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Abstract

We present KAMA, a 3D Keypoint Aware Mesh Articu-
lation approach that allows us to estimate a human body
mesh from the positions of 3D body keypoints. To this end,
we learn to estimate 3D positions of 26 body keypoints and
propose an analytical solution to articulate a parametric
body model, SMPL, via a set of straightforward geomet-
ric transformations. Since keypoint estimation directly re-
lies on image clues, our approach offers significantly bet-
ter alignment to image content when compared to state-of-
the-art approaches. Our proposed approach does not re-
quire any paired mesh annotations and provides accurate
mesh fittings through 3D keypoint regression only. Results
on the challenging 3DPW and Human3.6M show that our
approach yields state-of-the-art body mesh fittings.

1. Introduction

The estimation of a human body mesh from a single
RGB image is of great interest for numerous practical ap-
plications. The state-of-the-art methods [12, 17, 27, 30] in
this area use deep neural networks with a fully-connected
output layer, and directly regress the parameters of a para-
metric mesh model from the input image. While the perfor-
mance of these methods has improved significantly, learn-
ing a mapping between images and mesh parameters in this
way is highly non-linear. Therefore, these methods often
suffer from low localization accuracy. Specifically, while
these methods estimate parameters that are plausible, the
resulting meshes are often misaligned with the visual con-
tent, in particular, the wrists and feet regions (See Fig. 1).
Additionally, these methods require a large number of im-
ages annotated with ground-truth meshes which is very hard
to acquire specifically in unconstrained scenes.

On the other hand, recent methods for 3D keypoint re-
gression [23, 68, 70] can accurately localize body keypoints
with their 2D projections aligning well with the image con-
tent. Instead of learning a direct mapping between input
images and 3D coordinates [59, 67, 71, 84], these meth-
ods first estimate an intermediate volumetric [43,55,68,70]
or heatmap-like [23] representation, and then recover the
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Figure 1. Qualitative comparison with the state-of-the-art method
SPIN [30]. While mesh predictions of SPIN [30] are plausible,
they do not align well with the image content, especially around
the hand and feet regions. In contrast, our method yields accurate
meshes with better alignment as it directly estimates body mesh
from accurate 3D keypoints.

3D coordinates from them. This results in better 3D key-
point localization as better correspondences can be built be-
tween spatial image locations and the output 3D represen-
tation through fully-convolutional neural networks. Moti-
vated by this, some recent works for mesh estimation also
encode mesh vertex coordinates in heatmap-like represen-
tation [10]. While they show impressive performance, it
comes at the cost of requiring large amounts of images an-
notated with body pose and shape labels.

The ground-truth shape annotations used by the methods
for body mesh estimation [12, 27, 30] are usually obtained
using the seminal approach MOSH [42]. MOSH [42] shows
that a sparse set of 3D marker locations on the human body
are sufficient to capture body shape and soft-tissue defor-
mations. Motivated by this, in this work, we propose to
harness the superior localization ability of recent keypoint



regressors [23, 43, 55, 68, 70] and reconstruct full human
body mesh from the regressed 3D keypoint positions only.
A method with this capability offers two main advantages:
1) As compared to the traditional regression based meth-
ods [27, 30], the mesh estimates will be more accurate and
align better with visual clues since the 3D keypoints can be
localized more accurately from images [23, 43, 55, 68, 70].
2) It does not require images paired with ground-truth shape
labels which are very hard to acquire.

Some existing works propose solutions in this direction
but formulate the problem as an optimization framework
where the parameters of a parametric body model (e.g.,
SMPL [41]) are optimized to match the articulation of a
regressed 3D pose [48, 79]. Some other methods instead
use 2D positions, but can also be extended to 3D [6,52,65].
Optimization-based methods are, however, prone to local-
minima and are time consuming, in particular, when a
parametric mesh model with large number of vertices (e.g.
SMPL has 6890 vertices) has to be optimized. In contrast,
in this work, we propose an analytical solution using a set of
straightforward geometrical operations that are not prone to
local-minima and have negligible computational cost while
showing better performance.

We enable analytical mesh articulation by learning a 3D
keypoint regressor that provides 3D positions of a sufficient
number (K=26) of keypoints to accurately capture orienta-
tion of most body parts. The main challenge to learn such a
regressor is to have ground-truth 3D annotations as the ex-
isting datasets do not provide annotations for enough key-
points. We show that such a regressor can be learned us-
ing synthetic and/or weakly-labeled data. For this, we build
on the recent progress in weakly-supervised 3D keypoint
learning [23, 29, 61], and train our keypoint regressor using
a combination of fully- and weakly-labeled data. The key-
points that do not have labeled 3D annotations are learned
using weakly-labeled data in the form of unlabeled multi-
view images along with a collection of images annotated
with 2D positions only.

