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Abstract

Large Language Models (LLMs) are distinguished by their massive parameter
counts, which typically result in significant redundancy. This work introduces
MaskLLM, a learnable pruning method that establishes Semi-structured (or “N:M”)
Sparsity in LLMs, aimed at reducing computational overhead during inference.
Instead of developing a new importance criterion, MaskLLM explicitly models
N:M patterns as a learnable distribution through Gumbel Softmax sampling. This
approach facilitates end-to-end training on large-scale datasets and offers two
notable advantages: 1) High-quality Masks - our method effectively scales to
large datasets and learns accurate masks; 2) Transferability - the probabilistic
modeling of mask distribution enables the transfer learning of sparsity across
domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs,
including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to
15B parameters, and our empirical results show substantial improvements over
state-of-the-art methods. For instance, leading approaches achieve a perplexity
(PPL) of 10 or greater on Wikitext compared to the dense model’s 5.12 PPL, but
MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks
with frozen weights. Furthermore, MaskLLM’s learnable nature allows customized
masks for lossless application of 2:4 sparsity to downstream tasks or domains.
Code is available at https://github.com/NVlabs/MaskLLM.

1 Introduction
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Figure 1: Learnable N:M sparsity for
Large Language Models.

Large Language Models (LLMs) have demonstrated re-
markable effectiveness across a diverse range of tasks [17,
6, 46, 11]. However, the generality and robustness of
LLMs are largely attributed to their vast scale, with pa-
rameter counts ranging from one billion to several hun-
dred billion [37, 43, 5]. This substantial model size, in
turn, makes it challenging and resource-intensive to de-
ploy LLMs in real-world applications. One effective and
practical approach to address this issue is semi-structured
pruning [27, 30, 10, 36], which introduces N:M sparsity
into LLMs to improve both memory and computational
efficiency. The N:M pattern, with N non-zero values

†The work was done at NVIDIA
‡Corresponding Authors: Pavlo Molchanov, Xinchao Wang

Preprint. Under review.

https://github.com/NVlabs/MaskLLM


among M consecutive parameters, is typically hardware-friendly to accelerators like GPUs and has
thus garnered considerable attention [10, 36, 30].

Despite the simplicity of its core idea, semi-structured pruning still presents considerable challenges
within the realm of LLMs. Sparsity aims to identify a subset of parameters that attain a comparable
quality to the dense model. Nevertheless, the extensive parameter scale of large language models
usually leads to a vast search space. In a fully sparsified LLaMA2-7B model with 2:4 sparsity, for
instance, there are 1.6 billion 2:4 masks to be chosen for dense layers. This makes the combinatorial
problem of finding the optimal mask set exceedingly challenging. In the literature, leading approaches
such as SparseGPT [10] and Wanda [36], utilize a small calibration set and carefully designed
importance criteria to identify redundant parameters. While these techniques have demonstrated
remarkable results on several large language models, two substantial challenges remain: Firstly, the
small calibration set is insufficient to represent the comprehensive knowledge embedded in
LLMs, which are pre-trained on extensive and diverse data domains [37, 7, 29]. As demonstrated in
our experiments, hand-crafted importance criteria are only applicable to a compact subset of data, and
enlarging the calibration set beyond 256 entries does not improve the resulting quality. This limits
the generalizability of pruned LLMs in different domains. Secondly, using handcrafted criteria
as a proxy for the true discrepancy inevitably results in errors. A considerable gap remains
between the real discrepancy induced by pruning and existing importance indicators, such as gradient
information [28], weight magnitude [13], and the Hessian Matrix [21, 10].

To tackle the outlined challenges, we propose MaskLLM, a learnable method that facilitates end-to-
end training of LLM sparsity on large-scale datasets. In the context of N:M sparsity, pruning an LLM
involves selecting masks from a discrete and finite set. However, the non-differentiability of mask
selection and combination hinders the direct use of backpropagation for mask learning. To address
this, our work frames the mask selection problem from a probabilistic perspective, associating each
candidate mask with a probability and modeling the mask selection as a stochastic sampling process.
We incorporate the Gumbel Softmax [19] for differentiable sampling, which re-parameterizes the
randomness of sampling into an independent random variable. This makes the probabilities of
each mask candidate optimizable with gradient descent. During training, MaskLLM aims to learn
appropriate mask distributions, from which the sampled masks can preserve the original quality of
dense LLMs. The differentiable mask offers two advantages in addressing the challenges mentioned
above: (1) it effectively scales to large-scale datasets, thereby preserving the rich knowledge in LLMs,
and (2) the end-to-end training explicitly optimizes the language modeling loss of LLMs, which
exactly measures the discrepancy induced by pruning. Furthermore, inspired by the power of transfer
learning, we introduce prior masks, a simple strategy to fully leverage pre-computed masks and
enable fast transfer learning of sparsity across domains and tasks as illustrated in Figure 1

To evaluate the proposed method, we conduct experiments on several LLMs including LLaMA-2 7B,
LLaMA-2 13B [37], Nemotron-4 15B [29], and two in-house LLMs, GPT-3 843M and GPT-3 2B
pre-trained using Megatron framework [34]. Our method can learn high-quality masks for pruning
through end-to-end training on large-scale datasets. For example, compared to SparseGPT which
archives a perplexity (PPL) of 10.42 on LLaMA-2 7B, our method improves the PPL to 6.72, without
any update to the LLM parameters. Besides, our method facilitates the learning of domain-specific
masks, which can even achieve lossless compression of LLMs on some downstream tasks or domains.

