seeing people in the wild with an estimated camera. In
ICCV, 2021. 3

[50] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, 2019. 2

[51] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In CVPR, 2019.

[52] Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman,
and Kostas Daniilidis. Probabilistic modeling for human
mesh recovery. In ICCV, 2021.

[53] Jogendra Nath Kundu, Mugalodi Rakesh, Varun Jampani,
Rahul Mysore Venkatesh, and R. Venkatesh Babu1. Ap-
pearance consensus driven self-supervised human mesh re-
covery. In ECCV, 2020.

[54] Christoph Lassner, Javier Romero, Martin Kiefel, Federica
Bogo, Michael J. Black, and Peter V. Gehler. Unite the
people: Closing the loop between 3D and 2D human repre-
sentations. In CVPR, 2017. 2

[55] Jiefeng Li, Siyuan Bian, Chao Xu, Gang Liu, Gang Yu, and
Cewu Lu. D &d: Learning human dynamics from dynamic
camera. In ECCV, 2022. 2, 3

[56] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang,
Zhengfei Kuang, Hao Li, and Yajie Zhao. Task-generic hi-
erarchical human motion prior using vaes. In 3DV, 2021.
4

[57] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang,
Zhengfei Kuang, Hao Li, and Yajie Zhao. Task-generic hi-
erarchical human motion prior using vaes. In 3DV, 2021.
5

[58] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin
Yang, and Cewu Lu. Hybrik: A hybrid analytical-neural

inverse kinematics solution for 3d human pose and shape
estimation. In CVPR, 2021. 2, 3, 4, 7

[59] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,
Noah Snavely, Ce Liu, and William T. Freeman. Learning
the depths of moving people by watching frozen people. In
CVPR, 2019. 9

[60] Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu,
and Youliang Yan. Cliff: Carrying location information
in full frames into human pose and shape estimation. In
ECCV, 2022. 3

[61] Zimo Li, Yi Zhou, Shuangjiu Xiao, Chong He, Zeng
Huang, and Hao Li. Auto-conditioned recurrent networks
for extended complex human motion synthesis. arXiv
preprint arXiv:1707.05363, 2017. 3

[62] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In
CVPR, 2021. 2

[63] Miao Liu, Dexin Yang, Yan Zhang, Zhaopeng Cui,
James M Rehg, and Siyu Tang. 4d human body capture
from egocentric video via 3d scene grounding. In 3DV,
2021. 2, 3, 6

[64] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. SIGGRAPH Asia, 34(6):248:1–
248:16, 2015. 3

[65] Zhengyi Luo, S Alireza Golestaneh, and Kris M Kitani. 3d
human motion estimation via motion compression and re-
finement. In ACCV, 2020. 2

[66] Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani.
Dynamics-regulated kinematic policy for egocentric pose
estimation. NeurIPS, 34, 2021. 3

[67] Diogo Luvizon, Marc Habermann, Vladislav Golyanik,
Adam Kortylewski, and Christian Theobalt. Scene-aware
3d multi-human motion capture from a single camera. In
EuroGraphics 2023, 2023. 3

[68] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje,
Gerard Pons-Moll, and Michael J. Black. AMASS: Archive
of motion capture as surface shapes. In ICCV, 2019. 6, 9

[69] Julieta Martinez, Michael J Black, and Javier Romero. On
human motion prediction using recurrent neural networks.
In CVPR, 2017. 3

[70] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In 3DV, 2017. 2

[71] Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Mohamed Elgharib, Pascal Fua,
Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, and
Christian Theobalt. XNect: Real-time multi-person 3D mo-
tion capture with a single RGB camera. In SIGGRAPH,
2020.

[72] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko,
Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel,
Weipeng Xu, Dan Casas, and Christian Theobalt. VNect:
Real-time 3D human pose estimation with a single RGB
camera. In SIGGRAPH, 2017. 2

[73] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-



thesis. In ECCV, 2020. 4
[74] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee.

Camera distance-aware top-down approach for 3d multi-
person pose estimation from a single rgb image. In ICCV,
2019. 2

[75] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet:
Image-to-lixel prediction network for accurate 3d human
pose and mesh estimation from a single rgb image. In
ECCV, 2020. 2

[76] Lea Müller, Ahmed A. A. Osman, Siyu Tang, Chun-Hao P.
Huang, and Michael J. Black. On self contact and human
pose. In CVPR, 2021.

[77] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In CVPR, 2019.