Given the estimated 3D keypoint positions, we then
present KAMA, which is an analytical method for Keypoint
Aware Mesh Articulation. It uses a set of straightforward
geometrical operations to articulate a canonical mesh using
the regressed 3D keypoint positions. While KAMA already
achieves state-of-the-art results, we further show that the
meshes can be refined further by using a simple first-order
optimization that removes the discrepancies between the re-
gressed keypoints and articulated mesh. As shown in Fig. 1,
our approach offers accurate mesh fitting and significantly
better alignment as compared to the traditional regression
based state-of-the-art method [30]. We evaluate our pro-
posed approach on the challenging 3DPW and Human3.6M
datasets where it achieves state-of-the-art results.

2. Related Work
In the following, we discuss existing methods for 3D

keypoint regression and body mesh recovery.
3D Keypoint Regression: These methods regress 3D key-
point positions from an RGB image [13, 36, 37, 54, 55, 55,
59, 67, 68, 71–73, 83, 84] or a 2D pose [8, 19, 21, 45, 50, 62]
as input. Recently, this is achieved by training a deep neu-
ral network using ground-truth 3D pose annotations. Ear-
lier methods regress 3D keypoints using holistic regression
with a fully-connected output layer [36, 37, 59, 71, 72, 84].
More recent methods, however, adopt fully-convolutional
networks to produce volumetric [43,55,68,70] or heatmap-
like [23, 82] representations. This enables better correspon-
dence between input image and the output 3D pose repre-
sentation, and therefore, leads to higher localization accu-
racy. Since the acquisition of ground-truth 3D data is very
hard, many recent works try to learn 3D keypoint regres-
sors in semi [38, 58, 60, 61, 78, 80] and weakly [9, 15, 23,
29, 33, 49, 51, 56, 76, 77] supervised ways. In this work, we
build on the advances of these methods to learn additional
3D keypoints required for our method.
Body Mesh Recovery: These methods estimate body pose
as well as its shape from RGB images. Most of the recent
works adopt deep neural networks and directly regress the
parameters of a parametric body model, SMPL [41], from
images [12, 17, 25, 27, 28, 30, 32, 53, 57, 63, 69, 85]. How-
ever, learning this non-linear mapping is very hard and of-
ten results in meshes that do not align very well with im-
age content. Some recent methods [10, 31, 39] try to alle-
viate this problem by directly predicting the vertex coordi-
nates from image features. However, the main limitations
of these methods is that they rely heavily on ground-truth
body shape annotations which are very hard to acquire.

Other works try to decompose the problem into stages.
They first estimate 2D and/or 3D keypoints from images
and then estimate the mesh parameters using optimization
based methods [4, 6, 26, 52, 65, 79] or use graph CNN to
directly reconstruct the mesh [11]. These methods rely on
large collection of motion capture data, e.g., AMASS [44],
to learn strong body pose prior. The optimization based
methods are, however, prone to local-minima due to 2D-
3D depth ambiguities and require careful initialization for
optimal solutions. Also, they can be computationally very
intensive due to their iterative nature, in particular, when a
body mesh with a large number of vertices has to optimized.
Our work also falls into this category in that we first esti-
mate the 3D body keypoints and then reconstruct the body
mesh. However, we propose an analytical solution to ar-
ticulate a canonical mesh using the estimated 3D keypoints
and a set of geometric operations. Our proposed approach
is neither expensive, nor it is prone to local-minima. Similar
to our method, the contemporaneous work HybrIK [35] also
reconstructs 3D body meshes from 3D keypoints. However,
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Figure 2. Overview: Given an RGB image as input, we use a 3D keypoint regressor that produces absolute 3D positions of 26 body
keypoints. We use the estimated 3D positions to articulate the SMPL body model using a set of geometrical transformation (Sec. 3.2).
While KAMA already provides very good mesh reconstruction, the estimated mesh can be (optionally) improved further using a very
simple first order optimization that minimizes the discrepancies between the articulated mesh and the regressed 2D and 3D keypoints
(Sec. 3.3). Our mesh estimates align much better with the image content as compared to the state-of-the-art methods.

in contrast to our method, it requires images annotated with
3D meshes.

