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Abstract

Many vision and graphics problems such as relighting,

structured light scanning and photometric stereo, need im-

ages of a scene under a number of different illumination

conditions. It is typically assumed that the scene is static.

To extend such methods to dynamic scenes, dense optical

flow can be used to register adjacent frames. This registra-

tion becomes inaccurate if the frame rate is too low with

respect to the degree of movement in the scenes.

We present a general method that extends time multiplex-

ing with color multiplexing in order to better handle dy-

namic scenes. Our method allows for packing more illumi-

nation information into a single frame, thereby reducing the

number of required frames over which optical flow must be

computed. Moreover, color-multiplexed frames lend them-

selves better to reliably computing optical flow. We show

that our method produces better results compared to time-

multiplexing alone. We demonstrate its application to re-

lighting, structured light scanning and photometric stereo

in dynamic scenes.

1. Introduction

There is a wide variety of algorithms that need images

of a scene under a number of different lighting conditions.

Structured light scanning computes a depth map by illumi-

nating the scene with different coded patterns [18]. Photo-

metric stereo [2, 23] obtains a per pixel normal of a scene

by capturing the scene under a number of different point

light source positions. In computer graphics, image-based

relighting is performed by recording a scene under a num-

ber of basis illumination patterns [7].

In all of these methods, each illumination condition re-

quires a separate image, and it is assumed the scene remains

static. Specific methods have been developed in order to

deal with dynamic scenes [25, 26, 6, 9, 22]. In this paper,
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Figure 1. Demultiplexing illumination using our method. Top row:

9 input frames of a dynamic scene. A person is lit by only 2 differ-

ent colored illumination patterns using 4 differently colored light

sources (indicated by the squares). Bottom row: The output im-

ages show the demultiplexed lighting. I.e., each image contains the

result of having illuminated the scene by each source separately.

we seek a general technique which is applicable to all meth-

ods requiring multiple illumination conditions.

An obvious way to extend the aforementioned methods

to handle dynamic scenes, is to use a dense optical flow to

register dynamic content between frames. Even for high

framerates, this registration is required. This registration

becomes inaccurate if scene elements move too fast, or

equivalently, if the frame rate is too low. Also, as more

illumination conditions are needed, optical flow must be

computed over a longer span of frames. The results will

therefore be more prone to occlusion errors.

In this paper, we propose to extend time multiplexing

with color multiplexing. With color multiplexing we can

encode more illumination conditions per frame, which re-

duces the number of required input images over which op-

tical flow must be computed. This relaxes the requirement

of having a sufficiently high frame rate, making it possi-

ble for using (cheaper) cameras with a lower frame rate.

Estimating optical flow under varying illumination condi-

tions is hard. Even though state-of-the art optical flow al-

gorithms can deal with varying illumination, the aforemen-

tioned methods typically employ significantly different illu-

mination patterns from frame to frame. This causes wildly

varying intensities and even image features (e.g., due to



moving shadow boundaries). An additional benefit of color-

multiplexing is that optical flow can be computed more re-

liably, because all light sources are enabled in every frame

and only their color varies.

Figure 1 shows a typical use of our light multiplexing

approach in the context of relighting.

Our contributions are as follows. (1) We demonstrate the

use of both color and time multiplexing to capture a scene

under a number of lighting conditions; (2) we show how we

can compensate for the motion in a dynamic scene. (3) We

demonstrate that our light multiplexing scheme is generic

and can be used to improve many existing algorithms.

2. Related Work

There is a wide range of techniques that need images of

a scene under varying lighting conditions. In this section

we will give a short overview of these algorithms. Many

of them only use time multiplexing to obtain the needed

information. Using the algorithm described in this paper, it

becomes possible to alter these techniques so they use both

time and color multiplexing.

Relighting In relighting applications, the goal is to

change the lighting of a scene after it is captured [22]. De-

bevec et al. [7] demonstrate a first system that is able to

relight static scenes. Images of a scene are captured under

a large number of lighting conditions, and by blending the

images, the scene can be relit. This system is extended to

dynamic scenes by Wenger et al. [22]. High-speed cam-

eras and LEDs are used to capture the scene under different

lighting conditions at a very high framerate. They can han-

dle dynamic scenes by compensating for the motion using

the optical flow between tracking frames. These are special

frames for which the scene is uniformly lit with white light.

Another extension of this idea is presented by Wang et al.

