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Figure 1: Our cinemagraph creation process. A cinemagraph is a short video that is akin to a still photograph but highlights
specific dynamic element by seamlessly looping through selected motions. In this example, input is video of a blinking person
with wind-swept hair. We register the frames if needed, automatically find the mask for regions of motion, and ask the user
which regions to loop. The user freezes the hair and loops the eyes individually at different times to create a winking effect.

Abstract

The imagination of the online photographic community
has recently been sparked by so-called cinemagraphs:
short, seamlessly looping animated GIF images created
from video in which only parts of the image move. These
cinemagraphs capture the dynamics of one particular region
in an image for dramatic effect, and provide the creator with
control over what part of a moment to capture. We create
a cinemagraphs authoring tool combining video motion
stabilisation, segmentation, interactive motion selection, motion
loop detection and selection, and cinemagraph rendering.
Our work pushes toward the easy and versatile creation
of moments that cannot be represented with still imagery.
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1 Introduction

Capturing the dynamics of a moment is an intriguing problem
[4]. Imagine the moment when two people shake hands. A
photograph can draw attention to the specific moment, but
the dynamics of the hand-shake are lost. A video would
capture the dynamics, but drawing attention to the hand-shake
is difficult as it only lasts a fleeting moment. Recently, online
photographic communities have been abuzz with the creation of

cinemagraphs: short, seamlessly looping videos (usually stored
as GIF images), where only parts of the scene are animated to
emphasize select dynamics in the scene.

The construction of cinemagraphs from video sequences
includes several challenges. First, for video captured with
a translating or rotating camera, the motion in the image
does not correspond to the motion of objects. Next, objects
undergoing motion must be isolated from static parts of
the scene. Finally, creating a seamless loop from the video
sequence is non-trivial as even objects with repeating motions
often deform or move within the frame. Currently, the process
of creating cinemagraphs requires careful scene and actor setup
to ensure that loops are possible. The footage then needs to
be manually masked per-frame. The masks and hand-selected
frames are then composited using image-editing software and
exported as an animated GIF image.

In this paper, we present an automated tool which simplifies the
authoring of cinemagraphs and expands the range of footage
that is suitable for creating cinemagraphs (shown simplified
in Figure 1). Our system aims to be efficient in terms of
computational cost and memory, as the envisioned platform
for this method is smart phones. The system functions in
several stages. First, we register the input video sequence to
remove shake. This first step separates object motion from
camera motion, and all background pixels are made static in a
common image frame. Next, we automatically isolate regions of



object motion in the registered video sequence, and allow easy
definition of still and under-motion regions in the output. Then,
we find independent loops per region and ensure that loops meet
seamlessly by interpolating new frames. Lastly, motion regions
are composited to the desired length, including the addition of
dramatic pauses, to create a cinemagraph.

2 Related work

Our algorithm can be broadly divided into three main steps:
software video stabilization, motion detection and segmentation,
and video loop generation.

2.1 Video stabilization

Two-dimensional video stabilization methods are now popular
in consumer video editing packages [16, 13]. These algorithms
estimate camera motion in the 2D image plane motion and
zoom or crop to compensate. This motion can be evaluated in
a variety of ways, including optical flow, stable feature points,
and block-based cross-correlation. These methods estimate a
global 2D transformation (such as affine or projective), and so
fail to correctly register when the camera undergoes translation.
3D video stabilization takes this a step further by finding stable
3D feature points by structure-from-motion and applying image-
based or warping techniques to cope with some parallax [9].

Liu et al. simplified 3D stabilization methods to achieve state-of-
the-art performance. They attempt to smooth camera motions
to make hand-held camera footage more pleasing to watch.
Their most recent work [10] decomposes feature point tracks
in sequences to find eigentracks. Smoothing the eigentracks,
reconstructing the feature points, and feeding these into a
temporally-aware local warp produces automatic stabilization.

