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Appendix

Distribution of selected operations. In Fig. 5, we provide the histogram of selected
operations for three E�cientNeV1t networks and di↵erent acceleration ratios.
All statistics are calculated for the first 100 architectures found via integer
optimization.

(a) B2 selected ops (b) B4 selected ops (c) B4 selected ops

Fig. 5: The histogram of selected operations for top-100 models of E�cientNetV1
derivatives. Teacher layers are often selected especially in the deeper layers of the
network as we visualize in Fig. 6 and Fig. 7. The identity layer is also selected
often especially when the target latency is low. Interestingly, simple layers with
two stacked convolution (cb stack) in the CBRCB structure (C-convolution,
B-batchnorm, R-ReLU) are selected most frequently after the teacher and identity
operations. Additionally we see a higher chance of selecting inverted residual
blocks (efn and efn2) with no squeeze-and-excitation operations se1.00.

Final architectures. Fig. 6 and Fig. 7 visualize the final architectures found
by LANA. We observe that teacher ops usually appear towards the end of the
networks. Identity connections appear in the first few resolution blocks where
the latency is the highest to speed up inference, for example 0.2ˆB4 has 2, 1, 1
in the first 3 resolution blocks from original 3, 4, 4.
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Fig. 6: Final architectures selected by LANA as E�cientNet-B2/B6 derivatives.
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Fig. 7: Final architectures selected by LANA as E�cientNetV1-B4/V2-B3 deriva-
tives.
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Fig. 8: Final architectures selected by LANA as 0.7xResNeST50d 1s4x24d.

4.1 Additional implementation details

We next provide details on chosen batch size defined as bs and learning rate lr,
joint with other details required to replicate results in the paper.

Pretraining implementation. Pretraining stage was implemented to distill a single
operator over all layers in parallel on 4xV100 NVIDIA GPU with 32GB. For
E�cientNet-B2 we set lr=0.008 with bs=128, for E�cientNet-B4 lr=0.0005
with bs=40, and E�cientNet-B6 lr=0.0012 with bs=12. We set �MSE “ 0.001.
We run optimization with an SGD optimizer with no weight decay for 1 epoch
only.

Finetuning implementation. Final model finetuning runs for 100 epochs. We set
bs=128 and lr=0.02 for E�cientNet-B2 trained on 2x8 V100 NVIDIA GPU;
for E�cientNet-B4 derivatives we set bs=128 and lr=0.04, for E�cientNet-B6
bs=48 and lr=0.08 on 4x8 V100 NVIDIA GPU. Learning rate was set to be
0.02. We set �CE and �KL to 1.

Table 8: E�cientNetV1 accelerated
by LANA for CPU inference.

Model
Res. Accuracy Latency
(px) (%) Pytorch (ms)

E�cientNetB0 224 77.70 57
0.4xB2 (Xeon) 260 78.11 (+0.97) 48
0.5xB2 (Xeon) 260 78.87 (+1.17) 58

E�cientNetB1 240 78.83 86
0.7xB2 (Xeon) 260 79.89 (+1.06) 80

E�cientNetB2 260 80.07 113

Latency look up table creations. We mea-
sure the latency on V100 NVIDIA GPU
with TensorRT in FP16 mode for batch
size of 128 images. For Xeon CPU latency
we use a batch size of 1. Input and out-
put stems are not included in latency LUT.
This results in a small discrepancy between
theoretical and real speed. As a result, we
use latency LUT for operator evaluation,
and report the final real latency for the
unveiled final models.

4.2 CPU optimized models

We extended experiments of E�cientNetV1 by optimizing LANA on CPU. In
this case only LUT is di↵erent and pretrained operations are the same.

4.3 E↵ect of the model finetuning duration
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Table 9: Ablations on the length of fine-
tuning step. On the right side, we report
E�cientNet accuracy for models with
the same latency as ours.

LANA Epochs E�cientNetV1

model 5 10 25 50 100 alternative
0.45xB2 78.69 79.08 79.19 79.58 79.71 77.70 (B0)
0.55xB2 79.05 79.47 79.84 80.00 80.11 78.83 (B1)

In the paper, finetuning of the final
architecture is performed for 100 epoch
for most of the experiments with being
50 epochs for ablations studies. The
length of finetuning a↵ects accuracy,
therefore we compare performance by
changing it Table 9.

4.4 Candidate pretraining
insights

Latency-accuracy tradeo↵ for di↵erent operations after pretraining is shown in
the Figure 9. Observations from these plots are discussed in Section 3.2.

Fig. 9: Result of the pretraining stage for E�cientNetB2, showing three layers
equally spaced throughout the network: 7, 14 and 21. Speedup is measured as the
ratio between the latency of the teacher and the latency of the student operation
(higher is better). We measure latency using Pytorch FP16. Accuracy is the ratio
of the operation’s accuracy and the teacher’s (higher is better). The dashed black
lines correspond to the teacher.

The choice of pretraining loss. To motivate our choice of MSE for pre-
training, we investigate the distribution of activations at the output of residual
blocks. We observe that for all blocks, activations follow a Gaussian-like dis-
tribution. Shapiro-Wilk test for normality averaged over all layers is 0.99 for
E�cientNetV1-B2, and 0.988 for E�cientNetV2-B3. Given this observation, MSE
error seems a reasonable loss function to minimize.
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4.5 Detailed comparison to prior work

For comparison to prior work we look into latest models from the out-of-the-
box timm package [85] with Apache-2.0 License. We include detailed individual
method names and references as follows:

efficientnet: E�cientnet [73].
cait: Class-attention in image transformers [77].
cspnet: Cross-stage partial network [80].
deit: (Data-e�cient) vision transformer [76].
dla: Deep layer aggregation [96].
dpn: Dual-path network [10].
ecanet: E�cient channel attention network [84].
hrnet: High-resolution network [82].
inception: Inception V3 [69] and V4 [68].
mixnet: MixConv-backed network [74].
ofa: Once-for-all network [5].
pit: Pooling Vision Transforms [30].
regnetX: Regnet network [58], accuracy is taken from the original paper.
regnetY: Regnet network [58] with squeeze-and-excitation operations, accuracy
is taken from the original paper.
repvgg: RepVGG [15].
resnest101 e: Resnest101 (with bag of tricks) [23].
resnest50 d: Resnest50 (with bag of tricks) [23].
resnet50 d: Resnet50 (with bag of tricks) [23].
resnetrs10 1: Resnet rescaled [3].
resnetrs15 1: Resnet rescaled [3].
resnetrs5 0: Resnet rescaled [3].
resnext50d 32x4d: Resnext network (with average pooling downsampling) [89].
seresnet5 0: Squeeze Excitement Resnet50 [32].
skresnext50 32x4d: Selective kernel Resnext50 [40].
vit-base: Visual Transformer, base architecture.
vit-large 384: Visual Transformer, large architecture, 384 resolution [17].
wide resnet50 2: Resnet50 with 2ˆ channel width [99].
xception6 5: Xception network (original) [12].
xception7 1: Xception network aligned [9].

A more detailed comparison with other models is shown in the Figure 10. We
observe that models resulted from LANA acceleration are performing better than
the most of other approaches. All of the models for LANA used LUTs computed
with TensorRT and clearly the speed up in the TensorRT figure is larger when
compared with other methods. On the same time if model latency is estimated
with Pytorch, we still get top models that outperform many other models.
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PyTorch FP16: TensorRT:

Fig. 10: Comparison with other models from TIMM package.


