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Abstract

Score-based generative models (SGMs) have recently demonstrated impressive
results in terms of both sample quality and distribution coverage. However, they
are usually applied directly in data space and often require thousands of network
evaluations for sampling. Here, we propose the Latent Score-based Generative
Model (LSGM), a novel approach that trains SGMs in a latent space, relying on the
variational autoencoder framework. Moving from data to latent space allows us to
train more expressive generative models, apply SGMs to non-continuous data, and
learn smoother SGMs in a smaller space, resulting in fewer network evaluations
and faster sampling. To enable training LSGMs end-to-end in a scalable and stable
manner, we (i) introduce a new score-matching objective suitable to the LSGM
setting, (ii) propose a novel parameterization of the score function that allows SGM
to focus on the mismatch of the target distribution with respect to a simple Normal
one, and (iii) analytically derive multiple techniques for variance reduction of the
training objective. LSGM obtains a state-of-the-art FID score of 2.10 on CIFAR-10,
outperforming all existing generative results on this dataset. On CelebA-HQ-256,
LSGM is on a par with previous SGMs in sample quality while outperforming
them in sampling time by two orders of magnitude. In modeling binary images,
LSGM achieves state-of-the-art likelihood on the binarized OMNIGLOT dataset.
Our implementation is available at https://github.com/NVlabs/LSGM.

1 Introduction

The long-standing goal of likelihood-based generative learning is to faithfully learn a data distribution,
while also generating high-quality samples. Achieving these two goals simultaneously is a tremendous
challenge, which has led to the development of a plethora of different generative models. Recently,
score-based generative models (SGMs) demonstrated astonishing results in terms of both high sample
quality and likelihood [1, 2]. These models define a forward diffusion process that maps data to noise
by gradually perturbing the input data. Generation corresponds to a reverse process that synthesizes
novel data via iterative denoising, starting from random noise. The problem then reduces to learning
the score function—the gradient of the log-density—of the perturbed data [3]. In a seminal work,
Song et al. [2] show how this modeling approach is described with a stochastic differential equation
(SDE) framework which can be converted to maximum likelihood training [4]. Variants of SGMs
have been applied to images [1, 2, 5, 6], audio [7, 8, 9, 10], graphs [11] and point clouds [12, 13].

Albeit high quality, sampling from SGMs is computationally expensive. This is because generation
amounts to solving a complex SDE, or equivalently ordinary differential equation (ODE) (denoted as
the probability flow ODE in [2]), that maps a simple base distribution to the complex data distribution.
The resulting differential equations are typically complex and solving them accurately requires
numerical integration with very small step sizes, which results in thousands of neural network
evaluations [1, 2, 6]. Furthermore, generation complexity is uniquely defined by the underlying data
distribution and the forward SDE for data perturbation, implying that synthesis speed cannot be
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Figure 1: In our latent score-based generative model (LSGM), data is mapped to latent space via an encoder
q(z0|x) and a diffusion process is applied in the latent space (z0 → z1). Synthesis starts from the base
distribution p(z1) and generates samples in latent space via denoising (z0 ← z1). Then, the samples are mapped
from latent to data space using a decoder p(x|z0). The model is trained end-to-end.

increased easily without sacrifices. Moreover, SDE-based generative models are currently defined for
continuous data and cannot be applied effortlessly to binary, categorical, or graph-structured data.

Here, we propose the Latent Score-based Generative Model (LSGM), a new approach for learning
SGMs in latent space, leveraging a variational autoencoder (VAE) framework [14, 15]. We map the
input data to latent space and apply the score-based generative model there. The score-based model is
then tasked with modeling the distribution over the embeddings of the data set. Novel data synthesis
is achieved by first generating embeddings via drawing from a simple base distribution followed by
iterative denoising, and then transforming this embedding via a decoder to data space (see Fig. 1).
We can consider this model a VAE with an SGM prior. Our approach has several key advantages:
Synthesis Speed: By pretraining the VAE with a Normal prior first, we can bring the marginal
distribution over encodings (the aggregate posterior) close to the Normal prior, which is also the
SGM’s base distribution. Consequently, the SGM only needs to model the remaining mismatch,
resulting in a less complex model from which sampling becomes easier. Furthermore, we can tailor
the latent space according to our needs. For example, we can use hierarchical latent variables and
apply the diffusion model only over a subset of them, further improving synthesis speed.
Expressivity: Training a regular SGM can be considered as training a neural ODE directly on the
data [2]. However, previous works found that augmenting neural ODEs [16, 17] and more generally
generative models [18, 19, 20, 21] with latent variables improves their expressivity. Consequently,
we expect similar performance gains from combining SGMs with a latent variable framework.
Tailored Encoders and Decoders: Since we use the SGM in latent space, we can utilize carefully de-
signed encoders and decoders mapping between latent and data space, further improving expressivity.
Additionally, the LSGM method can therefore be naturally applied to non-continuous data.

