Learning Superpixels with Segmentation-Aware Affinity Loss
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A. Performance Metrics

In this paper, we use the Achievable Segmentation Accu-
racy (ASA) and Boundary Recall (BR) scores as the perfor-
mance metrics for superpixel segmentation. We give more
details about these two metrics here.

Formally, let N be the number of pixels in a given im-
age and let the image be partitioned into K superpixels
S = {S,}£_ ,. Both metrics are evaluated using an ob-
ject segmentation dataset (e.g., BSDS500 [3]). Let G =
{G;}/_, be the J groundtruth segments in the image. We
have 3, |Sk| = >, |G;| = N, where |.| returns the num-
ber of pixels in a set.

For every superpixel Sy, the ASA metric finds the
groundtruth segment G'; that overlaps the most with S, and
find the overlap area Ay between Sy and G;. The ASA
score is computed as the ratio of total overlap area to the
total superpixel area:

ASA(S,G) = M = iimaxwk NG,|. (1)
RICA R = J

The BR score, on the other hand, measures how the
superpixel segmentation aligns with groundtruth object
boundaries. Let OG be the set of all groundtruth boundary
pixels. The BR score is computed as:

B TP(S,G)  TP(S8,G)
BRS.C) = gp5 e iNns.6) ~ gl 0 @

where TP(S,G) and F'N(S,G) are the number of true
positive and false negative boundary pixels in S. Note
that TP(S,G) + FN(S,G) is equivalent to the num-
ber of groundtruth boundary pixels |0G|. We compute
TP(S,G) by checking every groundtruth boundary pixel.
For each groundtruth boundary pixel, if there is any super-
pixel boundary pixel within a (27 + 1) x (2r + 1) neighbor-
hood, TP(S, G) is increased by one. Here, r is set accord-
ing to image resolution. We use larger r for high resolution
images to have larger tolerance to boundary misalignment.
In our experiments, we use » = 1 for the BSDS500 [3]
dataset and r = 3 for the Cityscapes [5] dataset.
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Figure 1: Diagonal affinities. We can approximate the affinities
on diagonal edges by the affinities on the 4-connected edges.

B. Approximation of Diagonal Affinities

Typically, the graph-based algorithms have better seg-
mentation accuracy in the 8-connected setting, while being
slower than that with 4-connected setting. We propose an
approach to approximate the diagonal affinities from the
horizontal and vertical affinities, so that we can train the
model faster with 4-connected setting while using more ac-
curate 8-connected algorithms for testing.

Figure 1 illustrates a 2 x 3 pixel graph, where we use a
to represent the horizontal and vertical affinities and d for
the diagonal affinities. To compute d;, we first compute the
average horizontal affinity in the same grid cell

1
ap = 5(&1 + ag), 3)

and the average vertical affinity

1
Gy = 5(03 + as). “4)

The diagonal affinity is then approximated by

1 1
dy = —= min(dp, dy,) = —= min(ay +ag, as+aq). (5)
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We use % to account for longer spatial distance of diagonal
edges. Similarly, we compute dy as

1
do = ——= min(as + a7, a4 + as). (6)
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We carry out experiments to show the effectiveness of
using 8-connected affinities. Figure 2 shows the result of the
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Figure 2: Effectiveness of diagonal affinities. We show that the
8-connected ERS algorithm using the approximated 8-connected
affinities performs better than that using the learned 4-connected
affinities.

ERS [9] superpixel segmentation algorithm using different
input affinities. “Learned affinities” refers to the affinities
trained on the 4-connected graph using our segmentation-
aware learning framework. As we can see, the segmentation
accuracy of the ERS algorithm can be further improved by
using the approximated 8-connected affinities while main-
taining similar boundary recall. We have also tried to use
the approximation and the 8-connected ERS algorithm dur-
ing training. We find it results in similar testing perfor-
mance to that of using 4-connected graph for training and
8-connected graph for testing, while being slower.

C. More Baselines

Affinities derived from Canny edges. Similar to the ex-
periment with the HED [13] edges, we also experiment
with the affinities derived from the Canny [4] edges. As
shown in Figure 3, with Canny-based affinities, the ERS
algorithm performs worse than that with standard color dif-
ference based affinities. We have similar observation that
Canny edges often result in a few missing boundary pixels
(i.e., open object contour), attributing to the drop in seg-
mentation accuracy. While the Canny edges alone can not
improve the performance, the Canny edges usually can de-
tect local edges, which provides useful auxiliary informa-
tion for our affinity learning framework. As we show in the
main paper, the Canny edge fusion results in better affinity
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Figure 3: Experiment on Canny-based affinities. ASA and BR
scores for superpixels computed using ERS with the affinities de-
rived from the Canny edges.

prediction.