Some methods adopt a hybrid approach by utilizing
a regression followed by optimization strategy. The ap-
proaches [17, 81] train regressors that produce several pose
representations in addition to the parameters of SMPL.
These representations are then used in an optimization
framework to refine the initial SMPL predictions. This
strategy is, however, extremely data hungry. In addition to
the labels for body pose and shape, they also require seg-
mented part labels and DensePose [18] annotations. Our
approach can also benefit from this hybrid-strategy as we
will show in the experiments. However, in contrast to these
methods, our approach does not require 3D mesh annota-
tions or any kind of additional labels such as part segmen-
tation or DensePose.

3. Method

Our goal is to reconstruct the full 3D body mesh M from
an RGB image I of a pre-localized person. We do this via a
set of 3D body keypoints that are obtained using a learned
keypoint regressor. In the following, we first describe our
approach for 3D keypoint regression (Sec. 3.1) and then
present our proposed method for body mesh articulation
from the regressed keypoints (Sec. 3.2). In (Sec. 3.3), we
show that the estimated meshes can be refined further using
a simple optimization objective and body mesh priors. An
overview of the proposed approach can be seen in Fig. 2.

3.1. 3D Keypoint Regression

Our goal is to learn a keypoint regressor F(I), in the
form of a deep neural network, that takes an image I as in-
put and produces the 3D positions X={xk}k∈K of K body
keypoints. Since we aim to use the keypoints to articulate

a canonical mesh, the number of keypoints should be suf-
ficient to obtain finer details about body mesh such as the
head and feet orientation. The commonly used 17 keypoints
are, however, insufficient for this purpose. For example, the
3D head pose (yaw, pitch, roll) in the mesh cannot be fully
determined by the 3D positions of the neck and top-of-the-
head locations only. We need additional 3D keypoints on
the face to describe the full head pose. Therefore, in this
work, we learn to regress K=26 body keypoints including,
eyes, ears, nose, small and big toes, and heels, in addition to
the other commonly used body keypoints. One main chal-
lenge to learn such a regressor is that the existing datasets
for 3D human pose, such as the Human3.6M [20] and MPII-
INF-3DHP [46], do not provide ground-truth annotations
for the additional keypoints. To this end, we adopt the re-
cent work of Iqbal et al. [23] that trains the 3D regressor
using weakly-labeled data through multi-view consistency
and 2D pose labels. During training, we supervise the key-
points that have ground-truth 3D annotations using fully-
supervised losses and train the remaining 9 keypoints (eyes,
nose, ears, toes, and heels) using using weakly-supervised
losses via multi-view consistency as done in [23]. Such a
joint fully and weakly-supervised training strategy allows
us to train a 3D pose regressor with all K=26 keypoints
given 2D annotations for all keypoints in one dataset (i.e.,
MS-COCO [7,40]), and 3D annotations for some keypoints
along with multi-view images from another dataset (i.e. Hu-
man3.6M [20]).

There are two additional useful properties of the key-
point regressor trained using [23]. First, it provides ab-
solute 3D positions of the keypoints. Therefore, we re-
cover the body mesh in the absolute camera space and use
perspective-projection to project it onto the image plane.
Second, it reconstructs 3D keypoints using a 2.5D heatmap
representation [22], which yields 3D keypoints that are



well-aligned with the image content. An example of our
estimated 3D keypoints can be seen in Fig. 2. We refer the
reader to [23] for further details about training the regressor.

3.2. KAMA: Keypoint Aware Mesh Articulation

Given the regressed 3D keypoints X from the previous
section, our goal is to articulate a canonical mesh such that
it matches the pose of the person. We encode the body mesh
using the Skinned Multi-Person Linear (SMPL) model [41].
SMPL represents the body mesh using a linear function
M(θ, β) that takes as input the pose parameters θ ∈ R24×3

and the shape parameters β ∈ R10 and produces an artic-
ulated triangle mesh M ∈ RV×3 with V=6980 vertices.
The pose parameters θ consist of local 3D-rotation matri-
ces, in axis-angle format, corresponding to each joint in the
pre-defined kinematic structure ε of the human body. In the
following, we estimate the pose parameters θ of the mesh
from the regressed 3D keypoints using a set of geometrical
transformations. We use a simple procedure that is fully an-
alytic and the computational cost is completely negligible.