LSGMs can be trained end-to-end by maximizing the variational lower bound on the data likelihood.
Compared to regular score matching, our approach comes with additional challenges, since both the
score-based denoising model and its target distribution, formed by the latent space encodings, are
learnt simultaneously. To this end, we make the following technical contributions: (i) We derive a
new denoising score matching objective that allows us to efficiently learn the VAE model and the
latent SGM prior at the same time. (ii) We introduce a new parameterization of the latent space
score function, which mixes a Normal distribution with a learnable SGM, allowing the SGM to
model only the mismatch between the distribution of latent variables and the Normal prior. (iii) We
propose techniques for variance reduction of the training objective by designing a new SDE and
by analytically deriving importance sampling schemes, allowing us to stably train deep LSGMs.
Experimentally, we achieve state-of-the-art 2.10 FID on CIFAR-10 and 7.22 FID on CelebA-HQ-256,
and significantly improve upon likelihoods of previous SGMs. On CelebA-HQ-256, we outperform
previous SGMs in synthesis speed by two orders of magnitude. We also model binarized images,
MNIST and OMNIGLOT, achieving state-of-the-art likelihood on the latter.

2 Background
Here, we review continuous-time score-based generative models (see [2] for an in-depth discussion).
Consider a forward diffusion process {zt}t=1

t=0 for continuous time variable t ∈ [0, 1], where z0 is the
starting variable and zt its perturbation at time t. The diffusion process is defined by an Itô SDE:

dz = f(t)z dt+ g(t) dw (1)
where f : R→ R and g : R→ R are scalar drift and diffusion coefficients, respectively, and w is
the standard Wiener process. f(t) and g(t) can be designed such that z1 ∼ N (z1;0, I) follows a
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Normal distribution at the end of the diffusion process.2 Song et al. [2] show that the SDE in Eq. 1
can be converted to a generative model by first sampling from z1 ∼ N (z1;0, I) and then running the
reverse-time SDE dz = [f(t)z−g(t)2∇z log qt(z)] dt+g(t) dw̄, where w̄ is a reverse-time standard
Wiener process and dt is an infinitesimal negative time step. The reverse SDE requires knowledge of
∇zt log qt(zt), the score function of the marginal distribution under the forward diffusion at time t.
One approach for estimating it is via the score matching objective3:

min
θ

Et∼U [0,1]

[
λ(t)Eq(z0)Eq(zt|z0)[||∇zt log q(zt)−∇zt log pθ(zt)||22]

]
(2)

that trains the parameteric score function ∇zt log pθ(zt) at time t ∼ U [0, 1] for a given weighting
coefficient λ(t). q(z0) is the z0-generating distribution and q(zt|z0) is the diffusion kernel, which is
available in closed form for certain f(t) and g(t). Since ∇zt log q(zt) is not analytically available,
Song et al. [2] rely on denoising score matching [22] that converts the objective in Eq. 2 to:

min
θ

Et∼U [0,1]

[
λ(t)Eq(z0)Eq(zt|z0)[||∇zt log q(zt|z0)−∇zt log pθ(zt)||22]

]
+ C (3)

Vincent [22] shows C = Et∼U [0,1][λ(t)Eq(z0)Eq(zt|z0)[||∇zt log q(zt)||22 − ||∇zt log q(zt|z0)||22]] is
independent of θ, making the minimizations in Eq. 3 and Eq. 2 equivalent. Song et al. [4] show
that for λ(t) = g(t)2/2, the minimizations correspond to approximate maximum likelihood training
based on an upper on the Kullback-Leibler (KL) divergence between the target distribution and the
distribution defined by the reverse-time generative SDE with the learnt score function. In particular,
the objective of Eq. 2 can then be written:

KL
(
q(z0)||pθ(z0)

)
≤ Et∼U[0,1]

[
g(t)2

2
Eq(z0)Eq(zt|z0)

[
||∇zt log q(zt)−∇zt log pθ(zt)||

2
2

]]
(4)

which can again be transformed into denoising score matching (Eq. 3) following Vincent [22].

3 Score-based Generative Modeling in Latent Space

The LSGM framework in Fig. 1 consists of the encoder qφ(z0|x), SGM prior pθ(z0), and decoder
pψ(x|z0). The SGM prior leverages a diffusion process as defined in Eq. 1 and diffuses z0 ∼ qφ(z0|x)
samples in latent space to the standard Normal distribution p(z1) = N (z1;0, I). Generation uses
the reverse SDE to sample from pθ(z0) with time-dependent score function∇zt log pθ(zt), and the
decoder pψ(x|z0) to map the synthesized encodings z0 to data space. Formally, the generative process
is written as p(z0,x) = pθ(z0)pψ(x|z0). The goal of training is to learn {φ,θ,ψ}, the parameters
of the encoder qφ(z0|x), score function∇zt log pθ(zt), and decoder pψ(x|z0), respectively.

We train LSGM by minimizing the variational upper bound on negative data log-likelihood log p(x):

L(x,φ,θ,ψ) = Eqφ(z0|x)
[
− log pψ(x|z0)

]
+KL

(
qφ(z0|x)||pθ(z0)

)
(5)

= Eqφ(z0|x)
[
− log pψ(x|z0)

]︸ ︷︷ ︸
reconstruction term

+Eqφ(z0|x)
[
log qφ(z0|x)

]︸ ︷︷ ︸
negative encoder entropy

+Eqφ(z0|x)
[
− log pθ(z0)

]︸ ︷︷ ︸
cross entropy

(6)

following a VAE approach [14, 15], where qφ(z0|x) approximates the true posterior p(z0|x).