2.2 Motion detection and segmentation

Motion detection and segmentation is a fundamental technique
for analysing image sequences. While motion estimation detects
regions of interest where motion happens or is likely to happen,
motion segmentation “compresses” the sequence into sets of
pixels moving coherently across the sequence with associated
motions. Estimating and segmenting motion in captured scenes
is a non-trivial task and, even though this research field has
been very active for the past decades, the problem of detecting
and segmenting motion is still open. Generally, this task is
subdivided into two steps: identifying areas of motion, and
segmenting and tracking moving objects.

For estimating areas of motion, typical methods can be
categorized into pixel-based methods (“direct”) and feature-
based methods (“indirect”, ). These include, but are not limited
to, pixel-intensity variance (background subtraction), optical
flow, image frequency analysis and block-matching algorithms.
There is a large body of literature in this area, and we can only
cite a few exemplary techniques. Methods based on background
subtraction [18] are commonly used due to their simplicity.
For instance, Reinhard et al. [20] propose a method based
on pixel-intensity variance for High Dynamic Range (HDR)

imaging of dynamic scenes. Similarly, Pece and Kautz [17]
introduce a method based on Median Threshold Bitmaps (MTB,
[28]) to detect clusters of moving pixels within a bracketed
exposure sequence using simple binary operations. Manzanera
and Richefeu [12] improve upon standard variance-based
motion estimation by accounting for temporal and local
variations (e.g., lighting and camera shake) in the context of
video surveillance. In contrast to these methods, we do not
require pixel-accurate motion estimation as we copy large
regions from our registered video volume.

A different approach to detect motion in a sequence is by
analysing its optical flow. Optical flow describes the pattern of
apparent motion of objects, surfaces, and edges in a scene [1].
Once the optical flow is computed, motion areas are found by
analysing the flow field (e.g., by thresholding). This approach
is also often used for estimating a motion-free background
plate. Wixson [29] detects motion by integrating frame-to-frame
optical flow over time. The author defines the salient motion as
the motion that tends to move in a consistent direction over time.
The saliency measure used is directly related to the distance
over which a point has traveled with a consistent direction.
Gutchess et al. [6] employed motion as metric to initialize their
background model. The authors divide the pixels into temporal
subintervals with similar values and then the “best” subinterval
belonging to the background is found as the subinterval with the
minimum average motion estimate. Mittal and Paragios [15]
also employ optical flow for their motion-based background
subtraction model. The authors use optical flow to describe
the dynamic characteristics of the scene as features in a higher
dimensional space. An estimate of the probability that the
observed data belongs to the background defines a segmentation.

With motion estimated, segmentation (and tracking if needed)
is now possible. One approach, based on multi-resolution
image pyramids, is introduced by Irani et al. [7]. However,
this solution does not involve any sort of shape tracking or
modeling, so information about scene events is not available.
Meyer and Bouthemy [14] based their segmentation step on the
work of Bouthemy and François [2], and use object outlines
(i.e., a polygonal representation) to track them. Smith and
Brady [24] introduce an optical-flow-based system to track
and segment objects. The system starts by tracking 2D image
features over time as they move across the image plane. This
flow field is segmented into clusters which have both internally
consistent and unique flow variation, and a different flow than
the background. Tweed [26] describes novel techniques that
consider occlusion and multiple moving regions. Basing his
work on analysis within local windows and using iterative
refinement, the method can relate motion types and occlusion
effects. This allows the author to easily classify motion
configuration, and thus segment the objects through an object
graph where nodes correspond to coherently moving sub-regions
and components to global moving objects. However, in our
work, we do not currently track objects in motion. Instead, we
find areas occupied by dynamic objects. This results in motion
areas where multiple objects may simultaneously appear when
motion tracks overlap in image space.



2.3 Video loops generation

Producing a cinemagraph requires the creation of a finite
duration video that can be played continuously without any
visible discontinuities. However, this task is not trivial, and
requires the original video to be split into independently moving
regions, each analyzed and rendered independently. It may also
require loop closure with new synthesized frames.