3.2.1 Keypoint Rotations from 3D Positions

Let M̄ be the body mesh in the canonical pose and
X̄=WM̄={x̄k}k∈K be the 3D keypoint positions in the
canonical pose. Here W ∈ RK×V is a learned weight
matrix that defines the contribution of every vertex to
the keypoints. Our goal is to use X and X̄ to calcu-
late a set of rotations θ̂={θk}k∈K such that the mesh
M̂=M(ξ(θ̂), β=01×10) has an articulation similar to that
of the regressed keypoints X. Here the function ξ(.) con-
verts the order of rotation matrices from the 26-keypoint
skeleton structure used for the keypoint regressor to the
skeleton of SMPL which has 24 keypoints. Following the
definition of SMPL, we use axis-angle representation of the
rotation matrices. We define C(k) as the children keypoints
of keypoint k and N(k) as the set of all keypoints adjacent
to k, including k, as defined by the kinematic structure ε.

We apply three different rules to compute an initial es-
timation of the global rotations θgk for every keypoint k: 1)
For keypoints with one child we estimate rotation with am-
biguous twist which is later compensated, 2) for keypoints
with multiple children we estimate rotation with the help of
other connected joints that move rigidly with k, and 3) we
assume no rotation for childless keypoints. These rules are
summarized as follows:

θgk =


α1(x̄c(k)−x̄k,xc(k)−xk) if |C(k)| = 1

α2(X̄N
k ,X

N
k ) if |C(k)| > 1

01×3 otherwise,

(1)

where X̄N
k = {x̄n}n∈N(k)

and XN
k = {xn}n∈N(k)

.

Figure 3. Illustration of ambiguous rotations for the keypoints with
one child. Left: Input image. Middle: The articulated mesh
has ambiguous twists around all keypoints with one child. Right:
The articulated mesh after the removal of ambiguous twists. Both
meshes are articulated using the same 3D keypoints.

Keypoints with one child: For the keypoints with one
child, we compute rotation as the angle applied to the vector
perpendicular to the plane formed by the bones x̄c(k)−x̄k
and xc(k)−xk in the canonical and estimated poses, respec-
tively. c(k) corresponds to the index of the child of keypoint
k, and the function α1(v1,v2) provides the rotation in axis-
angle format as follows:

α1(v1,v2) = arccos
( vT1 v2

||v1|| ||v2||
)
· v1 × v2

||v1 × v2||
, (2)

where the right part represents the axis of rotation and the
left part corresponds to the angle of rotation.

It is important to note that the rotation estimated in this
way is inherently ambiguous as any arbitrary twist about
the child vector can be applied without affecting the posi-
tion of the child keypoint. We will remove such ambigu-
ous twists after calculating rotations for all keypoints as ex-
plained later in this section.
Keypoints with multiple children: For the keypoints with
multiple children, we can estimate the keypoint rotation
more precisely. Here we assume that all keypoints in N(k)
move rigidly, and estimate the rotation as a rigid rotation
between X̄N

k and XN
k as

α2(X̄N
k ,X

N
k ) = argmin

θ

∑
x̄i∈X̄N

k

xi∈XN
k

ψ(xi)(φ(θ, x̄i)− xi), (3)

where φ(θ, x̄) represents rotating the vector x with θ using
Rodriguez formula, and ψ(xi) corresponds to the detection
confidence of keypoint i as provided by the keypoint regres-
sor F(I). The eq. (3) can be solved easily in closed-form
using singular value decomposition [16]. Thanks to our 26-
keypoint regressor, many of the keypoints (i.e., pelvis, neck,
nose/face, ankles) fall into this category.
Global to local rotations: The rotations of the body joints
as calculated above are the global rotations for each of them.
However, to be able to use them in the function M(ξ(θ), β)
to articulate the SMPL mesh, we convert them to local rota-
tions as follows:

θk = θg−1
p(k) · θ

g
k, (4)



where p(k) is the index of the parent of keypoint k. The
root keypoint has no parent so it remains unchanged.
Twist removal: Given the local rotations for all body joints,
we need to remove unnecessary twists from the rotations of
the joints with one child. A reasonable choice is to default
to the twist from the canonical pose (which is zero by def-
inition). This can be done via swing-after-twist decompo-
sition [14]. Specifically, we decompose the estimated local
rotation into its swing and twist components, and then set
the rotation as the swing component, while discarding the
twist component. A comparison between the meshes before
and after the twist removals can be seen in Fig 3.