[21]. Here, a person captured under ambient light and time

multiplexed IR light patterns can be relit. To this end, in-

formation from the IR domain is transferred to the visible

domain. All of the above techniques only use time multi-

plexing to obtain the scene under a number of lighting con-

ditions, in this paper we present a technique to use both time

and color multiplexing to obtain this information.

Hsu et al. [11] can relight a scene from a single image

using their white balancing technique. They are able to

change the colors of the light sources in the scene under

the assumption that there are only two light sources present

in the scene. Our method can work with any number of light

sources.

Photometric Stereo Photometric stereo techniques

capture a per pixel normal for a scene lit by a number of

point light sources [23, 2]. Woodham et al. [23] proposed

to use color multiplexing to obtain the required informa-

tion, but they did not show in practice how to do this for

dynamic scenes. Hernandez et al. [9] also perform photo-

metric stereo with colored lights, but assume the materials

of all the objects in the scene are the same, while we do not

constrain the number of materials in the scene. They are

able to demultiplex three light sources with different colors

since the materials in the scene are known. Due to the use

of only three light sources, the photometric stereo problem

becomes underdetermined in shadow regions. This problem

was addressed by Hernandez et al. [10].

There are a number of algorithms that combine ideas

from structure from motion, photometric stereo and multi-

view stereo [24, 13, 12] to obtain the shape of a moving

object under static illumination. These methods assume a

single rigid object, while our method can handle deforming

objects. Our ability to deal with non-rigid scenes will be

demonstrated in the results section.

Depth from Structured Light Depth from structured

light techniques are able to obtain a dense depth map of a

scene by illuminating it by a number of well chosen black

and white patterns [18, 17, 4, 25, 5, 14]. Spacetime Stereo

[26, 6] in combination with structured light can be used to

obtain a depth map for dynamic scenes. Caspi et al. [4]

project a number of colored stripe patterns onto a static

scene, and for each pattern an image is taken. This way

each pixel is given a unique label over time and from this a

depth map can be calculated. Zhang et al. [25] also project

one or more colored stripe patterns onto the scene, but they

use the color transitions between stripes to label the space.

Hall-Holt et al. [8] also use color transitions and are able

to obtain a depth map of dynamic scenes. Some problems

arise when using colored stripes to obtain a depth map from

a scene. The color of the objects in the scene interfere with

the color of the stripes and artifacts occur near depth dis-

continuities. These problems are addressed by Lee et al.

[14]. Chen et al. [5] use colored structured light patterns to

diminish the ambiguity when calculating depth from stereo.

In contrast to previous methods for dynamic scenes, when

using our method, scene colors do not interfere in the pro-

cess and we can capture the scene colors in addition to the

depth map.

General Light Multiplexing Schechner et al. [20, 19]

present a general technique to multiplex light without the

use of color multiplexing. The lights are turned on/off us-

ing Hadamard-based patterns. For each frame they turn on

multiple lights at once. This way they can capture low in-

tensity lighting, without the need for long exposure times.

Also the technique of Wenger et al. [22] can be seen as a

general light multiplexing technique. They compare multi-

ple light bases, among which the Hadamard-based patterns.

Discussion While there are specific extensions to some

of the basic structured light and photometric stereo al-

gorithms that use both color and time multiplexed light

[23, 14, 5], these extensions are not as general and have

their own advantages and disadvantages. Existing photo-



metric stereo algorithms [23, 9, 10] suppose the scene is

static or that all the objects in the scene have the same

albedo. Our method on the other hand is able to handle

dynamic scenes without constraining the number of albe-

dos. When our method is applied to depth from structured

light, we obtain the depth map and the scene colors simul-

taneously. Existing depth from structured light algorithms

for dynamic scenes are unable to do this, they only obtain a

depth map [4, 25, 8, 14, 5].

3. Time and Color Multiplexing

In this section, we present our light multiplexing algo-

rithm for static scenes. The extension to dynamic scenes

will be described in the next section 4.

3.1. Model

The aforementioned applications all require that an ob-

ject be captured under varying illumination. We address the

common scenario in which illumination is varied by chang-

ing the color of otherwise fixed light sources (Figure 2).

Camera

Scene

Lightsources

Figure 2. Our setup consists of the scene to be captured, filmed

by one camera and lit by a number of light sources with changing

colors.

We make the following assumptions:

• Only the color of the light sources varies from captured

frame to frame. Position and directional emission dis-

tribution remain constant during the capture.

• Surfaces are Lambertian;

• Indirect illumination is negligible;

• Negligible motion blur;

• Object motion relative to light sources affects only re-

flected light intensity, not its color.