The principal contribution of this work lies in a learnable method for semi-structured pruning of
LLMs. MaskLLM is designed to fully harness large-scale datasets to learn accurate masks, applicable
to both general-purpose and domain-specific pruning. Additionally, the framework facilitates the
transfer learning of sparsity patterns across different tasks, enabling efficient training of sparsity.

2 Related Works

Pruning Large Language Models. Network Pruning [13, 28, 15, 16, 39] have been proven an
efficient approach to compress pre-trained language models via the removal of redundant parameters.
According to the granularity of pruning, existing methods can be classified into three categories:
Structured Pruning [24, 41, 22], Unstructured Pruning [15, 13], and Semi-Structured Pruning [10,
36, 27, 30, 31]. Structured pruning physically eliminates substructures like attention heads [24],
embeddings or depth [41] in the model, facilitating acceleration independent of specialized hardware
or software infrastructure [30]. However, structured approaches typically necessitate huge retraining
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efforts to recover network quality due to coarse removal of parameters [24, 41, 25, 2]. Conversely,
unstructured methods aim to find a sparse model by zeroing out parameters in LLMs, which is
characterized by its flexibility and minimal detrimental effect on LLMs’ accuracy [10, 36, 18, 40, 42].
The acceleration of sparse models is typically impeded by the irregular nature of the resulting sparse
patterns, presenting challenges in achieving computational efficiency. Positioned between structured
and unstructured methods, the semi-structured approach introduces hardware-friendly patterns such as
N:M sparsity, which leaves only N nonzero values in each group of M values and thereby harmonizes
the acceleration benefits of a structured pattern with the flexibility of fine-grained sparsity [30, 31, 10].
In this study, we focus on N:M semi-structured sparsity within Large Language Models and present a
learnable framework to obtain high-quality masks via end-to-end training.

Learnable Semi-Structured Sparsity. On another hand, a burgeoning interest exists in developing
learnable masks [47, 23, 45], especially in the field of vision models. Markedly contrasted with
traditional one-shot pruning methods that rely on a predetermined metric of importance, learnable
sparsity can fully leverage the rich information in training data, enabling the identification of more
effective sparsity masks. A particularly popular strategy is to directly update the network weight, such
as pushing partial weights to zero with Sparse-Refined Straight-Through Estimator (SR-STE) [3, 15,
23] or permuting parameters to achieve better quality [31]. Other methods learn additional indicators
to reveal the importance of weight, such as differentiable indexing [33], optimizable combination [45],
or decaying [20]. In this work, we make the first attempt to learn N:M masks for frozen LLMs, which
is much more challenging due to the huge parameter amount and problem scale.

3 Method

3.1 N:M Sparsity

We motivate and introduce a learnable framework, MaskLLM, to sparsify Large Language Models
(LLMs) for improved inference efficiency. Sparsifying an LLM with N:M patterns imposes the
constraint of having (no more than) N non-zero values within each consecutive set of M parameters.
This task can be formulated as a mask selection problem with the candidate set of |S| =

(
M
N

)
=

M !
N !(M−N)! candidates, where |S| denotes the size of the candidate set, and

(
M
N

)
represents the

combination number of potential N:M masks. For simplicity, this work primarily focuses on 2:4
sparsity, which can be naturally extended to other patterns such as 1:4 and 4:8. Given a parameter
block comprising four consecutive parameters, denoted as W ∈ R1×4, the goal of sparsification is
to identify the optimal binary mask M∗ ∈ B1×4 of the same size, ensuring that the pruned weight
maintains its behavior on observed data x ∼ p(x). For 2:4 sparsity, the binary mask M must contain
exactly two zeros, resulting in a discrete candidate set S2:4 with |S2:4| =

(
4
2

)
= 6 candidates:

S2:4 = {M ∈ B1×4|
∑

M = 2} = {M̂1,M̂2,M̂3,M̂4,M̂5,M̂6} (1)

= {[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1]}. (2)

For an LLM, there exists a substantial number of parameter blocks, denoted as {Wi}, each requiring
the selection of corresponding masks {Mi}. To maintain satisfactory behavior after pruning, it is
natural to define the following objective for N:M sparsity:

{M∗
i } = argmin

{Mi|Mi∈S2:4}
Ex∼p(x) [LLM (x; {Wi ⊙Mi})] , (3)

where LLM refers to the language modeling loss for pre-training. The operator ⊙ denotes element-
wise multiplication, which masks partial parameters for sparsification. However, finding the optimal
combination of masks M∗ can be extremely challenging in the context of LLMs due to the non-
differentiable nature of mask selection and the huge parameter scale. In the following sections, we
demonstrate that the mask selection can be transformed into a sampling process.