Arguably, the most influential work in video loop generation is
by Schödl et al. [23]. Their paper on video textures describes
the generation of infinitely looping video from stocastic or
periodic video. The method finds frames in the input where
a “jump” to a different frame in the sequence can be made
without noticeable artifacts. Using these jumps, the authors are
able to generate infinite loops from a finite length video. New
frame orderings are generated either randomly (a Monte-Carlo
stochastic technique) or by obtaining a subset of the original
frames that will guarantee a loop after a specific number of
frames. Rendering video textures generally includes blending
between jump frames to prevent temporal artifacts. Our pipeline
differs from video textures as we are not interested in creating
random videos (i.e., texture-like videos like waterfalls), but
instead try to find individual coherent movements that can be
repeated.

Bregler et al. [3] introduced similar work called video rewrite.
Here, the authors extract a video sequence of a person’s mouth
from a training sequence of the person speaking, then reordered
to match a new phoneme sequence from audio. Pollard et
al. [19] introduced the term video sprite for applying 3D view
interpolation to an alpha-matted region of a video rather than
to the whole image. Similarly to this, Finkelstein et al. [5]
alpha-matte video elements in their multi-resolution video work,
naming them video clip-art.

3 Approach

Our approach is summarized in Figure 2. Given a video
sequence, we first stabilize the video if necessary to remove
any motion in background regions (Sec. 3.1). Our system then
identifies regions of motion as candidates for looping (Sec. 3.2).
The user selects a subset of these regions to be animated, and
with this selection identifies an important frame to be included in
the motion (Sec. 3.3). We then automatically find loops around
these user-identified important frames (Sec. 3.4), including
synthesizing new frames to ensure smooth looping. The output
of our system is a cinemagraph with only the chosen subset of
regions in motion.

We assume that the input footage is taken either hand-held or
with a tripod, and that any camera motions are either rotations
or small translations. We also assume that at least some of the
background scene in the footage is not moving, and that any
lighting variations across the sequence are small. The remainder
of this section explains our algorithm.

3.1 Stabilization

First, we ensure that the video sequence is stable across
frames. We make the assumption in later stages (Sec. 3.2)
that background pixels do not move, so here we try to remove
as much ego-motion as possible. Tripod shots are not stabilized
unless they intentionally rotate, and any minor shake of the
camera while on the tripod (creating small motions at image
edges) is effectively filtered out in later stages.

We tested existing algorithms in off-the-shelf stabilization tools
to see whether they were suitable for our task. We set both
Deshaker (a 2D stabilizer plugin for VirtualDub) and the Warp
Stabilizer in Adobe After Effects (an implementation of the
recent work by Liu et al. [10]) to remove all motion to register
our videos. Figure 3 shows a comparison on mean images.
Unfortunately, both systems failed to remove all motion in the
background. The warp stabilizer was confused by small object
motions and introduced distortion into the background. Instead,
we find KLT feature tracks through our video volume. We
reject tracks with RANSAC that suffer large reprojection errors
(d > 0.8) after fitting a standard camera model. Then, we
locally warp the volume on a frame-by-frame basis using as-
affine-as-possible moving least squares [22]. As the KLT tracks
are temporally coherent and do not follow moving objects, this
successfully registers background pixels in our examples. This
is similar in spirit to the recent method of Ryu et al. [21], though
we employ a more advanced warping technique.

3.2 Segmentation

As discussed in Sec. 2.2, motion detection and segmentation is
an unsolved problem with many intricacies. We wish to create a
fast and robust tool, but not to necessarily separate overlapping
motion regions. Many methods that attempt complex motion
segmentation are computationally expensive, and sometimes
fail to produce sufficiently accurate occlusion boundaries. This
would lead to strong artifacts in the output. We feel our approach
of not separating overlapping motions is a suitable compromise
which does not lead to these kinds of artifacts.