It will be shown in the results section, that our time and

color multiplexing scheme still yields acceptable results,

even if these assumptions are violated to some (practical)

extent.

For now we also assume that both the camera and the

objects do not move during the capture process. In the next

section we will show how we can drop these additional as-

sumptions to handle dynamic scenes.

Now we will describe our image formation model for a

single light source, later we will show how this is general-

ized to multiple light sources. If only a single light source

illuminates the object, the RGB color Ci = (Ci
r , C

i
g, C

i
b)

of a pixel in any captured image i, i = 1 . . . n with n the
number of illumination scenarios, will be the product

C
i = A ⊙ L

iI (1)

of three factors:

• The RGB material colorA = (Ar , Ag, Ab) of the ob-
ject seen in the pixel. A is independent of illumination;

• The RGB light source color L
i = (Li

r, L
i
g, L

i
b) in

frame i;

• A scalar form factor I that indicates the intensity of the
reflected light. I depends on object and light source
relative position, orientation and visibility. Since nei-

ther move (in this section), it is constant. Note, it is

allowed to vary in the next section.

The symbol⊙ stands for component-wise multiplication

of RGB color vectors. For clarity, we do not index pixels:

We use the same symbolC for the color of any single pixel

and for a complete RGB image. We use the same symbol I
for the form factor of a single pixel, and for the set of form

factors corresponding to all pixels in an image. We will

refer to the latter as “intensity images” in the following.

Since only the product result counts, any of these factors

can be scaled to wish, provided the scaling is compensated

in the other factors. In our multiplexing scheme, we normal-

ize material colors A such that the sum of square compo-

nents is unity. Our choice of Euclideanmetric is convenient,

but otherwise arbitrary: any normalization metric would do.

This normalization is compensated in the intensity value I .
When m light sources j, j = 1 . . .m, with colors L

i
j

are used, pixel colors Ci will satisfy the following matrix

equation:

C =M I, with (2)
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3.2. Algorithm outline

Capturing an object under n illumination scenarios i, i =
1 . . . n, realized with m light sources j, j = 1 . . .m, as
explained above, comes down to measuring C

i as a func-

tion of Li
j . If the normalized material colorsA are known,

and provided the rank of M is greater or equal than the

number of light sources m, the intensity image Ij of each



light source j can be computed by solving the linear sys-
tem of equations (2). Since this system is in general over-

determined, least squares techniques are used. The normal-

ized material colors are usually not a priori known, however.

We explain in 3.3 how to obtain them.

input 1 ( )C1 input 2 ( )C2
Normalized Material

Color ( )A

intensity images ( )I

Figure 3. Given images C1 and C
2 of an object captured under

varying illumination, and assuming the normalized material color

image A is known, our algorithm calculates intensity images Ij

for each light source j = 1 . . . 4. The colored squares on top of

the input images indicate the (user chosen) color of the (otherwise

fixed) light sources during capture.

Example Application: Relighting Given the normal-

ized material colors A and the intensity images Ij for all

light sources j, a relighted imageC′ corresponding to freely

chosen light source colors L′

j can be obtained directly from

(2) as

C
′ =

m
∑

j=1

A ⊙ L
′

jIj . (3)

Selection of Light Source Colors The light source

colors L are chosen as to ensure good conditioning of the

system (2). We enumerate a number of candidate light

source colors using a simple grid search. For each candi-

date we calculate the condition number of the matrix M (see

equation (2)). The candidate with the smallest condition

number is selected. Note that the ideal light source colors

depend on the normalized material colors A. In our exam-

ples, we assume the normalized material colors to be white

when calculating the light source colors. Better light source

colors could be obtained by using the normalized material

colors of the previous frame.

3.3. Acquisition of Normalized Material Colors

The normalized material color image A corresponds to

the normalized RGB image that would be captured if all

light sources are set to unit strength white color. Colors are

normalized by scaling them such that the sum of squared

components is unity in our implementation, but any other

normalization metric would do as well. We now present

two ways to obtainA.

Dedicated Image Method One way to obtain the nor-

malized material colors, is to actually capture, and normal-

ize, an imageW with all light source colors set to full in-

tensity white. For instance, given m = 3 coloured light
sources, a single image (n = 1) yields M as a 3 × 3 ma-
trix, and it is trivial to see that it is possible to choose the

colors of our light sources in such a way that this matrix

becomes rank 3 as needed to solve (2). The disadvantage of

this approach is the need to capture an extra image only to

calculateA.