[78] Georgios Pavlakos, Nikos Kolotouros, and Kostas Dani-
ilidis. Texturepose: Supervising human mesh estimation
with texture consistency. In ICCV, 2019. 2

[79] Georgios Pavlakos, Ethan Weber, Matthew Tancik, and
Angjoo Kanazawa. The one where they reconstructed 3d
humans and environments in tv shows. In ECCV, 2022. 3

[80] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas
Daniilidis. Learning to estimate 3D human pose and shape
from a single color image. In CVPR, 2018. 2

[81] Dario Pavllo, David Grangier, and Michael Auli. Quaternet:
A quaternion-based recurrent model for human motion. In
BMVC, 2018. 3

[82] Christian Payer, Thomas Neff, Horst Bischof, Martin
Urschler, and Darko Stern. Simultaneous multi-person
detection and single-person pose estimation with a single
heatmap regression network. In ICCV PoseTrack Workshop,
2017. 2

[83] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In ICCV, 2021. 3

[84] Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang,
and Wenjun Zeng. Cross view fusion for 3d human pose
estimation. In ICCV, 2019. 3

[85] N. Dinesh Reddy, Laurent Guigues, Leonid Pischulini,
Jayan Eledath, and Srinivasa Narasimhan. Tessetrack: End-
to-end learnable multi-person articulated 3d pose tracking.
In CVPR, 2021. 2, 3

[86] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J. Guibas. Humor: 3d human
motion model for robust pose estimation. In ICCV, 2021.
2, 3, 4

[87] Gregory Rogez, Philippe Weinzaepfel, and Cordelia
Schmid. LCR-Net: Localization-classification-regression
for human pose. In CVPR, 2017. 2

[88] Yu Rong, Ziwei Liu, Cheng Li, Kaidi Cao, and Chen
Change Loy. Delving deep into hybrid annotations for 3d
human recovery in the wild. In ICCV, 2019. 2

[89] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and
Christian Theobalt. Physcap: Physically plausible monoc-
ular 3d motion capture in real time. In SIGGRAPH, 2020.
2

[90] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In ICML, 2015. 3
[91] Jie Song, Xu Chen, and Otmar Hilliges. Human body

model fitting by learned gradient descent. In ECCV, 2020.
2

[92] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J. Black, and
Tao Mei. Monocular, one-stage, regression of multiple 3d
people. In ICCV, 2021. 2

[93] Yu Sun, Wu Liu, Qian Bao, Yili Fu, Tao Mei, and Michael J.
Black. Putting people in their place: Monocular regression
of 3D people in depth. In CVPR, 2022. 3

[94] Yu Sun, Yun Ye, Wu Liu, Wenpeng Gao, Yili Fu, , and Tao
Mei. Human mesh recovery from monocular images via a
skeleton-disentangled representation. In ICCV, 2019. 2

[95] Zachary Teed and Jia Deng. DROID-SLAM: Deep Vi-
sual SLAM for Monocular, Stereo, and RGB-D Cameras.
NeurIPs, 2021. 4, 7

[96] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion
diffusion model. In ICLR 2023, 2022. 3

[97] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn,
Xunyu Lin, and Honglak Lee. Learning to generate long-
term future via hierarchical prediction. In ICML, 2017. 3

[98] Timo von Marcard, Roberto Henschel, Michael Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac-
curate 3d human pose in the wild using imus and a moving
camera. In ECCV, 2018. 3, 6

[99] Zhenzhen Weng and Serena Yeung. Holistic 3d human and
scene mesh estimation from single view images. In CVPR,
2021. 2

[100] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocular
total capture: Posing face, body and hands in the wild. In
CVPR, 2019. 2

[101] Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja
Fidler, and Florian Shkurti. Physics-based human motion
estimation and synthesis from videos. In ICCV, 2021. 2

[102] Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao.
ViTPose: Simple vision transformer baselines for human
pose estimation. In NeurIPs, 2022. 5

[103] Yuanlu Xu, Song-Chun Zhu, and Tony Tung. Denserac:
Joint 3d pose and shape estimation by dense render-and-
compare. In ICCV, 2019. 2

[104] Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan
Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin Yumer, and
Honglak Lee. Mt-vae: Learning motion transformations to
generate multimodal human dynamics. In ECCV, 2018. 3

[105] Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo
Kanazawa. Decoupling human and camera motion from
videos in the wild. In CVPR, 2023. 2, 3, 7, 9

[106] Hongwei Yi, Chun-Hao P Huang, Dimitrios Tzionas,
Muhammed Kocabas, Mohamed Hassan, Siyu Tang, Justus
Thies, and Michael J Black. Human-aware object place-
ment for visual environment reconstruction. In CVPR,
2022. 2, 3

[107] Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and
Jan Kautz. Glamr: Global occlusion-aware human mesh
recovery with dynamic cameras. In CVPR, 2022. 2, 3, 7, 8,
9

[108] Ye Yuan and Kris Kitani. Diverse trajectory forecasting
with determinantal point processes. In ICLR 2020, 2019.
3



[109] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows
for diverse human motion prediction. In ECCV, 2020.