In this paper, we use Eq. 6 with decomposed KL divergence into its entropy and cross entropy terms.
The reconstruction and entropy terms are estimated easily for any explicit encoder as long as the
reparameterization trick is available [14]. The challenging part in training LSGM is to train the
cross entropy term that involves the SGM prior. We motivate and present our expression for the
cross-entropy term in Sec. 3.1, the parameterization of the SGM prior in Sec. 3.2, different weighting
mechanisms for the training objective in Sec. 3.3, and variance reduction techniques in Sec. 3.4.

3.1 The Cross Entropy Term

One may ask, why not train LSGM with Eq. 5 and rely on the KL in Eq. 4. Directly using the
KL expression in Eq. 4 is not possible, as it involves the marginal score ∇zt log q(zt), which is
unavailable analytically for common non-Normal distributions q(z0) such as Normalizing flows.

2Other distributions at t = 1 are possible; for instance, see the “variance-exploding” SDE in [2]. In this
paper, however, we use only SDEs converging towardsN (z1;0, I) at t = 1.

3We omit the t-subscript of the diffused distributions qt in all score functions of the form∇zt log qt(zt).
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Transforming into denoising score matching does not help either, since in that case the problematic
∇zt log q(zt) term appears in the C term (see Eq. 3). In contrast to previous works [2, 22], we cannot
simply drop C, since it is, in fact, not constant but depends on q(zt), which is trainable in our setup.

To circumvent this problem, we instead decompose the KL in Eq. 5 and rather work directly with the
cross entropy between the encoder distribution q(z0|x) and the SGM prior p(z0). We show:
Theorem 1. Given two distributions q(z0|x) and p(z0), defined in the continuous space RD, denote
the marginal distributions of diffused samples under the SDE in Eq. 1 at time t with q(zt|x) and
p(zt). Assuming mild smoothness conditions on log q(zt|x) and log p(zt), the cross entropy is:

CE(q(z0|x)||p(z0)) = Et∼U[0,1]

[
g(t)2

2
Eq(zt,z0|x)

[
||∇zt log q(zt|z0)−∇zt log p(zt)||

2
2

]]
+
D

2
log
(
2πeσ2

0

)
,

with q(zt, z0|x) = q(zt|z0)q(z0|x) and a Normal transition kernel q(zt|z0) = N (zt;µt(z0), σ2
t I),

where µt and σ2
t are obtained from f(t) and g(t) for a fixed initial variance σ2

0 at t = 0.

A proof with generic expressions for µt and σ2
t as well as an intuitive interpretation are in App. A.

Importantly, unlike for the KL objective of Eq. 4, no problematic terms depending on the marginal
score ∇zt log q(zt|x) arise. This allows us to use this denoising score matching objective for the
cross entropy term in Theorem 1 not only for optimizing p(z0) (which is commonly done in the
score matching literature), but also for the q(z0|x) encoding distribution. It can be used even
with complex q(z0|x) distributions, defined, for example, in a hierarchical fashion [20, 21] or via
Normalizing flows [23, 24]. Our novel analysis shows that, for diffusion SDEs following Eq. 1, only
the cross entropy can be expressed purely with ∇zt log q(zt|z0). Neither KL nor entropy in [4] can
be expressed without the problematic term∇zt log q(zt|x) (details in the Appendix).

Note that in Theorem 1, the term∇zt log p(zt) in the score matching expression corresponds to the
score that originates from diffusing an initial p(z0) distribution. In practice, we use the expression to
learn an SGM prior pθ(z0), which models∇zt log p(zt) by a neural network. With the learnt score
∇zt log pθ(zt) (here we explicitly indicate the parameters θ to clarify that this is the learnt model), the
actual SGM prior is defined via the generative reverse-time SDE (or, alternatively, a closely-connected
ODE, see Sec. 2 and App. D), which generally defines its own, separate marginal distribution pθ(z0)
at t = 0. Importantly, the learnt, approximate score∇zt log pθ(zt) is not necessarily the same as one
would obtain when diffusing pθ(z0). Hence, when considering the learnt score∇zt log pθ(zt), the
score matching expression in our Theorem only corresponds to an upper bound on the cross entropy
between q(z0|x) and pθ(z0) defined by the generative reverse-time SDE. This is discussed in detail
in concurrent works [4, 25]. Hence, from the perspective of the learnt SGM prior, we are training
with an upper bound on the cross entropy (similar to the bound on the KL in Eq. 4), which can also be
considered as the continuous version of the discretized variational objective derived by Ho et al. [1].

3.2 Mixing Normal and Neural Score Functions

In VAEs [14], p(z0) is often chosen as a standard Normal N (z0;0, I). For recent hierarchical
VAEs [20, 21], using the reparameterization trick, the prior can be converted to N (z0;0, I) (App. E).

Considering a single dimensional latent space, we can assume that the prior at time t is in the
form of a geometric mixture p(zt) ∝ N (zt; 0, 1)1−αp′θ(zt)

α where p′θ(zt) is a trainable SGM prior
and α ∈ [0, 1] is a learnable scalar mixing coefficient. Formulating the prior this way has crucial
advantages: (i) We can pretrain LSGM’s autoencoder networks assuming α=0, which corresponds
to training the VAE with a standard Normal prior. This pretraining step will bring the distribution
of latent variable close to N (z0; 0, 1), allowing the SGM prior to learn a much simpler distribution
in the following end-to-end training stage. (ii) The score function for this mixture is of the form
∇zt log p(zt) = −(1− α)zt + α∇zt log p′θ(zt). When the score function is dominated by the linear
term, we expect that the reverse SDE can be solved faster, as its drift is dominated by this linear term.