Complementary Colors Method Another way of

calculating the normalized material color is by choosing

the colors of each light source for each frame in such a

way that these colors add up to white. So for example

if we only take 2 images, the color of one light source

for the first frame is the complement of the color of this

light source for the second frame. Or in general ∀j :
∑

i(L
i
jr , L

i
jg, L

i
jb) = (1, 1, 1) Normalizing the average of

these images also yieldsA.

Given n captured images, we show in the appendix that
is it possible to demultiplex m = (3n − 2) light sources.
The complementary colors method allows to demultiplex

one light source more than the Dedicated Image Method, at

the cost of some extra noise.

3.3.1 Dealing with Sensor Noise

By using color multiplexing, each pixel of our input images

contains more information than when using only time mul-

tiplexing. So our algorithm trades color depth for fewer in-

put frames. When using a normal digital video camera, the

input images are only low dynamic range images and also

contain some noise. If we used our input images directly,

the noise in the input images would be amplified, which

would result in noisy output images as shown in Figure 4a.

(a) Without noise re-

duction

(b) Post-process bilat-

eral blur

(c) Our noise reduction

method

Figure 4. Noise reduction is needed to generate high quality re-

sults. Blurring the noisy result during a post processing step gen-

erates less good results than our noise reduction method.

In order to reduce noise, we can blur the input images

when calculating the intensity images I; or in other words,

we trade resolution for dynamic range. The disadvantage of



this approach is that we remove the high frequency compo-

nents of the image. However, it is possible to add these high

frequency components back to the final result as follows:

Ires = Iblur W/Wblur, (4)

where Iblur is the blurred light intensity image using a usual
Gaussian blur kernel, Ires is the resulting light intensity im-
age with the high frequencies put back in,W is the lightness
of the RGB imageW of the object under white light, intro-

duced in the previous section. Wblur isW blurred with the

same kernel as Iblur. The main approximation here, is that
the high frequencies ofW , which contains little noise as it
is fully lit (W is derived fromW), should also be present

in the resulting intensity image Ires. Multiplication with

W/Wblur puts some of these frequencies back into Iblur .

This way at least the high frequency components of the

texture of the input images are preserved, even though the

high frequency components of the lighting are lost. As a

consequence we cannot reproduce very hard shadows. We

demonstrate in the results section that this effect is not very

significant.

4. Dynamic Scenes

So far we have shown how the time and color multiplex-

ing works in the case of a static scene. In this section, we

show how we can extend this method to dynamic scenes.

In dynamic scenes, the objects in the scene will have

moved in two consecutive images and we cannot directly

apply our proposed algorithm. To compensate for this mo-

tion, we calculate the optical flow between the images and

warp the images to a reference image, for which we use the

optical flow algorithm by Brox et al. [3] with improvements

by Sand et al. [16].

(a) (b) (c)

Figure 5. Calculating the optical flow with and without removing

lighting from the image. (a) Input images and filtered input im-

ages. (b) Result when calculating the optical flow from the input

images directly. (c) Result when calculating the optical flow from

the filtered input images. When comparing the left eye and the

nose in images b and c, it is apparent that calculating the optical

flow from the input images directly does not work very well.

Since the colors of the light sources are not the same

for each image, naı̈vely applying optical flow on the images

does not work very well as shown in Figure 5. Instead we

first apply a filter to the images that removes the lighting,

but keeps the texture [15]. For each pixel we calculate the

local brightness and the local contrast of a small neighbor-

hood, and the filtered pixel value is the original pixel value

subtracted by the local brightness and divided by the local

contrast. We perform the optical flow on these filtered im-

ages. We also choose the color of the light sources in such

a way that no dark shadows are created in any of the color

channels. By doing this, all the texture information of the

scene is visible in every image, and nothing gets fully ob-

scured by shadows. From our experiments, we found that

the use of the filter does not degrade the quality of the op-

tical flow, even when we calculate the optical flow between

two images that are lit in the same way.

If we want to demultiplex the light for a given frame, we

warp the required number of nearby frames to this frame.

This way, we can assume we have a static scene for the

other steps of the algorithm.

5. Results

In our experimental setup we use projectors as light

sources as they are easy to control and it is possible to

switch their colors rapidly. In a practical setup, using LEDs

as lightsources might be a better option, since they are

cheap and can switch on and off rapidly. PointGrey flea

and grasshopper cameras have been used to capture video

sequences at 20 fps.

Computation times are in the order of 25 minutes for the

calculation of the optical flow between two images and ap-

proximately 5 minutes for the rest of the calculations using

our Matlab implementation on a 3 GHz CPU.