3.2.2 Scale and Translation Estimation

So far, we have articulated the canonical mesh to match the
pose of our regressed keypoints. However, it still lies at the
origin and its global scale is unknown. Since our keypoint
regressor provides absolute 3D pose including approximate
bone length scales, we calculate the global translation t ∈
R3 and global scale s ∈ R for the articulated mesh using
Procrustes analysis [16] between the keypoints of the mesh
and regressed keypoints:

ŝ, t̂ = argmin
s,t

||W(sM̂+t)−X||22. (5)

where M̂=M(ξ(θ̂), β=01×10) is the articulated mesh us-
ing the estimated rotations. This gives us our final artic-
ulated mesh in the absolute camera coordinate system as
M=ŝM̂+t̂. We use perspective-projections to project the
resulting mesh onto the image plane.

3.3. Pose Refinement and Shape Estimation

While our approach for mesh articulation using key-
points already provides state-of-the-art mesh estimates, as
we will show later in our experiments, there are a few is-
sues that can be addressed further. First, our method re-
sorts to canonical twist for the keypoints with single chil-
dren which is not the most optimal choice. Second, the
regressed keypoints do not exactly match with the skele-
ton structure of SMPL. For example, in contrast to SMPL,
the regressor does not provide any keypoints on the collar
bones. Depending on the 2D annotations, there can be other
subtle differences between the estimated keypoints and the
keypoints in the canonical mesh. Also, small errors in one
keypoint can propagate to the entire mesh. For example,
an incorrect rotation for pelvis will impact all other key-
points and will result in mesh keypoints that are very dif-
ferent from the regressed keypoints. Lastly, we also need to
estimate the shape parameters β of SMPL to fully capture
the body details. To this end, we build on [6] and remove
such discrepancies by using body pose and shape priors in
an energy minimization formulation that further refines the

pose parameters θ, shape β, global translation t, and global
scale s:

θ̂, β̂, t̂, ŝ = argmin
θ,β,t,s

L(θ, β, t, s), (6)

where L(θ, β, t, s) consists of four errors terms

L(θ, β, t, s) = L2D + ω1L3D + ω3Lθ + ω2Lβ . (7)

The error term L2D is the reprojection error. It mea-
sures the discrepancies between the 2D keypoints provided
by the regressor and the projection of the mesh skeleton
X̂={x̂k}k∈K=W(sM + t):

L2D =
∑
k

ψ(xk)||P (K,xk)− P (K, x̂k)||22, (8)

where K is the intrinsic camera matrix, P (., .) represents
projection on the image plane, ψ(xk) corresponds to the de-
tection score of the keypoint k. L3D measures the difference
between predicted 3D position and the 3D mesh skeleton:

L3D =
∑
k

ψ(xk)||xk − x̂k||22. (9)

The error terms Lθ and Lβ correspond to the pose prior
and shape prior terms as defined in [6], respectively. Specif-
ically, Lθ favors plausible pose parameters θ. In our case,
it helps in recovering the optimal twist for keypoints with
one child and in reducing the ambiguities due to missing
keypoints and differences in the skeleton structures. The
term Lβ is a regularization for parameters β such that the
optimized shape is not distant from the mean shape.

For the optimization, we use the values of θ, s, and t
from KAMA as initialization and use Adam as the opti-
mizer. Since we start from a very good initialization, we
found that the optimization converges within 100 iterations
without the need of a multi-stage optimization strategy as
required by prior works [6,52]. Some examples of mesh es-
timates before and after the refinement can be seen in Fig. 4

4. Implementation Details
We follow [23] and use HRNet-w32 [66] as the keypoint

regressor. We empirically choose ω1 = 500, and adopt
ω2 = 4.78 and ω3 = 5 from [6, 30]. We use the publicly
available implementation of SMPL provided by [30]. The
linear regressor W in this implementation allows to extract
54 keypoints from the mesh vertices. We choose 26 key-
points that are closest to the 2D annotations used by our
keypoint regressor. Note that these keypoints do not exactly
overlap with the native 24 keypoints of SMPL, but are suffi-
cient to calculate enough rotation matrices in θ ∈ R24×3 to
capture the full body pose. The rotation matrices that can-
not be estimated (i.e., collar-bones, spine-1, spine-3, and
hands) are assigned zeros in (1), but optimized in (6).
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Figure 4. (a) Articulated body meshes obtained using our proposed approach KAMA (Sec. 3.2). (b) Meshes obtained after pose and shape
refinement (Sec. 3.3). (c) Comparison between a & c. While KAMA already provides very good mesh estimates, they sometimes can have
errors due to missing twist information, errors in the regressed keypoints, error propagation, occlusions, and etc. Such errors can be fixed
using a simple optimization objective consisting of body pose and shape priors.