For our multivariate latent space, we obtain diffused samples at time t by sampling zt ∼ q(zt|z0)
with zt = µt(z0) + σtε, where ε ∼ N (ε;0, I). Since we have ∇zt log q(zt|z0) = −ε/σt, similar
to [1], we parameterize the score function by ∇zt log p(zt) := −εθ(zt, t)/σt, where εθ(zt, t) :=
σt(1 − α) � zt + α � ε′θ(zt, t) is defined by our mixed score parameterization that is applied
elementwise to the components of the score. With this, we simplify the cross entropy expression to:

CE(qφ(z0|x)||pθ(z0)) = Et∼U[0,1]

[
w(t)

2
Eqφ(zt,z0|x),ε

[
||ε−εθ(zt, t)||22

]]
+
D

2
log
(
2πeσ2

0

)
, (7)
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where w(t) = g(t)2/σ2
t is a time-dependent weighting scalar.

3.3 Training with Different Weighting Mechanisms Table 1: Weighting mechanisms

Mechanism Weights

Weighted wll(t) = g(t)2/σ2
t

Unweighted wun(t) = 1
Reweighted wre(t) = g(t)2

The weighting term w(t) in Eq. 7 trains the prior with maximum
likelihood. Similar to [1, 2], we observe that when w(t) is dropped
while training the SGM prior (i.e., w(t) = 1), LSGM often yields
higher quality samples at a small cost in likelihood. However, in our
case, we can only drop the weighting when training the prior. When
updating the encoder parameters, we still need to use the maximum likelihood weighting to ensure
that the encoder q(z0|x) is brought closer to the true posterior p(z0|x)4. Tab. 1 summarizes three
weighting mechanisms we consider in this paper: wll(t) corresponds to maximum likelihood, wun(t)
is the unweighted objective used by [1, 2], and wre(t) is a variant obtained by dropping only 1/σ2

t .
This weighting mechanism has a similar affect on the sample quality as wun(t) = 1; however, in
Sec. 3.4, we show that it is easier to define a variance reduction scheme for this weighting mechanism.

The following summarizes our training objectives (with t ∼ U [0, 1] and ε ∼ N (ε;0, I)):

min
φ,ψ

Eqφ(z0|x)
[
−log pψ(x|z0)

]
+Eqφ(z0|x)

[
log qφ(z0|x)

]
+Et,ε,q(zt|z0),qφ(z0|x)

[
wll(t)

2
||ε−εθ(zt, t)||22

]
(8)

min
θ

Et,ε,q(zt|z0),qφ(z0|x)

[
wll/un/re(t)

2
||ε−εθ(zt, t)||22

]
with q(zt|z0) = N (zt;µt(z0), σ

2
t I), (9)

where Eq. 8 trains the VAE encoder and decoder parameters {φ,ψ} using the variational bound
L(x,φ,θ,ψ) from Eq. 6. Eq. 9 trains the prior with one of the three weighting mechanisms. Since
the SGM prior participates in the objective only in the cross entropy term, we only consider this term
when training the prior. Efficient algorithms for training with the objectives are presented in App. G.

3.4 Variance Reduction

The objectives in Eqs. 8 and 9 involve sampling of the time variable t, which has high variance [26].
We introduce several techniques for reducing this variance for all three objective weightings. We focus
on the “variance preserving” SDEs (VPSDEs) [2, 1, 27], defined by dz = − 1

2β(t)z dt+
√
β(t) dw

where β(t) = β0 + (β1 − β0)t linearly interpolates in [β0, β1] (other SDEs discussed in App. B).

We denote the marginal distribution of latent variables by q(z0) := Epdata(x)[q(z0|x)]. Here, we
derive variance reduction techniques for CE(q(z0)||p(z0)), assuming that both q(z0) = p(z0) =
N (z0;0, I). This is a reasonable simplification for our analysis because pretraining our LSGM model
with a N (z0;0, I) prior brings q(z0) close to N (z0;0, I) and our SGM prior is often dominated by
the fixed Normal mixture component. We empirically observe that the variance reduction techniques
developed with this assumption still work well when q(z0) and p(z0) are not exactly N (z0;0, I).

Variance reduction for likelihood weighting: In App. B, for q(z0) = p(z0) = N (z0;0, I), we
show CE(q(z0)||p(z0)) is given by D

2 Et∼U [0,1][d log σ2
t /dt] + const. We consider two approaches:

(1) Geometric VPSDE: To reduce the variance sampling uniformly from t, we can design the SDE such
that d log σ2

t /dt is constant for t ∈ [0, 1]. We show in App. B that a β(t) = log(σ2
max/σ

2
min)

σ2
t

(1−σ2
t )

with geometric variance σ2
t = σ2

min(σ2
max/σ

2
min)t satisfies this condition. We call a VPSDE with this

β(t) a geometric VPSDE. σ2
min and σ2

max are the hyperparameters of the SDE, with 0<σ2
min<σ

2
max<1.

Although our geometric VPSDE has a geometric variance progression similar to the “variance
exploding” SDE (VESDE) [2], it still enjoys the “variance preserving” property of the VPSDE. In
App. B, we show that the VESDE does not come with a reduced variance for t-sampling by default.