[110] Ye Yuan and Kris Kitani. Residual force control for agile
human behavior imitation and extended motion synthesis.
In NeurIPS, 2020. 3

[111] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan
Kautz. Physdiff: Physics-guided human motion diffusion
model. arXiv preprint arXiv:2212.02500, 2022. 3

[112] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Ja-
son Saragih. Simpoe: Simulated character control for 3d
human pose estimation. In CVPR, 2021. 2

[113] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu,
William T. Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Weakly supervised 3d human pose and shape re-
construction with normalizing flows. In ECCV, 2020. 2

[114] Andrei Zanfir, Elisabeta Marinoiu, and Cristian Sminchis-
escu. Monocular 3d pose and shape estimation of multiple
people in natural scenes the importance of multiple scene
constraints. In CVPR, 2018. 2

[115] Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut
Popa, and Cristian Sminchisescu. Deep network for the
integrated 3d sensing of multiple people in natural images.
In NeurIPS, 2018. 2

[116] Mihai Zanfir, Andrei Zanfir, Eduard Gabriel Bazavan,
William T. Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Thundr: Transformer-based 3d human recon-
struction with markers. In ICCV, 2021. 2, 3

[117] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang,
Yebin Liu, Limin Wang, and Zhenan Sun. Pymaf: 3d hu-
man pose and shape regression with pyramidal mesh align-
ment feedback loop. In ICCV, 2021. 2

[118] Jianfeng Zhang, Dongdong Yu, Jun Hao Liew, Xuecheng
Nie, and Jiashi Feng. Body meshes as points. In CVPR,
2021. 2

[119] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. arXiv preprint arXiv:2208.15001, 2022. 3

[120] Siwei Zhang, Qianli Ma, Yan Zhang, Zhiyin Qian, Taein
Kwon, Marc Pollefeys, Federica Bogo, and Siyu Tang.
Egobody: Human body shape and motion of interacting
people from head-mounted devices. In ECCV, 2022. 9

[121] Siwei Zhang, Yan Zhang, Federica Bogo, Marc Pollefeys,
and Siyu Tang. Learning motion priors for 4d human body
capture in 3d scenes. In ICCV, 2021. 3

[122] Tianshu Zhang, Buzhen Huang, and Yangang Wang.
Object-occluded human shape and pose estimation from a
single color image. In CVPR, 2020. 2

[123] Yuxiang Zhang, Liang An, Tao Yu, Xiu Li, Kun Li, and
Yebin Liu. 4D association graph for realtime multi-person
motion capture using multiple video cameras. In CVPR,
2020. 3

[124] Yuxiang Zhang, Zhe Li, Liang An, Mengcheng Li, Tao Yu,
and Yebin Liu. Lightweight multi-person total motion cap-
ture using sparse multi-view cameras. In ICCV, 2021. 3

[125] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng
Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating ev-
ery detection box. In ECCV, 2022. 4

[126] Jianan Zhen, Qi Fang, Jiaming Sun, Wentao Liu, Wei Jiang,
Hujun Bao, and Xiaowei Zhou. SMAP: Single-shot multi-
person absolute 3d pose estimation. In ECCV, 2020. 3

[127] Yang Zheng, Ruizhi Shao, Yuxiang Zhang, Tao Yu, Zerong
Zheng, Qionghai Dai, and Yebin Liu. Deepmulticap: Per-
formance capture of multiple characters using sparse mul-
tiview cameras. In ICCV, 2021. 3

[128] Yuxiao Zhou, Marc Habermann, Ikhsanul Habibie, Ayush
Tewari, Christian Theobalt, and Feng Xu. Monocular real-
time full body capture with inter-part correlations. In
CVPR, 2021. 2

[129] Yi Zhou, Jingwan Lu, Connelly Barnes, Jimei Yang, Sitao
Xiang, and Hao Li. Generative tweening: Long-term in-
betweening of 3d human motions. ArXiv, abs/2005.08891,
2020. 5


	anm1: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