5. Experiments

We evaluate the performance of the proposed approach
in detail and also compare it with the state-of-the-art image-
based methods for human pose and shape estimation.

5.1. Datasets

Human3.6M [20]: We follow the standard protocol [27]
and use five subjects (S1, S5, S6, S7, S8) for training and
test on two subjects (S9 and S11) on the frontal camera.
3D Poses in-the-Wild (3DPW) [75]: consists of 60 videos
recorded in diverse environments. We follow the standard
protocol and use its test-set for evaluation and do not train
on this dataset.
RenderPeople: This is a synthetic dataset with ground-
truth annotations for all K=26 keypoints used in our
method. We used 10 characters from RenderPeople [2]
dataset and generated 80k images under a variety of poses
using CMU MoCap dataset [3] while using ∼100 outdoor
HDRI image from HDRI Haven [1] for lighting and back-
grounds. We manually annotated the vertices corresponding
to eyes, ears, nose, toes and heels for each character as they
are not part of the rigged skeletons.
MS-COCO (COCO) [40]: We use this dataset as the
weakly-labeled set for the training of the 3D keypoint re-
gressor. The dataset provides 2D annotations for 18 key-
points. A subset of the dataset was augmented by [7] with
annotations for 3 additional keypoints on each foot.

5.2. Evaluation and Training Setting

We report Mean Per-Vertex Error (MPVE) and 3D recon-
struction error in millimeters (mm) for all experiments. Fol-
lowing the standard practice [27], we extract 14 keypoints
for evaluation from the recovered mesh using a pre-trained
linear regressor.

For 3DPW dataset, different methods use different
datasets for training which include Human3.6M [20],
MSCOCO [40], MPI-INF-3DHP [46], MuCo-3DHP [47]
MPII [5], LSP [24], UP [34], SURREAL [74] and etc. In
this work, we only use Human3.6M, MSCOCO and the
80k synthetic images from RenderPeople dataset to train the
model used for evaluation on 3DPW dataset.

For evaluation on Human3.6M, we train only using Hu-
man3.6M and MSCOCO datasets. The ground-truth mesh
annotations for Human3.6M are only available to a sparse
set of researchers as the distribution has been discontin-
ued. Hence, we only report reconstruction error for Hu-
man3.6M. We also found that there are discrepancies be-
tween the 14 keypoints extracted using the keypoint regres-
sor provided by [6] and the ground-truth marker locations
from Human3.6M. This is not a problem when ground-truth
mesh annotations are available as the consistent ground-
truth keypoints can be extracted from the meshes. Since the
mesh annotations are not available to us, we remove these
discrepancies by training another linear regressor (42×42
weight matrix) using training data, and apply it to the ex-
tracted 14 keypoints before evaluation.

5.3. Ablation Study

In Tab. 1, we evaluate all components of the proposed
approach. We chose 3DPW datasets for all ablative studies
as it represents more general in-the-wild scenarios, and also
provides ground-truth mesh annotations. First, we evalu-
ate the performance of our approach for mesh articulation
(KAMA) using regressed 3D keypoints. If we do not re-
move ambiguous twists from the calculated rotations, as ex-
plained in Sec 3.2.1, the estimated meshes yield a MPVE
and 3D reconstruction error of 124.8mm and 64.0mm, re-
spectively. Removing the ambiguous twists results in a
significant decrease in the error (124.8mm vs. 107.7mm



Methods MPVE Recon. Error

articulation using 3D keypoints (1)

KAMA w/o twist removal 124.8 64.0
KAMA with twist removal 107.7 54.5

pose & shape refinement using (6)

Initialization using (1)
L2D 152.5 87.8
L2D + L3D 115.8 63.5
L2D + L3D + Lθ 100.4 53.0
L2D + L3D + Lθ + Lβ 97.0 51.1

No initialization 106.6 56.4
Init. using mean pose (SMPLify3D) 100.7 55.8
Init. using SPIN [30] 94.8 50.4

Init. using mean pose - w/o L2D (SMPLify2D) 115.0 69.3
Init. using SPIN [30] - w/o L2D 98.8 55.0

impact of 3D keypoint quality - using GT 3D keypoints

KAMA 47.4 18.0
KAMA with refinement using (6) 44.1 17.0

Table 1. Impact of different components in the proposed approach.

and 64.0mm vs. 54.5mm) and shows the importance of this
step. Note that ambiguous twists have higher impact on the
MPVE since the body surface is impacted more with incor-
rect twist rotations as compared to body keypoint positions.
We would like to emphasize that the errors of 107.7mm
and 54.5mm are the state-of-the-art on 3DPW dataset, even
though we only use mean shape values (i.e., β = 01×10))
in KAMA. Thanks to eq. (5), we can find an optimal global
scale for the mesh without having to optimize beta.