(2) Importance sampling (IS): We can keep β(t) and σ2
t unchanged for the original linear VPSDE, and

instead use IS to minimize variance. The theory of IS shows that the proposal r(t) ∝ d log σ2
t /dt has

minimum variance [28]. In App. B, we show that we can sample from r(t) using inverse transform
sampling t = var−1((σ2

1)ρ(σ2
0)1−ρ) where var−1 is the inverse of σ2

t and ρ ∼ U [0, 1]. This variance
reduction technique is available for any VPSDE with arbitrary β(t).

In Fig. 2, we train a small LSGM on CIFAR-10 with wll weighting using (i) the original VPSDE
with uniform t sampling, (ii) the same SDE but with our IS from t, and (iii) the proposed geometric

4Minimizing L(x,φ,θ,ψ) w.r.t φ is equivalent to minimizing KL
(
q(z0|x)||p(z0|x)

)
w.r.t q(z0|x).
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VPSDE. Note how both (ii) and (iii) significantly reduce the variance and allow us to monitor the
progress of the training objective. In this case, (i) has difficulty minimizing the objective due to the
high variance. In App. B, we show how IS proposals can be formed for other SDEs, including the
VESDE and Sub-VPSDE from [2].
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Figure 2: Variance reduction
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Figure 3: IS distributions

Variance reduction for unweighted and reweighted objectives:
When training with wun, analytically deriving IS proposal distri-
butions for arbitrary β(t) is challenging. For linear VPSDEs, we
provide a derivation in App. B to obtain the optimal IS distribution.
In contrast, defining IS proposal distributions is easier when training
with wre. In App. B, we show that the optimal distribution is in the
form r(t) ∝ dσ2

t /dtwhich is sampled by t=var−1((1−ρ)σ2
0 +ρσ2

1)
with ρ ∼ U [0, 1]. In Fig. 3, we visualize the IS distributions for the
three weighting mechanisms for the linear VPSDE with the original
[β0, β1] parameters from [2]. r(t) for the likelihood weighting is
more tilted towards t = 0 due to the 1/σ2

t term in wll.

When using differently weighted objectives for training, we can
either sample separate t with different IS distributions for each
objective, or use IS for the SGM objective (Eq. 9) and reweight the
samples according to the likelihood objective for encoder training
(Eq. 8). See App. G for details.

4 Related Work

Our work builds on score-matching [29, 30, 31, 32, 33, 34, 35, 36, 37], specifically denoising score
matching [22], which makes our work related to recent generative models using denoising score
matching- and denoising diffusion-based objectives [3, 38, 1, 2, 6]. Among those, [1, 6] use a
discretized diffusion process with many noise scales, building on [27], while Song et al. [2] introduce
the continuous time framework using SDEs. Experimentally, these works focus on image modeling
and, contrary to us, work directly in pixel space. Various works recently tried to address the slow
sampling of these types of models and further improve output quality. [39] add an adversarial
objective, [5] introduce non-Markovian diffusion processes that allow to trade off synthesis speed,
quality, and sample diversity, [40] learn a sequence of conditional energy-based models for denoising,
[41] distill the iterative sampling process into single shot synthesis, and [42] learn an adaptive noise
schedule, which is adjusted during synthesis to accelerate sampling. Further, [26] propose empirical
variance reduction techniques for discretized diffusions and introduce a new, heuristically motivated,
noise schedule. In contrast, our proposed noise schedule and our variance reduction techniques are
analytically derived and directly tailored to our learning setting in the continuous time setup.

Recently, [11] presented a method to generate graphs using score-based models, relaxing the entries
of adjacency matrices to continuous values. LSGM would allow to model graph data more naturally
using encoders and decoders tailored to graphs [43, 44, 45, 46].

Since our model can be considered a VAE [14, 15] with score-based prior, it is related to approaches
that improve VAE priors. For example, Normalizing flows and hierarchical distributions [23, 24, 47,
48, 20, 21], as well as energy-based models [49, 50, 51, 52, 53] have been proposed as VAE priors.
Furthermore, classifiers [54, 55, 56], adversarial methods [57], and other techniques [58, 59] have
been used to define prior distributions implicitly. In two-stage training, a separate generative model
is trained in latent space as a new prior after training the VAE itself [60, 61, 62, 63, 64, 10]. Our
work also bears a resemblance to recent methods on improving the sampling quality in generative
adversarial networks using gradient flows in the latent space [65, 66, 67, 68], with the main difference
that these prior works use a discriminator to update the latent variables, whereas we train an SGM.

Concurrent works: [10] proposed to learn a denoising diffusion model in the latent space of a VAE
for symbolic music generation. This work does not introduce an end-to-end training framework of
the combined VAE and denoising diffusion model and instead trains them in two separate stages. In
contrast, concurrently with us [69] proposed an end-to-end training approach, and [70] combines
contrastive learning with diffusion models in the latent space of VAEs for controllable generation.
However, [10, 69, 70] consider the discretized diffusion objective [1], while we build on the continu-
ous time framework. Also, these models are not equipped with the mixed score parameterization and
variance reduction techniques, which we found crucial for the successful training of SGM priors.
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Additionally, [71, 4, 25] concurrently with us proposed likelihood-based training of SGMs in data
space5. [4] developed a bound for the data likelihood in their Theorem 3 of their second version,
using a denoising score matching objective, closely related to our cross entropy expression. However,
our cross entropy expression is much simpler as we show how several terms can be marginalized
out analytically for the diffusion SDEs employed by us (see our proof in App. A). The same
marginalization can be applied to Theorem 3 in [4] when the drift coefficient takes a special affine
form (i.e., f(z, t) = f(t)z). Moreover, [25] discusses the likelihood-based training of SGMs from
a fundamental perspective and shows how several score matching objectives become a variational
bound on the data likelihood. [71] introduced a notion of signal-to-noise ratio (SNR) that results in a
noise-invariant parameterization of time that depends only on the initial and final noise. Interestingly,
our importance sampling distribution in Sec. 3.4 has a similar noise-invariant parameterization of
time via t = var−1((σ2