Relighting We first apply our method to relighting, see

Figure 6. The scene consists of a house on a rotating plat-

form and it is lit by six light sources. The house rotates 5

degrees between two consecutive images. We used stop mo-

tion to capture this sequence in order to capture additional

ground truth images and to compare our results with those

ofWenger at al. [22]. From this large set of captured frames,

we generate image sequences that are given to the algo-

rithms we are comparing. To these algorithms, the input

looks as if it was captured in real time using a video cam-

era. Images (a)-(c) in Figure 6 show the input images for

our algorithm. The squares on top of each input image de-

pict the colors of each of the six light sources for the frame.

Images (d)-(f) show the output of our algorithm, the scene

is shown under a number of new lighting conditions. In this

example we used the Dedicated Image Method to obtain

the normalized material color A, for which we use image
(b). To demultiplex the illumination, we run our algorithm

twice. First we demultiplex the three lightsources that were

not grey in image (a). The image (a) is influenced by all 6

light sources, the 3 colored ones and the 3 grey ones. We

remove the influence of the three grey lightsources by sub-

tracting a scaled version of (b) from it. The resulting image



(a) Input (b) Input (c) Input

(d) Output (e) Output (f) Output

Figure 6. Top row: input images of a dynamic (rotating) scene

lit by six light sources with changing colors, the squares on top

of each image depict the colors of each of the six light sources

for this frame. Bottom row: the output images show the scene lit

under new lighting conditions.

(a) Reference (b) Wenger et al. (c) Wenger et al. (d) Our method

Figure 7. From left to right: ground truth, output of Wenger et al.

with a tracking frame every 7 frames, output of Wenger et al. with

a tracking frame every 3 frames, and our result.

now only depends on the three colored lightsources we are

trying to demultiplex. Using this image and the normalized

material color A we are now able to demultiplex the three
lightsources. Since we need to solve for 3 lightsources,M

is a full rank 3 × 3 matrix, so equation (2) is easy to solve.
To demultiplex the other three lightsources, the ones that

are not grey in image (c), we use a similar approach. We

also could have demultiplexed the six lightsources at once,

but by doing it this way, the results are more robust against

errors in the optical flow. To relight the scene, we use all

six light sources. In the accompanying video, some small

artifacts are visible, this is because of occlusion problems

when calculating the optical flow.

In Figure 7 we show a comparison between our method

and the relighting method of Wenger et al. [22]. Note that

the method of Wenger et al. is a high quality relighting sys-

tem that generates very good results but only uses time mul-

tiplexing. I.e., one light source is turned on in each frame

(a) Ground truth (b) Our result

Figure 8. Comparing ground truth and our method when relighting

a static scene. Our approach generates convincing results, even

though the assumption that surfaces are Lambertian, is slightly

broken. The results might not be physically correct, yet they are

very convincing.

and optical flow is used to merge the information from sev-

eral frames. In this particular example we push their method

and our algorithm to the limit by running it on a scene that

has a lot of movement between two successive frames. Im-

age (a) shows the ground truth, only one of the light sources

is turned on in this image; (b) and (c) show the same im-

age, but obtained by the method of Wenger et al.; (d) shows

the same image obtained by our method. To deal with dy-

namic scenes, Wenger et al. inserts tracking frames. These

are frames for which the scene is uniformly lit with white

light. For image (b) a tracking frame was inserted every

seven and for (c) every three frames. In (b) it is clear that the

optical flow breaks down. This is because the house rotated

35 degrees between two consecutive tracking frames, which

results in occlusion problems. For very fast moving scenes

our algorithm suffers from the same problem. In (c) the

house rotates only 15 degrees between two tracking frames,

so the optical flow works quite well, but the lighting infor-

mation still needs to be warped over a distance of 8 frames

(6 light sources and 2 tracking frames). So shadows will

not move over the object as they should. Our algorithm has

the same problem, but since the lighting information only

has to be warped over 2 frames, this problem is far less pro-

nounced. These artifacts are most visible when comparing

the door of the house.

Since we use the three color channels, one might expect

that our system has a speedup of 3 compared to the method

of Wenger et al. [22], but it is more nuanced than that. For

example, if we have 10 lights, we need 4 frames to capture

all the information. Wenger et al. needs 15 frames, if a

tracking frame has to be inserted every 2 lighting frames. In

this case, our method has a speedup of 3.75.

Figure 8 shows that our algorithm delivers convincing

results, even when scene assumptions are violated slightly.