Next, we evaluate the contributions of different error
terms used in (7). In all cases we initialize the body joint
rotations using (1) and body translation and scale using (5).
If we only optimize for the re-projection loss L2D, the
errors increase significantly (from 107.7mm to 152.5mm
and 54.5mm to 87.8mm) due to the well known 2D-
3D ambiguities. Adding L3D reduces the errors (from
152.2 to 115.8mm and 87.8mm to 63.5mm) but remains
higher than what we can achieve by using KAMA only.
This is because optimizing 2D and 3D losses only is still
susceptible to ambiguous twists. In KAMA, on the other
hand, we explicitly handle the twist by either discarding it or
estimating it with the help of adjacent keypoints. Enforcing
body pose priors using Lθ significantly reduces the errors.
As compared to KAMA only, the MPVE and joint recon-
struction errors are reduced from 107.7mm to 100.4mm and
54.5mm to 53.0mm, respectively. As mentioned earlier, Lθ
encourages plausible poses. In our case, it helps to recover
the twists of keypoints with single child and to reduce the
ambiguities due to missing 3D keypoints and differences in
the skeleton structures. Finally, adding Lβ results in fur-
ther decrease in the errors demonstrating the importance of
optimal body shape parameters.

To emphasize the usefulness of KAMA for the optimiza-
tion based method, we also evaluate the case when no ini-
tialization for θ is used. Since we have the estimated 3D
keypoints, we can obtain reasonable initial values for global

Methods Mesh MPVE Recon.
Supervision Error

SMPLify [6]* ECCV’16 N - 106.1
HMR CVPR’18 Y 161.0 81.3
Kundu et al. [32] ECCV’20 N - 78.2
ExPose [12] ECCV’20 Y - 60.7
Rong et al. [63] CVPR’19 Y 152.9 -
SPIN [30] ICCV’19 Y 112.8 59.2
Pose2Mesh [11] ECCV’20 Y - 58.9
I2L-Mesh [10] ECCV’20 Y 110.1 58.6
Zanfir et al. [81] ECCV’20 Y - 57.1
Song et al. [65]* ECCV’20 N - 55.0

KAMA (ours) N 107.7 54.5
KAMA w. refinement* N 97.0 51.1

Table 2. Comparison with state-of-the-art methods on 3DPW
dataset. *optimization-based methods

scale s, global translation t and the global orientation θ0

by calculating a rigid transformation between the regressed
keypoints and skeleton of the canonical mesh using Pro-
crustes analysis. We initialize β and θ with zeros. Opti-
mizing (6) without a good initialization results in a 3D error
of 56.4mm which is significantly higher than the case when
KAMA is used as the initialization (51.1mm), demonstrat-
ing the importance of KAMA and accurate initialization.

To further evaluate the impact of initialization, we im-
plement a 3D version of SMPLify [6] which initializes the
pose parameters θ with the mean body pose. We initialize
the global orientation using the rotation of the pelvis key-
point obtained using (1) and global scale and translation us-
ing (5). This results in a MPVE and 3D reconstruction error
of 100.7mm and 55.8mm, respectively, that are significantly
higher than the case when predictions from KAMA are used
for initialization, demonstrating that KAMA serves as a
very good initialization. In fact, KAMA without any op-
timization achieves better 3D reconstruction error than SM-
PLify3D (54.5 vs 55.8mm). We also evaluate when an off-
the-shelf regression based method, SPIN [30], is used as ini-
tialization. Even though SPIN uses full 3D pose and shape
supervision, using its predictions as initialization achieve
results on par with KAMA. We also report a 2D version
of optimization by removing L3D from the objective while
keeping all other error terms and initialization as before.
The errors increase significantly showing that the 3D key-
points are important for accurate reconstruction. In contrast
to SPIN [30], KAMA by default exploits the strengths of
3D keypoints. It significantly outperforms SPIN when no
refinement is performed (59.2 vs 54.5mm, see Tab. 2).