1)ρ(σ2
0)1−ρ), which also depends only on the initial and final diffusion process

variances. We additionally show that this time parameterization results in the optimal minimum-
variance objective, if the distribution of latent variables follows a standard Normal distribution.
Finally, [72] proposed a modified time parameterization that allows modeling unbounded data scores.

5 Experiments
Here, we examine the efficacy of LSGM in learning generative models for images.

Implementation details: We implement LSGM using the NVAE [20] architecture as VAE backbone
and NCSN++ [2] as SGM backbone. NVAE has a hierarchical latent structure. The diffusion process
input z0 is constructed by concatenating the latent variables from all groups in the channel dimension.
For NVAEs with multiple spatial resolutions in latent groups, we only feed the smallest resolution
groups to the SGM prior and assume that the remaining groups have a standard Normal distribution.

Sampling: To generate samples from LSGM at test time, we use a black-box ODE solver [73] to
sample from the prior. Prior samples are then passed to the decoder to generate samples in data space.

Evaluation: We measure NELBO, an upper bound on negative log-likelihood (NLL), using Eq. 6.
For estimating log p(z0), we rely on the probability flow ODE [2], which provides an unbiased but
stochastic estimation of log p(z0). This stochasticity prevents us from performing an importance
weighted estimation of NLL [74] (see App. F for details). For measuring sample quality, Fréchet
inception distance (FID) [75] is evaluated with 50K samples. Implementation details in App. G.

5.1 Main Results

Unconditional color image generation: Here, we present our main results for unconditional image
generation on CIFAR-10 [89] (Tab. 2) and CelebA-HQ-256 (5-bit quantized) [88] (Tab. 3). For
CIFAR-10, we train 3 different models: LSGM (FID) and LSGM (balanced) both use the VPSDE
with linear β(t) and wun-weighting for the SGM prior in Eq. 9, while performing IS as derived in
Sec. 3.4. They only differ in how the backbone VAE is trained. LSGM (NLL) is a model that is
trained with our novel geometric VPSDE, using wll-weighting in the prior objective (further details
in App. G). When set up for high image quality, LSGM achieves a new state-of-the-art FID of
2.10. When tuned towards NLL, we achieve a NELBO of 2.87, which is significantly better than
previous score-based models. Only autoregressive models, which come with very slow synthesis, and
VDVAE [21] reach similar or higher likelihoods, but they usually have much poorer image quality.

For CelebA-HQ-256, we observe that when LSGM is trained with different SDE types and weighting
mechanisms, it often obtains similar NELBO potentially due to applying the SGM prior only to small
latent variable groups and using Normal priors at the larger groups. With wre-weighting and linear
VPSDE, LSGM obtains the state-of-the-art FID score of 7.22 on a par with the original SGM [2].

For both datasets, we also report results for the VAE backbone used in our LSGM. Although this
baseline achieves competitive NLL, its sample quality is behind our LSGM and the original SGM.

Modeling binarized images: Next, we examine LSGM on dynamically binarized MNIST [93] and
OMNIGLOT [74]. We apply LSGM to binary images using a decoder with pixel-wise independent
Bernoulli distributions. For these datasets, we report both NELBO and NLL in nats in Tab. 4 and
Tab. 5. On OMNIGLOT, LSGM achieves state-of-the-art likelihood of ≤87.79 nat, outperforming
previous models including VAEs with autoregressive decoders, and even when comparing its NELBO

5We build on the V1 version of [4], which was substantially updated after the NeurIPS submission deadline.
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Table 2: Generative performance on CIFAR-10.

Method NLL↓ FID↓

Ours
LSGM (FID) ≤3.43 2.10
LSGM (NLL) ≤2.87 6.89
LSGM (balanced) ≤2.95 2.17
VAE Backbone 2.96 43.18

VAEs

VDVAE [21] 2.87 -
NVAE [20] 2.91 23.49
VAEBM [76] - 12.19
NCP-VAE [56] - 24.08
BIVA [48] 3.08 -
DC-VAE [77] - 17.90

Score

NCSN [3] - 25.32
Rec. Likelihood [40] 3.18 9.36
DSM-ALS [39] 3.65 -
DDPM [1] 3.75 3.17
Improved DDPM [26] 2.94 11.47
SDE (DDPM++) [2] 2.99 2.92
SDE (NCSN++) [2] - 2.20

Flows VFlow [19] 2.98 -
ANF [18] 3.05 -

Aut. Reg.

DistAug aug [78] 2.53 42.90
Sp. Transformers [79] 2.80 -
δ-VAE [80] 2.83 -
PixelSNAIL [81] 2.85 -
PixelCNN++ [82] 2.92 -

GANs AutoGAN [83] - 12.42
StyleGAN2-ADA [84] - 2.92

Table 3: Generative results on CelebA-HQ-256.