3.2 MaskLLM: Learnable Semi-Structured Sparsity

Consider a single parameter block W ∈ R1×4 consisting of only 4 parameters: directly determining
the exact optimal mask for this block is not feasible, since the behavior of the pruned LLM also
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Figure 2: This work introduces learnable semi-structured sparsity for LLMs. MaskLLM models
mask selection as a distribution learning problem, enabling the creation of accurate masks through
end-to-end training on large-scale datasets. The learned and general mask can be further transferred
to downstream tasks or domains, achieving lossless compression.

depends on the pruning of other parameter blocks. Nevertheless, it remains feasible to sample masks
independently for each block and assess the overall model quality after pruning. To facilitate random
sampling of M, we define a categorical distribution with class probability p1, p2, . . . p|S|, which
satisfy

∑
j pj = 1. During the random sampling phase, if a certain mask achieves good quality

during pruning, it’s reasonable to adjust the categorical distribution by increasing the probability of
the sampled mask. With sufficient sampling and updates, this process ends with a distribution where
the mask with high probability is more likely to maintain good quality after pruning. Formally, we
model the combination problem in Equation 3 from the perspective of random sampling:

{p∗(Mi)} = argmin
{p(Mi)}

Ex∼p(x),Mi∼p(Mi) [LLM (x; {Wi ⊙Mi})] , (4)

where p(Mi) refers to the categorical distribution of i-th mask Mi. If it is feasible to get the
gradient w.r.t. the distribution, then the above objective can be optimized with gradient descent
as demonstrated in Figure 2. Nonetheless, drawing samples from a categorical distribution is still
non-differentiable.

Differentiable Sampling of Masks An effective method to model a sampling operation is Gumbel
Max [12], a re-parameterization trick that disentangles the randomness of sampling into a noise
variable. This trick introduces a method to draw samples from the categorical distribution p with an
additional noise variable ϵ. It produces the one-hot index y for sampling:

y = onehot(argmax
i

[log(pi) + gi]), gi = − log(− log ϵi), ϵi ∼ U(0, 1), (5)

where ϵi is a random noise following uniform distribution, and the gi = − log(− log ϵi) is known
as the Gumbel noise. With the Gumbel Max trick, the randomness of sampling is parameterized to
an independent variable gi. The only issue towards differentiable sampling lies in the argmax and
onehot operation. To address this, we leverage Gumbel Softmax [19] to approximate the index with
Softmax, leading to a soft and differentiable index ỹ = [ỹ1, ỹ2, . . . , ỹ|S|]:

ỹi =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

. (6)

The temperature term τ is a hyper-parameter, controlling the hardness of the sampled index. While
τ → 0, the soft index will be more close to a one-hot vector, resulting in ỹi → yi. With the soft index
ỹ as a row vector and the mask set S as a matrix where each row i refers to the i-th candidate mask
M̂i, it’s easy to craft a differentiable mask through a simple matrix multiplication:

M̃ = ỹ × S =

|S|∑
i=1

ỹi · M̂i. (7)

This operation produces a weighted average of candidate masks according to the soft index. As
shown in Figure 3, we can find all operations, including the sampling and weighted averaging are
differentiable, and the gradient w.r.t. the probability p can be easily computed. This allows using the
differentiable mask M̃ to optimize the sampling problem defined in Equation 4.
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Figure 3: Drawing a random mask from the learnable distribution with Gumbel Softmax. Each
consecutive M parameters are associated with a learnable distribution for candidate masks. All
illustrated computations, including Gumbel Softmax, and the weighted averaging are differentiable.

Learning Masks for LLMs Equation 7 provides a differentible mask sampled from the underlying
distribution p. The gradient flow can easily reach the probability pi, making it an optimizable variable
in the system. Typically, we do not directly learn the probability and instead, learn the logits πi with
a scaling factor κ, which produces the probability as pi = exp(πi·κ)∑

j exp(πj ·κ) . As will be discussed in
Section 4.3, the scaling factor κ will be used to balance the relative magnitude of logits and Gumbel
noises, which controls the randomness of sampling. During training, all parameter blocks {Wi} are
associated with the corresponding distributions {pπ(Mi)}, and optimal distribution can be learned
in an end-to-end manner. However, our empirical experiments on several large language models
reveal a new issue with the learnable masks: the gradient may vanish due to the pruning operation
that produces zero parameters in the network. This issue will adversely affect downstream transfer
and fine-tuning. To address this, we introduce Sparse Weight Regularization, which maintains an
appropriately large magnitude in the remaining weights, leading to the following learning objective:

min
{pπ(Mi)}

Ex,M̃i∼pπ(Mi)

[
LLM (x; {Wi ⊙ M̃i})

]
− λ

∑
i

∥Wi ⊙ M̃i∥22. (8)

The regularization term weighted by λ encourages a large magnitude after pruning.

Transfer Learning of Sparsity. Transfer learning is one of the most popular paradigms in deep
learning. In this section, we show the feasibility of transfer learning in sparsity, which crafts new
masks by inheriting pre-computed ones. The pre-computed masks can be obtained with oneshot
pruning methods like Magnitude Pruning [13], SparseGPT [10] and Wanda [36], or produced by
another learning process. Note that given a probability [p1, p2, . . . , p|S|], the transformation to the
final mask is straightforward with a simple argmax. However, if it is possible to map a pre-computed
mask back to the class probabilities, then the proposed MaskLLM can begin with a good initialization
for sampling. This can hugely improve learning efficiency and quality. To achieve this, we propose
Mask Prior, a simple technique to initialize a distribution. Given a prior mask denoted as M0, we
compute its similarity to all candidate masks as:

sim(M0,M̂i) = M0M̂⊤
i − 1

|S|
∑
i

(MiM̂⊤) = MiM̂⊤ − (N/2), (9)

which computes the inner product of two masks and re-centers the results with the mean. Note that
for N:M sparsity, the range of M0M̂⊤

i will always be [0, N ], the mean value
∑

i(MiM̂⊤) = N/2
is a constant. For candidate masks with high similarity to the prior mask, we increase its probability
at the initialization stage with:

π′
i = πi + σ(π) ∗ sim(M0,M̂i) ∗ α, (10)

where σ(o) is the standard deviation of logits and α is a hyper-parameter that controls the strength of
prior. When α = 0, we learn the differentiable mask without any prior from one-shot methods.