There are many ways to identify objects in motion in registered
video. We tested Chebyshev distance (maximum absolute
differences between each frame and the mean image across all
frames), accumulated variance [23], accumulated optical flow
[29], blur detection on the mean image (where smooth regions
signify motion from averaging different pixels) [8], structural
similarity (SSIM) [27], visual difference prediction (VDP) [11],
and bitmap motion detection (BMD) [17].

Since producing quantitative differences for motion masks
is somewhat ill-defined, as motion difference is a perceptual
property, we provide a qualitative comparison (Fig. 4).
Anecdotally, the Chebyshev distance provided a good quality
mask in the fastest time (33ms, all timings per 960x540 frame
in MATLAB averaged over a 434 frame video). SSIM provided
a conservative mask, but computation times were 3x longer than
Chebyshev (106ms). Accumulated variance failed to detect
motions which covered the background only briefly over long
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Figure 2: Algorithm summary. Video is stabilized only if necessary, but all other operations always occur. Loop creation
includes interpolating new frames to seamlessly close loops.

sequences (67ms), and blur detection failed similarly while
being computationally expensive (3516ms, though it produced
better results than other approaches in lightly textured regions
such as clothing). Accumulated optical flow produced good
results at edges but is more expensive (212ms), BMD was
too sensitive to noise (45ms), and VDP, which as given is not
intended for this use, was too sensitive to any changes at all
(7275ms).

For time-critical applications, such as on a mobile device, the
Chebychev distance provides a good mask quickly. For less
constrained applications, we would use SSIM. For both, we
compute an initial threshold value one standard deviation above
the mean distance, and obtain a binary mask that identifies pixels
with underlying motion.

The pixel-level mask produced by the thresholding step is
processed to represent locally moving objects by removing small
elements (area < 0.1% of the image size), filling holes, and
computing the convex hull of connected components. We then
present these conservative regions to the user for selection.

3.3 User input

The user is shown moving regions for selection as desaturated
regions against a coloured faded background (Fig. 5). Scrolling
the mouse wheel changes the threshold used for the binary
mask, which quickly adds or subtracts motion regions. This is
not usually necessary, and is intended for small motion regions
or for artistic effects. If desired, the user can go further and
paint on the mask to make fine adjustments. The user is free to
move through frames to see the effect of the mask on the video
volume. When left clicking on a highlighted region, the user
indicates that this particular frame is a key frame to be included
within a moving region in the cinemagraph. In this way, they can
be sure to capture a specific part of the sequence in an output
loop. When right clicking, the user requests that region to
freeze on a particular frame for the duration of the cinemagraph.
Although we provide options for control and fine adjustment,

unless desired, the user need only click once per region to select
moving regions for the creation of a cinemagraph.

3.4 Loop generation

Once motion regions have been selected and the mask computed,
the next step is to generate a seamless, looping sequence from
the stabilized video. We compute the sum of squared difference
(SSD) matrix [23] for each masked motion region. The SSD
signifies similarity between frames in the motion region, i.e., a
loop without temporal artifacts requires a small SSD between
the first and the last frame. The user has specified a key frame
that they wish to be in the looping motion region, so we use
this as a starting point for a loop search within the matrix. We
perform an iterative search over loop length and SSD thresholds.
We start with a small SSD threshold (1% of max difference of
region area), and search increasingly large loops around the
key frame. If a loop is found with SSD less than the threshold
then we keep it. We then increase the threshold and repeat the
loop search. This generates a list of possible loops containing
the key frame, sorted first by order of SSD and then by length.

Given this list, we ask the user to pick an output length (from
the minimum to the maximum loop length discovered). We find
the lowest-scoring best-matching-length loop for each motion
region. As many cinemagraphs play on the idea that the viewer
is looking at a photograph, then reveal motion later, we also
ask the user whether they would like to include a period of still
frames at the beginning of the cinemagraph.