Finally, we also evaluate the impact of 3D keypoint ac-
curacy on body mesh reconstruction using KAMA. For this,
we extracted 26 keypoints from the ground-truth meshes,
and used KAMA to reconstruct body mesh. This setting
serves as an upper-bound for KAMA. Using ground-truth
3D keypoints significantly decreases the errors showing
that the performance can be improved further by using a
more accurate 3D keypoint regressor. Notably, the dif-



Figure 5. Some qualitative results from the validation set of COCO dataset.

ference between KAMA and KAMA-with-refinement de-
creases which indicates that the refinement step may not be
required with more accurate 3D keypoints.

5.4. Comparison to the State-of-the-Art

We compare the performance of our approach with the
state-of-the-art on 3DPW and Human3.6M datasets.

Tab. 2 compares our proposed method with the state-of-
the-art on 3DPW dataset. We chose the best numbers re-
ported in all papers. The MPVE for SPIN [30] and I2L-
Mesh [10] are obtained using the publicly available source
codes, whereas the MPVE for HMR is obtained from [63].
KAMA without any additional refinement already outper-
forms all state-of-the-art methods. Refining the mesh es-
timates using (6) further improves the results and sets a
new state-of-the-art on 3DPW dataset. Note that the meth-
ods [10, 17, 27, 30, 31, 53, 81] use images annotated with
ground-truth mesh annotations, and the method [65] re-
lies on very strong pose priors learned from a massive cor-
pus of MOSHed [42] motion capture data, AMASS [44].
KAMA, in contrast, does not require any mesh annotations
and is trained using 3D keypoints supervision only, yet it
outperforms them with a large margin. This demonstrates
that a good keypoint regressor combined with KAMA can
yield state-of-the-art mesh reconstruction without the need
of hard-to-acquire body mesh annotations.

Tab. 3 compares our proposed method with the state-of-
the-art on Human3.6M dataset. On this dataset, KAMA
without refinement performs on-par with SPIN [30] and
I2L-MeshNet [10]. This is likely because of the limited
diversity of Human3.6M where these methods can overfit
using the full mesh annotations. Nonetheless, as before, re-
fining the predictions of KAMA using (6) reduces the errors
and results in state-of-the-art performance on Human3.6M.
We would also like to emphasize that KAMA, unlike many
other methods, provides meshes in absolute camera coordi-
nates and uses perspective projection to project the meshes
on to the images. This is in contrast to e.g., SPIN [30] and

Methods Mesh Reconstruction
Supervision uError

SMPLify [6]* ECCV’16 N 82.3
SMPLify-X [52]* CVPR’19 N 75.9
HMR [27] CVPR’18 Y 56.8
Song et al. [65]* ECCV’20 N 56.4
GraphCMR [31] CVPR’19 Y 50.1
STRAPS [64] BMVC’20 N 55.4
Pose2Mesh [11] ECCV’20 Y 47.0
TexturePose [53] ICCV’19 Y 49.7
Kundu et al. [32] ECCV’20 N 48.1
HoloPose [17] CVPR’19 Y 46.5
DSD [69] ICCV’19 Y 44.3
I2L-MeshNet [10] ECCV’20 Y 41.7
SPIN et al. [30] ICCV’19 Y 41.1

Ours N 41.5
Ours w. refinement* N 40.2

Table 3. Comparison with the state-of-the-art methods on Hu-
man3.6M dataset. *optimization-based methods

other methods that only predict root-relative meshes and use
weak-perspective projection, hence, incur lower errors as
compared to our method.

Finally, in Fig. 5, we provide some qualitative results of
our approach on in-the-wild images.1

6. Conclusion
In this work, we presented a novel approach for human

mesh recovery from 3D keypoint only. To this end, we used
a 3D keypoint regressor that is able to estimate 3D posi-
tions of 26 body keypoints. We then presented, KAMA, a
3D keypoint aware approach to articulate a canonical mesh
using 3D keypoint positions and a set of simple geomet-
rical operations. We then further improved the mesh esti-
mates via a pose refinement and shape estimation approach.
The resulting meshes are accurate and align well with im-
age content. In contrast to existing methods, our approach
does not require 3D body shape annotations and provides
meshes in the absolute camera coordinates. Yet, it achieves
state-of-the-art results on the challenging benchmarks.

1More qualitative results: https://youtu.be/mPikZEIpUE0

https://youtu.be/mPikZEIpUE0
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