Method Summary. The learning process of MaskLLM is straightforward. We begin with randomly
initialized logits and update it with prior masks as Equation 10 if available. Then we optimize the
logits to solve the objective in Equation 8. The mask Mi with the largest logits will be taken as the
final mask for inference. This process is summarized in Algorithm 1.
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Algorithm 1 MaskLLM: Learnable Semi-Structured Sparsity for LLMs (2:4)

1: procedure DIFFERENTIABLEMASK(π, S)
2: Obtain the soft index ỹ = exp((πi·κ+gi)/τ)∑

j exp((πj ·κ+gj)/τ)
, gi = − log(− log ϵi), ϵi ∼ U(0, 1).

3: Compute the differentiable mask M̃ = ỹ × S =
∑|S|

i=0 pi · Mi

4: return M̃
5: end procedure
6: S = {M̂1,M̂2, . . . ,M̂|S|} = {[1, 1, 0, 0], [1, 0, 1, 0], . . . [0, 0, 1, 1]}
7: ▷ Parallel for all parameter blocks W:
8: Initialize logits πi ∼ N (0, σ) for the parameter block W
9: Incorporate prior π′

i = πi + σ(π) ∗ sim(M0,M̂i) ∗ α with prior mask M0

10: while Training not terminated do
11: M̃ = DifferentiableMask(π,S)
12: Update logits π with ∇π[LLM (x;W ⊙M̃)− λ∥W ⊙ M̃∥22]
13: end while
14: Get the index k = argmax(π)

15: Obtain the mask M∗ = M̂k for pruning

4 Experiments

4.1 Implementation Details.

We evaluated MaskLLM on three large language model families, ranging in size from 843M to 15B
parameters. This included public models like LLaMA-2 7B and 13B [37], Nemotron-4 15B [29], and
two in-house models, multilingual GPT-3 843M and 2B [34]. For LLaMA-2 and Nemotron-4, we
collected a blended training set following the original papers [34, 29] for training. For the GPT-3
multilingual models, we used the original training set for mask learning. To learn masks, we trained
the Gumbel logits for 2,000 steps without updating the LLM parameters. For evaluation, we follow
SparseGPT [10] to use C4 dataset [32] for one-shot pruning and Wikitext [26] for evaluation. In
addition, we also deploy LM-Eval-Harness [11] for zero-shot evaluation. More details about the
models, datasets, training, and evaluation can be found in the appendix.

4.2 Learning 2:4 Sparsity in LLMs

Finding 1. Learnable Sparsity scales effectively to large-scale datasets and can fully leverage
computational resources to learn precise masks through end-to-end training.

End-to-end training yields accurate masks. In Table 1, we report the perplexity and accuracies
of our method, compared to three 2:4 sparse baselines: Magnitude Pruning [14], SparseGPT [10],
and Wanda [36]. Previous works can produce satisfactory 2:4 masks efficiently but often suffer
from inaccurate estimation of weight importance. The inaccuracy mainly arises from two factors:
(1) Accuracy of importance metric: Due to the difficulty of computing the error caused by pruning,
existing methods use approximated metrics to estimate weight importance, which inevitably results
in errors. (2) Scalability: LLMs are usually pre-trained on large-scale datasets with rich knowledge,
but the calibration sets used in existing methods contain very limited samples. With the learnable
mask, the above challenges can be naturally addressed through end-to-end training on large-scale
datasets, which directly optimizes the language modeling loss. As illustrated in Table 1, MaskLLM
yields superior results compared to existing baselines. For instance, with the LLaMA-2 7B model, the
proposed method learns a mask with a PPL of 6.72, which is better than the PPL of 10.42 obtained
by SparseGPT with weight update. More results such as comparison to other baselines (Table 13)
and visualization of mask difference (Figure 8) can be found in the appendix.

Scaling to large-scale datasets. To further elaborate on the above analysis, we illustrate the
relationship between the number of consumed samples and the Wikitext PPL of pruned LLaMA-
2 7B in Figure 4. For one-shot methods such as SparseGPT, all consumed samples are used to
compute the Hessian for importance estimation. Increasing the calibration set size from 32 to 256
samples improves the results, but expansion beyond 256 samples yields no notable advantages.
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Method Wikitext PPL HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.