Not all input footage lends itself to loop well and, even if it
is captured so, objects rarely match exactly. To correct this,
we interpolate frames at the end of the looping cinemagraph to
smoothly return to the starting frame. We compute SIFT flow
[8] bi-directionally between the start and end frames, generate
interpolated frames by scaling the vectors between them, then
blend each frame (source to target blended with target to source)
to generate an output frame. Often, minor background motions
will appear to pop if this blending is not computed. We also



Figure 3: Video registration results. Top: Deshaker
(2D) mean image. Middle: Warp stabilizer (subspace)
mean image. Bottom: Our method mean image, which
is less blurry. Zoom-in cutouts are outlined in red (2.5x
magnification).

tested optical flow as a method for interpolation [25], but found
SIFT flow gave superior results.

The final step is to composite the moving objects onto the mean
image, per frame, using the spatial mask. We feather the edges
of the mask to reduce aliasing and better cope with any minor
lighting variations in the scene.

3.5 Results

Input, output and supplementary videos are available
here: http://www.cs.ucl.ac.uk/research/vr/
Projects/AutoCinemagraphs/.

Please refer to our supplementary video to see input footage and
output cinemagraphs. In one of the eye examples, hair flicks in
front of the eye and causes what looks like a blending artefact:
this is not a blending artefact; rather, it is a problem of finding
a good loop that considers this fine detail hair. For a 960x540
video frame, our CPU stabilization takes under 5000ms per
frame (750ms for KLT tracking, and 4096ms for moving least
squares warping). Mask creation timings are given in section
3.2, and are either 33ms or 106ms. Mask cleaning takes 20ms.
For a 130x140x434 motion region, SSD matrix computation
takes 136s. Loop finding takes 5s, frame interpolation takes
70s for the bi-directional blend, and final composition and file
writing takes 33ms per frame. In total, our system takes just
over 5 seconds per video frame, plus one-off costs totaling 75s
plus approximately 33ms per region per frame selected (varying
by size).

Admittedly, this is currently too long: a professional artist with
the right footage and tools may be able to work quicker than
our system. However, for novice users without the skills or
professional tools we feel this is still a reasonable time to
wait, especially as our approach is somewhat robust to ‘bad’
footage containing shake and mismatching loops (something
that is more difficult to fix or takes time even with professional
skills and tools). Of course, our naı̈ve method could be faster,
and many of the methods we use have corresponding GPU
implementations. A production system exploiting them would
see timings significantly reduced. Finally, while we think this
would be an ideal application for a smart phone, even with GPU
acceleration mobile users may find the waiting time too much.
Use of a tripod (or a very steady hand) would reduce this time
significantly as stabilization could be skipped.

4 Conclusion

We have presented a system to assist in the authoring of
cinemagraphs. Our system can run automatically, only requiring
the user to select which regions of motion to keep in the output.
If desired, the user can edit the motion mask in two ways: by
varying a threshold on the motion detection and by correcting
mask regions manually. In addition, the user may select non-
moving motions to be freezed at any frame. We find loops
within the video sequence around user-specified key frames,
and then ensure loop closure with frame interpolation. Users
can add dramatic pauses to the cinemagraph to enhance the

http://www.cs.ucl.ac.uk/research/vr/Projects/AutoCinemagraphs/
http://www.cs.ucl.ac.uk/research/vr/Projects/AutoCinemagraphs/


Figure 4: Motion segmentation comparison. Top, left to right: Mean image (person and leaves are moving); Chebychev;
SSIM; accumulater variance. Bottom, left to right: Accumulated optical flow; blur analysis; BMD; VDP.

Figure 5: Top: A frame from a highway timelapse video.
Middle: Automatically computed mask. Bottom: Interface
for region selection. The background is faded and unselected
regions are desaturated. As the user clicks to add motion
regions to the cinemagraph, the regions saturate with colour.

motion effect. The output of our system is a seamlessly looping
cinemagraph.
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