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1. Architecture Details
Video Instance Segmentation. As described in the paper,
we propose an instance embedding head to learn the dis-
criminative representation of different instances. This head
shares a similar structure to the category prediction head in
SOLO [13]. Specifically, we use four convolutional layers
with 256 output channels followed by group normalization
layers. We add an additional convolutional layer with 128
output channels for dimensionality reduction. This embed-
ding module is adopted for features at different levels in
FPN [7]. The video correspondence branch has the exact
same structure as the embed branch.

Pose Tracking. Pose tracking [1] is more challenging
for learning a discriminative feature embedding, since it
focus on discriminating between different humans, which
are instances of the same category. That is, compared to
YouTube-VIS [16], pose tracking needs to learn a more fine-
grained feature representation to discriminate different hu-
man instances across frames. Thus, we propose the key-
point embedding module (KEM) as demonstrated in Fig. 1.

Unlike the instance embedding module, the KEM is de-
signed to learn the discriminative features of different joints.
In particular, we first concatenate the predicted heatmap,
which exists in the original PointSetAnchor [14], see Fig. 1,
with FPN features as the input to the embedding head.
In contrast to designing the head similar to the classifica-
tion branch in the video instance segmentation framework,
we introduced an encoder-decoder with one convolutional
layer as the encoder and one de-convolutional layer as the
decorder. This encoder-decoder structure is used to obtain
the keypoint-level embedding. In addition, the keypoint
prediction is also adopted as prior knowledge to indicate
the location of each joint on the embedding feature map,
to filter out the valid keypoint embeddings of different joint
definitions, i.e. neck, shoulder, wrist etc. We apply the same
instance contrastive (IC) objective both at the keypoint and
the instance levels. In other words, we repeat the IC loss
17 times since there are 17 joints defined in the COCO [8]
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Figure 1. The architecture of the keypoint embedding module
(KEM).

dataset. Besides these, we also average the embedding of
all seventeen joints as a person-level embedding and apply
the IC loss on it again. This KEM is added as a branch in
parallel to the classification and shape regression branches
in PointSetAnchor [14].

Difference with associative embedding (AE). The IC
loss correlated to associative embedding approaches [9, 6].
However, both were designed to learn a keypoint embed-
ding for spatial grouping within an individual image, e.g.,
AE in [6] was applied only to the SpatialNet that is inde-
pendent of pose tracking, which was performed by another
TemporalNet. AE in neither of them was utilized for learn-
ing cross frame correspondence, that we aim for.

2. Implementation Details
Training Details. For video instance segmentation, we
use ResNet50 [5] pretrained on ImageNet [3] as the back-
bone network and train the SOLO [13] framework with
the proposed instance embedding branch via a classification
loss, mask prediction loss and an IC loss on COCO [8] in-
stance segmentation annotations. The _ parameter in Eq (5)
is set to 1. We further learn video correspondences across
frames using unlabeled sequences of YouTube-VOS [15].
Each sequence is sampled from the same video randomly



with random intervals from 2 to 8.
Similarly, for pose tracking, we use HRNetW48 [12] as

the backbone network and train PointSetAnchor [14] along
with the KEM. The other steps are the same as those em-
ployed for video instance segmentation. Video correspon-
dence is learnt on the PoseTrack2018 [1] training set with-
out any annotations. Since the joint definitions of COCO [8]
are different from PoseTrack [1], we further fine-tune the
model on the MPII [2] training data.

Inference Details. During inference, we associate the ob-
jects in an online fashion following a procedure similar
to the one proposed in [16] for video instance segmenta-
tion. A memory bank is established to store all detection
results: object category, bounding box location, mask seg-
ment and the learned embedding feature. Object associa-
tion is achieved by cosine similarity of the object embed-
ding feature.

Different from [16], which has an additional category of
“new object” while training with identity annotations (track
ids) across frames, we do not have such a category defini-
tion. Thus we make several modifications to the original
tracking procedure. Assume " objects are detected in pre-
vious frames, and # objected are detected in the current
frame. Then the similarity scores should form a #×" asso-
ciation matrix. To effectively figure out the new objects, we
employ a bi-directional softmax [11] instead of the original
softmax. Bi-directional softmax computes the softmax op-
eration along the row and column directions. The new ob-
ject cannot guarantee good consistency in both directions,
resulting in a lower score for new objects. Based on the
similarity matrix, we assign every detected object (1 : #)
a unique identity through the row-wise argmax operation.
If the similarity score is lower than a threshold, this object
is considered as a new object and its embedding feature is
concatenated to the memory bank. On the other hand if it is
higher than the threshold, it is assigned to an existing object
and its embedding is updated by the newly tracked object’s
with a momentum value of 0.7.
Post-processing. To be consistent with the previous ap-
proaches and to improve tracking performance, we also ap-
ply the post-processing procedure introduced in [16], which
combines category confidence, bounding box Intersection
over Union (IoU), embedding similarity and category con-
sistency through a weighted sum. In particular, the final
similarity between newly detected objects and the existing
candidates in the memory bank can be computed as:

B(=, <) = sim(=, <) + Uc(n) + VIoU(bn, bm) + WX(cn, cm)
(1)

where c(n) is the classification confidence score of the =th
object, cn is the predicted category and X(cn, cm) is the Kro-
necker delta function, which returns one if and only if cn is

Method runtime(fps)
LightTrack [10] 0.8
AlphaPose [4] 2.2
Ours 4.1
Ours (ms) 1.3

Table 1. Average running time of different pose tracking methods
on the PoseTrack 2018 validation set. “ms” represents multi-scale
testing.

equal to cm, otherwise it returns zero. Note that as discussed
in our paper, the current post-processing method can only
bring a limited improvement on our approach compared to
others, due to the obvious domain gap between the train-
ing set of COCO, and the validation set of YouTube-VIS. In
this work, we mainly focus on learning a tracking embed-
ding representation while leaving domain adaptation of the
original SOLO heads to further work.

3. More Experiments
3.1. Pose Tracking Running Time

The running time of the proposed semi-supervised track-
ing approach on PoseTrack2018 [1] is shown in Table 1.
Compared with the top-down methods, LightTrack [10]
and AlphaPose [4], our approach performs more efficiently
since it estimates all joint locations of different persons at
the same time. In addition, LightTrack [10] utilizes pre-
computed human detection results and its efficiency can fur-
ther decrease on considering the detection step as well.

3.2. Comparison with Associate Embedding

We also compare our proposed instance contrastive loss
with Associate Embedding (AE) loss in [9]. For a fair com-
parison, we apply AE to our pose tracking experiments. We
replace our joint-level embedding with the original form of
AE, while keeping all the other settings the same. The AE
model achieves 63.5% on MOTA, which is lower than ours,
i.e., 64.7%(Table.4 in the paper).

3.3. More visualization

We show more qualitative results of our proposed semi-
supervised tracking approach on the video instance seg-
mentation and pose tracking tasks and compare them with
the baseline model, i.e., image-based instance segmenta-
tion/pose estimation models with spatial distance associa-
tion, as described in our main paper (see Sec. 4.3) in Fig. 2.
It can be observed that compared to the baseline model,
our proposed semi-supervised tracking can detect instance
masks, human poses and associate different instances across
frames much more accurately.
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Figure 2. Visualization results of our proposed semi-supervised tracking approach compared to baseline method mentioned in our paper on
video instance segmentation and pose tracking. Each row has five sampled frames from a video sequence. Categories and instance masks
are shown for each object. Note that objects with the same predicated identity across frames are marked with the same color. Zoom in to
see details.
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