LLaMA-2 7B [37] 5.12 57.03 44.11 78.07 69.39 75.38 42.92 33.20 57.16
- Magnitude 54.71 44.60 33.01 68.93 61.56 60.23 31.40 23.60 46.19
- SparseGPT 10.42 43.36 36.84 71.38 63.69 62.84 29.18 22.80 47.16
- Wanda 11.29 41.05 35.02 70.78 62.67 61.99 27.56 22.80 45.98
- MaskLLM 6.72 50.91 40.77 74.92 64.48 69.57 36.00 28.00 52.09

LLaMA-2 13B [37] 4.57 60.15 44.59 79.27 72.45 78.93 47.18 34.60 59.60
- Magnitude 8.32 48.69 38.47 70.24 59.67 61.32 29.69 22.00 47.15
- SparseGPT 8.20 48.62 39.62 74.54 70.00 70.29 36.00 27.20 52.32
- Wanda 8.47 46.96 38.09 74.05 66.69 68.64 34.81 25.00 50.61
- MaskLLM 5.85 55.09 41.24 77.69 67.80 73.15 40.44 30.00 56.74

Nemotron-4 15B [29] 5.78 62.60 47.75 81.34 77.11 77.69 50.77 33.00 61.47
- Magnitude 2.78E+03 26.30 21.91 54.62 50.67 29.29 18.52 15.60 30.98
- SparseGPT 13.38 47.06 40.86 75.73 68.90 66.96 31.83 26.60 51.13
- Wanda 25.05 41.13 34.16 71.71 61.72 58.46 29.78 23.80 45.82
- MaskLLM 7.31 55.92 45.45 76.22 69.14 75.93 43.94 30.60 56.74

GPT3 2B [34] 9.35 47.74 36.94 75.73 61.09 63.22 29.78 27.80 48.90
- Magnitude 6.02E+04 28.52 24.50 57.62 51.93 33.33 21.67 15.40 33.28
- SparseGPT 22.14 34.93 29.28 66.60 54.62 53.07 22.10 16.20 39.54
- Wanda 27.08 34.61 29.76 67.14 53.20 49.79 22.44 16.80 39.11
- MaskLLM 11.42 42.64 33.88 73.34 58.72 57.37 26.02 21.80 44.82

GPT3 843M [34] 12.42 39.24 33.59 70.02 54.30 53.20 21.67 21.40 41.92
- Magnitude 1.15E+04 25.84 21.82 55.66 50.75 28.41 19.20 15.20 30.98
- SparseGPT 38.78 30.26 28.33 63.38 51.62 39.27 18.86 14.80 35.22
- Wanda 51.37 30.44 28.52 61.64 49.96 40.82 18.17 14.80 34.91
- MaskLLM 15.39 34.65 30.91 66.76 51.86 49.07 20.48 20.00 39.10

Table 1: Evaluation of 2:4 Sparsity with frozen weights (SparseGPT does perform the weight update
step). One-shot pruning methods are calibrated with C4 and evaluated on Wikitext-2 following [10].
More results for Llama-3 [1] or other SOTA methods can be found in Table 12 and 13 of the appendix.
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2 7B. MaskLLM requires 128 samples for the prior
and outperforms SparseGPT after 1280 samples.

In contrast, our proposed learnable method effec-
tively scales to large datasets. Results in Figure
4 show that increasing the number of samples
within our framework consistently improves
mask quality, with positive results still observ-
able when scaling up to 512k samples. Addi-
tionally, our method is also data-efficient and
thus applicable to low-resource scenarios with
only 1280 samples. With a batch size of 256,
the learnable mask is updated for only 5 steps
and still produces slightly better masks than
SparseGPT. If limited to only one or two steps,
the training-based method fails to be comparable
to one-shot methods, as this limits the random
exploration for finding high-quality masks.

4.3 How to Learn a Good Mask for LLMs

Finding 2. Taking pre-computed masks as prior improves training efficiency and mask quality.

Transfer Learning with Mask Prior. An important feature of the proposed method lies in transfer
learning. We can initialize the Gumbel logits with pre-computed masks, which significantly accelerate
the training. In Table 2, we learn masks using different prior types, including Magnitude prior [13],
SparseGPT prior [10], and Wanda prior [36]. Firstly, even without any prior, the learnable mask still
achieves superior quality compared to the existing baseline methods, demonstrating its capability
to discover high-quality masks through end-to-end training. However, learning accurate masks in
only 2,000 steps can be challenging due to the massive parameter scale of LLMs. Using prior masks
pre-computed by one-shot methods can provide substantial benefits. For example, with the Magnitude
prior that can be easily pre-computed according to the weight magnitude, we can improve the wikitext
perplexity of LLaMA-2 7B from 9.12 to 6.77.
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Figure 5: (a) The L1 distance of sampled masks between adjacent training steps. (b) The maxi-
mum probability of mask distribution, serving as an indicator of convergence. In our method, the
randomness of mask sampling is regulated by the scaling factor κ. A too-small κ introduces huge
randomness, resulting in slow convergence as shown in (b). And an inappropriately large κ will
suppress mask exploration and yield zero mask difference throughout the training process in (a).

Prior Type GPT-3 843M GPT-3 2B LLaMA-2 7B
Prior Mask Learned Mask Prior Mask Learned Mask Prior Mask Learned Mask

Magnitude 1.15E+04 16.07 6.02E+04 12.06 54.71 6.77
SparseGPT 79.84 15.39 24.43 11.59 10.46 6.72
Wanda 51.37 16.39 27.08 12.18 11.29 6.80
No Prior - 18.62 - 14.31 - 9.12

Table 2: The effectiveness of transfer learning with prior masks. We report the Wikitext PPL of both
prior and learned masks. The learned masks use the corresponding prior for initialization and refine
the logits through end-to-end training. All results are obtained with frozen weights.

Finding 3. The randomness of sampling is crucial for mask learning.