Using pre-trained deep features. We use the low-level
features extracted from the first four layers of the pretrained
VGG16 network [10] to replace hand-crafted features used
in the ERS [9] and SNIC [2] algorithms. We discard the
pooling layer between convl_2 and conv2_1 as pooling re-
sults in a loss of fine-grained pixel level information. We
change the dilation in conv2_1 and conv2_2 accordingly to
keep the receptive field the same.

Originally, the ERS algorithm uses RGB color differ-
ence to compute affinities of neighboring pixels, and the
SNIC method uses CIELab and spatial location as five di-
mensional features to cluster pixels. We modify the ERS
algorithm such that it takes the M -dimensional deep feature
(v1, v, ..., vpr) to compute pixel affinity as exp(—%), in
which the feature distance d is computed as

(M

We modify the SNIC algorithm in a similar way such that
it takes d, the distance between deep features, and the pixel
location together to cluster pixels. We denote the features
extracted from convl_1 layer as VI and the features con-
catenated by convl_1 and convl_2 as V2. Similarly, V4 de-
notes the features concatenated by all the first four layers.
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Figure 4: Using deep features for superpixel segmentation. We
show the results using low-level features extracted from the
VGG16 model for superpixel segmentation.

Table 1: Experimental results on the FH method. The proposed
affinity learning is also effective for the FH [6] method.

Method ASA BR

FH 0.929347
SEAL-FH 0.948155

0.731893
0.738872

We evaluate the results using the 200 images in the
BSDS500 test set. As we can see in Figure 4, using deep
features as a drop-in replacement for the hand-crafted fea-
tures degrades the performance for both algorithms.

D. Generalization to other Graph-based Algo-
rithms

Our affinity learning framework can be used with any
graph-based superpixel algorithm that takes pixel affinities
as input. Some other graph-based methods [7, 12], that
do not directly use pixel affinities as graph merging crite-
ria but use statistical features (e.g., histograms) computed
from sub-graphs, are not applicable to our framework.

In addition to the ERS algorithm, we also experiment
with the FH [6] algorithm that uses pixel affinities as input.
Similarly, we term the method using the learned affinities
and the FH algorithm as SEAL-FH. Table 1 shows the re-
sults on the BSDS500 test set. As it is hard to control the
number of superpixels for the FH method, we simply aver-
age the ASA and BR scores for all the test images. We find
that the proposed affinity learning framework is also effec-
tive in improving the performance of FH method showcas-
ing the generality of our pixel affinity learning framework.

E. Visual Comparison

In this section, we present more visual comparisons
of superpixel segmentation on the BSDS500 [3] and
Cityscapes [5] datasets.

BSDS500. Figure 5 shows more visual results on the
BSDS500 [3] test set images using 200 superpixels. We also
highlight regions where there are weak object boundaries.
Results show that our SEAL-ERS method produces super-
pixels with better boundary-preserving ability. Particularly,
our method gives higher priority to object boundaries than
texture edges. For example, in the zebra image, the stripes
have higher contrast than the boundaries of zebra bodies.
Existing methods relying on hand-crafted features tend to
form superpixels along the stripes while compromising the
object boundaries. On the other hand, our method is able
to generate semantically more meaningful superpixels that
preserve the boundaries of those zebras well. This would be
more useful for high level vision applications.

Cityscapes. We show visual comparisons of results using
1000 superpixels on the Cityscapes [5] dataset in Figure 6
and Figure 7. We also highlight important regions in the
scene, such as traffic sign and the boundary between two
vehicles. We show the zoom-in comparisons in Figure 8.
As we can see, our method can produce semantically more
meaningful superpixels.
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Figure 5: Visual results on sample BSDS500 [3] test images. We show the comparison of 200 superpixels generated by the state-
of-the-art methods and ours. We highlight the regions that object boundaries are weak. Our method can generate superpixels with better
boundary-preserving ability.
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Figure 6: Sample visual result from the Cityscapes [5] validation set. We show the comparison of 1000 superpixels generated by the
SLIC and SNIC methods.
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Figure 7: Sample visual result from the Cityscapes [5] validation set. We show the comparison of 1000 superpixels generated by the
LSC, ERS and our SEAL-ERS methods.
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Figure 8: Semantically meaningful superpixels with learned affinities . We highlight regions in Figure 6 and Figure 7. Our method is
able to produce semantically more meaningful superpixels compared to others.
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