Method NLL↓ FID↓

Ours LSGM ≤0.70 7.22
VAE Backbone 0.70 30.87

VAEs

NVAE [20] 0.70 29.76
VAEBM [76] - 20.38
NCP-VAE [56] - 24.79
DC-VAE [77] - 15.80

Score SDE [2] - 7.23

Flows GLOW [85] 1.03 68.93

Aut. Reg. SPN [86] 0.61 -

GANs
Adv. LAE [87] - 19.21
VQ-GAN [64] - 10.70
PGGAN [88] - 8.03
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Figure 4: FID and number of function evaluations
(NFEs) for different ODE solver error tolerances on
CelebA-HQ-256. LSGM takes 4.15 sec. for sampling
while the original SGM [2] takes 45 min. with PC and
3.9 min. with ODE-based sampling.

Table 4: Dyn. binarized OMNIGLOT results.

Method NELBO↓ NLL↓
Ours LSGM 87.79 ≤87.79

VAEs

NVAE [20] 93.92 90.75
BIVA [48] 93.54 91.34
DVAE++ [51] - 92.38
Ladder VAE [90] - 102.11

Aut. Reg.
VLVAE [47] - 89.83
VampPrior [59] - 89.76
PixelVAE++ [91] - 88.29

Table 5: Dynamically binarized MNIST results.

Method NELBO↓ NLL↓
Ours LSGM 78.47 ≤78.47

VAEs

NVAE [20] 79.56 78.01
BIVA [48] 80.06 78.41
IAF-VAE [24] 80.80 79.10
DVAE++ [51] - 78.49

Aut. Reg.
PixelVAE++ [91] - 78.00
VampPrior [59] - 78.45
MAE [92] - 77.98

against importance weighted estimation of NLL for other methods. On MNIST, LSGM outperforms
previous VAEs in NELBO, reaching a NELBO 1.09 nat lower than the state-of-the-art NVAE.

Qualitative results: We visualize qualitative results for all datasets in Fig. 5. On the complex
multimodal CIFAR-10 dataset, LSGM generates sharp and high-quality images. On CelebA-HQ-256,
LSGM generates diverse samples from different ethnicity and age groups with varying head poses and
facial expressions. On MNIST and OMNIGLOT, the generated characters are sharp and high-contrast.

Sampling time: We compare LSGM against the original SGM [2] trained on the CelebA-HQ-256
dataset in terms of sampling time and number of function evaluations (NFEs) of the ODE solver. Song
et al. [2] propose two main sampling techniques including predictor-corrector (PC) and probability
flow ODE. PC sampling involves 4000 NFEs and takes 44.6 min. on a Titan V for a batch of 16
images. It yields 7.23 FID score (see Tab. 3). ODE-based sampling from SGM takes 3.91 min. with
335 NFEs, but it obtains a poor FID score of 128.13 with 10−5 as ODE solver error tolerance6.

In a stark contrast, ODE-based sampling from our LSGM takes 0.07 min. with average of 23 NFEs,
yielding 7.22 FID score. LSGM is 637× and 56× faster than original SGM’s [2] PC and ODE

6We use the VESDE checkpoint at https://github.com/yang-song/score_sde_pytorch. Song et
al. [2] report that ODE-based sampling yields worse FID scores for their models (see D.4 in [2]). The problem is
more severe for VESDEs. Unfortunately, at submission time only a VESDE model was released.
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(a) CIFAR-10 (b) CelebA-HQ-256

(c) OMNIGLOT

(d) MNIST

Figure 5: Generated samples for different datasets. For binary datasets, we visualize the decoder mean. LSGM
successfully generates sharp, high-quality, and diverse samples (additional samples in appendix).

Table 6: Ablations on SDEs, objectives, weighting mechanisms, and variance reduction. Details in App. G.

SGM-obj.-weighting wll wun wre

t-sampling (SGM-obj.) U [0, 1] rll(t) U [0, 1] run(t) U [0, 1] rre(t)

t-sampling (q-obj.) rew. rew. rew. rll(t) rew. rll(t) rew. rll(t) rew. rll(t)

Geom.- FID↓ 10.18 n/a NaN NaN n/a n/a 22.21 NaN 7.29 7.18
VPSDE NELBO↓ 2.96 n/a NaN NaN n/a n/a 3.04 NaN 2.99 2.99

VPSDE FID↓ 6.15 8.00 NaN NaN 5.39 5.39 NaN 4.99 15.12 6.19
NELBO↓ 2.97 2.97 NaN NaN 2.98 2.98 NaN 2.99 3.03 2.99

sampling, respectively. In Fig. 4, we visualize FID scores and NFEs for different ODE solver error
tolerances. Our LSGM achieves low FID scores for relatively large error tolerances.

We identify three main reasons for this significantly faster sampling from LSGM: (i) The SGM prior
in our LSGM models latent variables with 32×32 spatial dim., whereas the original SGM [2] directly
models 256×256 images. The larger spatial dimensions require a deeper network to achieve a large
receptive field. (ii) Inspecting the SGM prior in our model suggests that the score function is heavily
dominated by the linear term at the end of training, as the mixing coefficients α are all < 0.02. This
makes our SGM prior smooth and numerically faster to solve. (iii) Since SGM is formed in the latent
space in our model, errors from solving the ODE can be corrected to some degree using the VAE
decoder, while in the original SGM [2] errors directly translate to artifacts in pixel space.