Encouraging stochastic exploration on candidate masks. At the early stage of mask learning, the
optimal mask is unknown. The stochastic sampling with Gumbel softmax allows for the exploration
of different candidate masks, which is crucial for effective learning. As mentioned in Section 3.2, the
scaling factor κ controls the randomness of sampling. To illustrate this, we visualize the learning
process in Figures 5a and 5b, showing the mask difference between adjacent steps and the maximum
probability of the learnable distribution, respectively. With a large factor, such as κ=1e5, the Gumbel
softmax will be dominated mainly by the logits rather than the Gumbel noises, which produce similar
masks with high confidence throughout the training process. In contrast, with a small scaling factor,
such as κ=1, the Gumbel noises contribute more to the sampling. As illustrated in Figure 5a, the
mask is continuously changing during training, leading to slow convergence. Therefore, selecting an
appropriate scaling factor is crucial, which should guarantee sufficient randomness and an acceptable
convergence speed. In this work, we use a κ=1e2 and linearly increase it to 5e2 for all experiments.

Finding 4. Maintaining a large magnitude of the remaining weights improves downstream tasks.

Task w/o Reg. w/ Reg.

Mask-only 11.59 11.42
Sub-domain 7.61 7.39
Finetuning 10.21 9.96

Table 3: Weight Regularization on re-
maining weights helps mask learning

Maintaining a large magnitude of the remaining weights.
In Equation 8, we introduce a regularizer in the form of
−λ

∑
i ∥Wi ⊙ M̃i∥22. This regularizer is crucial for both mask

learning and transfer learning, as it directly influences the mag-
nitude of gradients during training. For instance, if certain
layers are pruned to a small magnitude, the gradients passed to
their inputs will also diminish, thereby impeding mask learning
and transfer to downstream tasks. In Table 3, we demonstrate
the effectiveness of weight regularization under different sce-
narios, such as mask training, LLM fine-tuning after pruning, and transfer learning to downstream
tasks. As will be elaborated in subsequent sections, the proposed regularization helps the learning of
lossless masks for downstream tasks. We provide more analysis in Section F of the Appendix.
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Domain C# HTML Pascal Story French Japanese Chinese OpenWeb Average
GPT3-2B Dense 1.78 1.54 2.50 14.76 9.71 8.75 8.25 12.05 7.42
- Magnitude 1.38E+03 1.72E+03 1.64E+03 2.12E+05 6.950E+02 5.67E+02 7.22E+02 1.23E+05 4.27E+04
- SparseGPT 2.54 2.41 3.86 30.37 26.99 28.69 26.93 28.66 18.80
- SparseGPT-Update 2.20 2.11 3.09 25.43 20.35 22.34 20.55 26.69 15.36
- Wanda 2.86 2.68 4.75 40.07 31.37 36.75 33.03 35.34 23.36
- MaskLLM 1.76 1.54 1.94 15.58 9.61 7.96 6.92 13.84 7.39

Domain CUDA VHDL Javascript BigScience Reddit-Plus Book Arxiv MedAbs Average
LLaMA2-7B Dense 1.74 1.86 2.01 6.28 11.05 7.02 3.49 4.95 4.80
- Magnitude 9.92 13.60 2.52 66.80 81.56 72.95 32.17 29.31 38.60
- SparseGPT 2.09 2.30 2.52 9.57 15.46 9.91 4.54 6.73 6.64
- SparseGPT-Update 1.91 2.08 2.32 9.63 14.52 9.78 4.21 6.14 6.32
- Wanda 2.32 2.59 2.80 11.56 18.62 12.83 5.23 8.36 8.04
- MaskLLM 1.80 1.83 2.01 6.88 10.12 8.10 3.51 4.95 4.90

Table 4: Learning customized masks for downstream tasks with frozen LLM weights.

Mask Type Avg. Task PPL

Dense 7.42
General Mask 10.61
Scratch Mask 7.51
Transfer Mask 7.39

Table 5: Transfer learning is ef-
fective for downstream tasks.

Methods Storage per Task Model Size Speed(bits per param) in Memory

Finetuning 16 100% 1.0×
Learned 2:4 masks 0.65 (↓ 25×) 73% 1.4×

Table 6: Storage and inference cost for downstream tasks.

4.4 Learning N:M Sparsity for Downstream Tasks

Finding 5. Learned masks can losslessly adapt frozen LLMs to downstream tasks, offering a
1.4× wall clock GPU speed up and 73% memory footprint.

Large language models can achieve satisfactory quality across a variety of tasks. In many cases,
we are more interested in one particular ability of these large models under a specific task, such as
programming or translation, for which an LLM is over-parameterized. This naturally introduces a
new problem: can we learn a mask for specific tasks to achieve lossless compression? To evaluate
this, we learn masks for 2,000 steps separately on different domains and tasks and report the task-wise
PPL in Table 4. We considered one-shot pruning as baselines, where we collected 256 samples from
the task dataset for calibration. Results show that lossless masks can be learned for many tasks with
our method.

We also evaluated the power of transfer learning for downstream tasks in Table 5. To deploy sparse
LLMs for a single task, we can directly pick the pre-computed general mask from Table 1, or train
an “expert” mask from scratch. However, both strategies show a quality drop compared to the dense
model (PPL=7.42) since they either allocate some capacity for other domains (PPL=10.61) or only
see limited data from target domains (PPL=7.51). Our work leverages the general mask as prior and
transfers it to the downstream tasks, which can produce lossless models (PPL=7.39).