Artefacts do appear if the assumptions are violated more

severly as can be seen in figure 9. A scene with severe

color bleeding and non-lambertian objects is depticed. Our

method also breaks down when applied to a scene with con-

siderable motion blur.



(a) Input (b) Ground truth (c) Our result

Figure 9. A test case where our scene assumptions are violated.

False color bleeding is visible (e.g., on the wall) and artifacts ap-

pear near specularities.

(a) Input: three MSB (b) Input: material

colors

(c) Input: three LSB

(d) Extracted structured light patterns

(e) Extracted depth map and novel viewpoints

Figure 10. Depth from structured light using time and color multi-

plexing.

Depth from Structured Light In Figure 10 we calcu-

late depth from structured light [18, 17] using time and color

multiplexing. To acquire a depth map with 6-bit precision,

we project 6 structured light patterns. Image (a) shows the

scene lit by three light sources, the red one is the most sig-

nificant structured light pattern, the green one the second

and the blue one the third most significant pattern. Image

(b) is used to obtain the normalized material color A. And
image (c) shows the scene lit by the three least significant

patterns. Extracted structured light patterns are shown in (d)

and the resulting depth map along with images of the scene

under novel viewpoints is shown in (e). In contrast to pre-

vious methods for dynamic scenes [4, 25, 8, 14, 5], scene

colors do not interfere in the process and we can capture the

scene colors and depth map simultaneously.

Photometric Stereo In figure 11 we apply our light

multiplexing method to photometric stereo [2, 23]. (a)

shows two input images of a scene lit by three light sources.

(b) shows the demultiplexed lights, these images are the in-

put of the photometric stereo algorithm. (c) shows the cal-

culated normal map of the scene. Normals can then be used

for instance to add specular highlights using an environment

map, as seen in (d). (e) shows some more results where

(a) Input (b) Demultiplexed lights

(c) Normal map (d) Output (e) Specularities (f) 3D Surface

Figure 11. A normal map can be calculated using photometric

stereo, which allows us to add additional specular highlights or

compute a 3D surface.

specularities were added to a diffuse scene. (f) shows the 3D

surface computed from the normal maps of the scenes de-

picted in (e). To obtain this 3D surface we used the method

by Agrawal et al. [1].

Previous photometric stereo algorithms for dynamic

scenes are restricted to scenes in which all objects have the

same albedo [9, 10] or to scenes containing a single rigid

object [24, 13, 12]. As shown in Figure 11, our method

handles multi-coloured non-rigid objects. Apart from the

normal map, our method also recovers material colors.

6. Conclusion and Future Work

We proposed a generic approach for capturing dynamic

scenes under both color and time multiplexed varying illu-

mination. Our approach is well suited for a broad range

of applications, and was demonstrated in the context of re-

lighting, structured light depth capturing and photometric

stereo. Compared to previous light multiplexing methods,

our method allows to extract more information from fewer

images. In contrast to previous photometric stereo meth-

ods, our technique is able to handle multi-coloured dynamic

scenes. Applied to structured light scanning, our method al-

lows to simultaneously acquire depth and scene colors.

At present, the computation time with our implementa-

tion is rather high. We believe there is plenty of room for

improvement, perhaps up to near real time speed.

Some avenues for future research include the noise fil-

tering from section 3.3.1, investigating the relation between

noise in the input images and noise in the output images.

The core idea of this paper may also be applicable to other

multiplexing techniques.
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for their input. The authors acknowledge financial support

on a structural basis from the Flemish institute for broad-

band communication (IBBT) and impulse financing from

the transnationale Universiteit Limburg.

Appendix: Max. Number of Light Sources

When we use 2 images and the Complementary Col-

ors Method, we can only demultiplex 4 light sources, even

though M in equation (2) is a 6 × 6-matrix. In this case
the rank of M is only 4 instead of 6 for the following rea-

son. For simplicity assume that A = (1, 1, 1). Define V1

the first row of M, V2 the second row and V3 the third

row. Because the colors of the first frame are the comple-

ment of the colors of the second frame, we have that the

fourth row is V4 = k − V1, with k some number. The fifth

row is V5 = k − V2, and the sixth row is V6 = k − V3.

Now the fifth row is a linear combination of the other rows:

V5 = k − V2 = (k − V1) + (V1) − (V2) = V4 + V1 − V2.

And in the same way is V6 also a linear combination of the

first 4 rows, so the matrixM is rank 4.

In general, if we havem frames,M is rank (3 ∗ m − 2).
Or if we have n light sources, we need (n + 2)/3 images.
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