5.2 Ablation Studies

SDEs, objective weighting mechanisms and variance reduction. In Tab. 6, we analyze the differ-
ent weighting mechanisms and variance reduction techniques and compare the geometric VPSDE
with the regular VPSDE with linear β(t) [1, 2]. In the table, SGM-obj.-weighting denotes the weight-
ing mechanism used when training the SGM prior (via Eq. 9). t-sampling (SGM-obj.) indicates the
sampling approach for t, where rll(t), run(t) and rre(t) denote the IS distributions for the weighted
(likelihood), the unweighted, and the reweighted objective, respectively. For training the VAE encoder
qφ(z0|x) (last term in Eq. 8), we either sample a separate batch t with importance sampling following
rll(t) (only necessary when the SGM prior is not trained with wll itself), or we reweight the samples
drawn for training the prior according to the likelihood objective (denoted by rew.). n/a indicates
fields that do not apply: The geometric VPSDE has optimal variance for the weighted (likelihood)
objective already with uniform sampling; there is no additional IS distribution. Also, we did not
derive IS distributions for the geometric VPSDE for wun. NaN indicates experiments that failed due
to training instabilities. Previous work [20, 21] have reported instability in training large VAEs. We
find that our method inherits similar instabilities from VAEs; however, importance sampling often
stabilizes training our LSGM. As expected, we obtain the best NELBOs (red) when training with
the weighted, maximum likelihood objective (wll). Importantly, our new geometric VPSDE achieves
the best NELBO. Furthermore, the best FIDs (blue) are obtained either by unweighted (wun) or
reweighted (wre) SGM prior training, with only slightly worse NELBOs. These experiments were run
on the CIFAR10 dataset, using a smaller model than for our main results above (details in App. G).
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End-to-end training. We proposed to train LSGM end-to-end, in contrast to [10]. Using a similar
setup as above we compare end-to-end training of LSGM during the second stage with freezing the
VAE encoder and decoder and only training the SGM prior in latent space during the second stage.
When training the model end-to-end, we achieve an FID of 5.19 and NELBO of 2.98; when freezing
the VAE networks during the second stage, we only get an FID of 9.00 and NELBO of 3.03. These
results clearly motivate our end-to-end training strategy.

Mixing Normal and neural score functions. We generally found training LSGM without our
proposed “mixed score” formulation (Sec. 3.2) to be unstable during end-to-end training, highlighting
its importance. To quantify the contribution of the mixed score parametrization for a stable model,
we train a small LSGM with only one latent variable group. In this case, without the mixed score,
we reached an FID of 34.71 and NELBO of 3.39; with it, we got an FID of 7.60 and NELBO of
3.29. Without the inductive bias provided by the mixed score, learning that the marginal distribution
is close to a Normal one for large t purely from samples can be very hard in the high-dimensional
latent space, where our diffusion is run. Furthermore, due to our importance sampling schemes, we
tend to oversample small, rather than large t. However, synthesizing high-quality images requires an
accurate score function estimate for all t. On the other hand, the log-likelihood of samples is highly
sensitive to local image statistics and primarily determined at small t. It is plausible that we are still
able to learn a reasonable estimate of the score function for these small t even without the mixed
score formulation. That may explain why log-likelihood suffers much less than sample quality, as
estimated by FID, when we remove the mixed score parameterization.

Additional experiments and model samples are presented in App. H.

6 Conclusions
We proposed the Latent Score-based Generative Model, a novel framework for end-to-end training of
score-based generative models in the latent space of a variational autoencoder. Moving from data
to latent space allows us to form more expressive generative models, model non-continuous data,
and reduce sampling time using smoother SGMs. To enable training latent SGMs, we made three
core contributions: (i) we derived a simple expression for the cross entropy term in the variational
objective, (ii) we parameterized the SGM prior by mixing Normal and neural score functions, and
(iii) we proposed several techniques for variance reduction in the estimation of the training objective.
Experimental results show that latent SGMs outperform recent pixel-space SGMs in terms of both
data likelihood and sample quality, and they can also be applied to binary datasets. In large image
generation, LSGM generates data several orders of magnitude faster than recent SGMs. Nevertheless,
LSGM’s synthesis speed does not yet permit sampling at interactive rates, and our implementation of
LSGM is currently limited to image generation. Therefore, future work includes further accelerating
sampling, applying LSGMs to other data types, and designing efficient networks for LSGMs.

7 Broader Impact
Generating high-quality samples while fully covering the data distribution has been a long-standing
challenge in generative learning. A solution to this problem will likely help reduce biases in generative
models and lead to improving overall representation of minorities in the data distribution. SGMs
are perhaps one of the first deep models that excel at both sample quality and distribution coverage.
However, the high computational cost of sampling limits their widespread use. Our proposed LSGM
reduces the sampling complexity of SGMs by a large margin and improves their expressivity further.
Thus, in the long term, it can enable the usage of SGMs in practical applications.

Here, LSGM is examined on the image generation task which has potential benefits and risks
discussed in [94, 95]. However, LSGM can be considered a generic framework that extends SGMs to
non-continuous data types. In principle LSGM could be used to model, for example, language [96,
97], music [98, 10], or molecules [99, 100]. Furthermore, like other deep generative models, it
can potentially be used also for non-generative tasks such as semi-supervised and representation
learning [101, 102, 103]. This makes the long-term social impacts of LSGM dependent on the
downstream applications.
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