Updating parameters for downstream tasks results in additional copies of the model for each task,
incurring higher storage costs. Learning masks alone allows for encoding task-specific masks with
minimal space while keeping only a single, shared copy of the original parameters. As shown in
Table 6, task-specific masks only need 0.65 bits per parameter for storage on disk using simple
arithmetic coding3 with a static, uniform symbol distribution. For BS=1 inference on an A6000 GPU,
2:4 sparsity brings 1.4× acceleration and 27% reduction in the memory footprint (broader speedup
results appear in Table 16 in the appendix).

5 Conclusion

In this work, we present MaskLLM, a learnable pruning method that crafts accurate N:M sparsity in
LLMs, thereby reducing computational overhead during inference. Our empirical experiments on
several models show the scalability of MaskLLM to large-scale data and the effectiveness of end-to-
end training for mask learning. Furthermore, we demonstrate that lossless compression with N:M
sparsity is attainable in downstream tasks, underscoring its practicality for real-world applications.

3https://pypi.org/project/arithmetic-compressor/ (log2(6)/4 bits for 6 mask candidates per group)
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A Implementation Details

Here we provide more details about the models, training data, training configurations and other
resources used in our experiments.

LLaMA-2 For LLaMA-2, we collected a blended training set following the official paper [37],
which consists of corpuses from 69 domains, covering CUDA, VHDL, Reddit etc. For training, we
selected a subset of 512k samples from the dataset and updated the learnable mask for 2,000 steps,
with a global batch size of 256. We used 64 A100 GPUs during training with an 8-way tensor parallel
configuration. The full training took 1,280 GPU hours for LLaMA-2 7B and 2,304 GPU hours for
LLaMA-2 13B. In Table 11, we also provide training results solely using the C4 dataset.

Nemotron-4 For Nemotron-4, we collected a small training dataset covering three domains: CC-
MAIN-2021-31, Open Web Math, and Gutenberg Fuzzy. We used a subset of 512k samples and
trained the model with 64 A100 GPUs using an 8-way tensor parallel configuration. The training
process took 2,304 GPU hours.

GPT-3 (An Internal LLM). The GPT-3 multilingual models were pre-trained using the Megatron
framework on a corpus of 1.1 trillion tokens. These models share a similar network architecture with
the official GPT [5], utilizing the standard transformer architecture [38] with layer normalization,
SwiGLU activation function, and Rotary Positional Embeddings (ROPE) [35]. Both the 2B and 843M
parameter models comprise 24 transformer layers with 16 attention heads. The hidden sizes are 2048
for the 2B model and 1024 for the 843M model. Furthermore, the maximum sequence length for
these models is 4096 tokens. For pre-training, a multilingual dataset was collected, encompassing
110 domains such as HTML, C++, French, etc.

B Hyper-parameters

We summarize the hyper-parameters used in our experiments in Table 7. The main results of hyper-
parameter tuning are available in Table 10, where we assessed different temperature, logit scaling
factors and prior strength with GPT-3 843M.

Model Optimizer Training Steps Logits Init Scaling Factor κ Gumbel Temp. τ Prior and Strength α Sparse Reg.
LLaMA-2 7B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
LLaMA-2 13B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
Nemotron-4 14B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
GPT-3 2B AdamW(1e-3, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
GPT-3 843M AdamW(1e-3, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5

Table 7: Training details and hyper-parameters for mask training

Temperature τ 1 → 0.05 2 → 0.05 4 → 0.05 10 → 0.05

Wikitext PPL 17.52 16.69 15.39 15.68

Table 8: Hyper-parameter tuning on GPT-3 843M for Gumbel softmax temperature

Scaling Factor κ 1 → 5 1e2 → 5e2 1e3 → 5e3 1e5 → 5e5

Wikitext PPL 5.97E+06 15.39 15.59 24.81

Table 9: Hyper-parameter tuning on GPT-3 843M for the logit scaling factor

Prior Strength α 0 1 2 3 5

Wikitext PPL 18.62 23.65 15.59 15.39 15.48

Table 10: Hyper-parameter tuning on GPT-3 843M for the logit prior strength
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C Mask Learning with the C4 Dataset

In table 11, we compare the learned masks on the C4 dataset [32] with those on the blended datasets
discussed in Section A. Our blended dataset encompasses a broader range of topics and domains
compared to the C4 dataset, including coding, different languages, etc. Despite this, the result in
table 11 still indicates that MaskLLM is able to learn accurate masks on the C4 dataset, with a minor
difference (∆PPL=0.07) compared to the result obtained on the blended dataset.

Method Blended Data (See Sec. A) C4 [32]

Llama-2 7B 5.12 5.12

SparseGPT [10] 9.88 10.42
Wanda [36] 11.25 10.29
MaskLLM 6.72 6.79

Table 11: Wikitext-2 PPL of 2:4 LLaMA-2 7B pruned with different datasets

D 2:4 Results on Llama-3 8B

In table 12, we present additional pruning results for Llama-3 8B [1], adhering to the same training
protocol as described in Table 7. For reproducibility, we utilize the C4 dataset for both calibration
and mask learning.

Method Weight Update Wikitext-2 PPL

Llama-3 8B Dense - 5.76

Magnitude [15] - 2.61E+03
SparseGPT [10] ✓ 17.64
Wanda [36] - 23.40
MaskLLM - 8.50

Table 12: Wikitext-2 PPL of 2:4 LLaMA-3 8B, with the sequence length of 4096. We took the
SparseGPT mask as the prior and learned the mask on the C4 dataset.

E Comparison to More Pruning Methods for LLMs

In Table 13, we compare MaskLLM to several baseline methods that were not implemented using
the Megatron framework. We report the official results on Wikitext-2 PPL and LLaMA-2 13B.
Even compared to methods that incorporate weight updates, our method achieves superior perplexity
results.

Method Weight Update Wikitext-2 PPL

Llama-2 13B Dense - 4.57

SparseGPT [10] ✓ 8.32
Wanda [36] - 8.27
ADMM-Iter [4] ✓ 7.78
GBLM [8] - 8.80
RIA [44] - 8.41
Pruner-Zero [9] - 7.41
MaskLLM - 5.85

Table 13: Comparison to SOTA 2:4 pruning methods on LLaMA-2 13B, with all results collected
from original papers or official implementations.
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F Sparse Weight Regularization

Weight Norm of Sparse LLMs. In Equation 8, we introduce an additional term to preserve
sufficient gradients during training. As shown in Table 14, a larger weight regularization facilitates
large gradients during training, which is beneficial for mask exploration. We also illustrate the
weight magnitude of pruned LLMs, obtained using magnitude pruning, SparseGPT (Hessian) and
MaskLLM in Figures 6a and 6b. These figures show the relative L1 norm of pruned weights
compared to the magnitude pruning baseline, which produces the largest weight norm after pruning.
An interesting observation is that, even when initialized with a magnitude prior, learnable method
may still select some smaller values during pruning, resulting in a 10% lower norm than magnitude
pruning. Introducing sparse weight regularization can effectively improve the weight norm of sparse
LLMs and enhance their quality in further transfer learning or fine-tuning for downstream tasks.

Regularization Average Gradient Norm
0 0.219

1e-5 0.542
1e-4 0.559

Table 14: The average norm of the gradient in the first 500 training steps of GPT-3 2B
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Figure 6: The relative L1 norm of pruned weights compared to magnitude pruning

G Layer Sensitivity

Sensitivity Analysis with Learnable Method. In Figure 7, we analyze the sensitivity of LLaMA-2
7B using both the learnable and one-shot methods. For efficiency, we update the learnable masks for
500 steps and use Wikitext PPL as the metric. We observe a similar trend in the learned masks and
SparseGPT masks, suggesting that a fast one-shot pruning method can reliably indicate sensitivity.
Additionally, for 2:4 sparsity, the last layer is typically more sensitive than other layers. To maintain
satisfactory results, we can keep the last layer dense, achieving a good trade-off between efficiency
and quality. In Table 15, we report the pruning results when a few layers are kept dense.
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Figure 7: Layer Sensitivity of LLaMA-2 7B

Strategy Story OpenWeb
Dense 14.76 12.05
Full Sparsity 15.58 13.84
Skip the last 1 layer 15.18 13.61
Skip the first 1 layer 15.41 13.88
Skip the last 4 layers 15.07 13.24
Skip the last 8 layers 14.95 12.92

Table 15: Keeping sensitive layers dense can
be a way to trade-off quality and efficiency.
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H Throughput of 2:4 LLaMA-2 7B.

In Table 16, we benchmark the throughput of LLaMA-2 7B with 2:4 sparsity on an A6000 GPU using
TensorRT-LLM for a batch size of 1. Throughput is evaluated as the number of tokens processed per
second. Over a variety of input and output lengths, 2:4 sparsity achieves an overall acceleration of
1.36× to 1.41× compared to the dense model.

Input Len. Output Len. Throughput (Token/s/GPU)
Dense 2:4 Speed Up

128 128 61.74 86.92 1.41×
128 2048 59.18 82.11 1.39×

2048 128 57.55 78.81 1.37×
2048 2048 55.40 75.10 1.36×

Table 16: Benchmark of LLaMA-2 7B on A6000 with TensorRT-LLM.

I Mask Difference

In Figure 8, we visualize the differences between learned masks and one-shot masks, using SparseGPT
as the prior for the learnable mask. We observe that SparseGPT and Wanda produce similar masks,
with differences typically ranging from 5% to 10%, due to their similar pruning objectives. Our
method, however, can produce distinct masks compared to these baselines, as shown in Figures
8a and 8b. Additionally, we find that weight regularization is crucial for effective mask learning.
Without weight regularization, the vanished gradient can hinder mask learning, resulting in only a
2.83% difference from the prior, as shown in Figure 8c.
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Figure 8: (a) & (b) Notable mask difference exists between learned masks and one-shot ones. (c)
without sparse weight regularization, the vanished gradient caused by pruning will hinder mask
training, leading to a low difference between prior masks and learned masks.

J Limitations.

In this work, we explore an end-to-end learning method for semi-structured pruning. Although our
method yielded superior results, training LLMs with learnable masks inevitably consumes more
resources compared to one-shot methods, which can produce masks efficiently. Improving the training
efficiency of learnable masks is an important topic in future works.

K Broader Impacts.

The technique proposed in this paper will not lead to negative societal impact. On the contrary, it
offers significant benefits, including the reduction of energy costs and carbon emissions associated
with the deployment of Large Language Models. By optimizing for Semi-structured (or ‘N:M’)
Sparsity, our method reduces the computational resources required for inference, thereby contributing
to more sustainable and environmentally friendly AI applications.
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