User Directed Multi-View-Stereo

Yotam Doron¹, Neill D.F. Campbell¹, Jonathan Starck², Jan Kautz^{1,3} ¹University College London, ²The Foundry, ³NVIDIA Research

UCCV, November 2014

JCL Centre for Virtual Environments, Interaction and Visualisation

Reference frame from image sequence

Baseline depth result [Newcom

Problems at occlusion boundaries

Baseline depth result

Glossy surfaces

Baseline depth result

Reference frame from image sequence

Low texture

Baseline depth result

User-Guided Multi-View-Stereo

Depth result after user markup

Depth Map Applications

Synthetic Depth of Field

Lens Blur, Google Camera app

Relighting

[Richardt et al. 2012]

Related Work

[Shen, 2011] [Bousseau 2009]

[Zhang, 3DV 2013]

Related Work

Fast local filtering [Rhemann 2011]

Fast global optimisation [Newcombe 2011]

Assumption

Assumption violated

Image edges ~ depth changes

Textured surfaces

Depth blurs across object edges Discontinuity on smooth surface

Poor localisation / noisy depth

Lambertian surfaces

Grossly incorrect depth / holes

Our Method

- Users correct depth only where needed
- Accept coarse input don't rely on accurate object segmentation
- Base on method that can achieve interactive rates [Newcombe 2011]

$$E\left[d(x)\right] = \int_{\Omega} \lambda C(x, d(x)) + g(x) \left\|\nabla d(x)\right\|_{\epsilon} dx$$

Smoothness prior on depth

"Image edges ~ Depth edges" assumption encoded by weighting $g(x) = \exp(-\gamma \|\nabla I_s\|)$

Energy Model

$$E[d(x)] = \int_{\Omega} \lambda C(x, d(x)) + g(x) \|\nabla d(x)\|_{\epsilon} dx$$

Correspondence term, encodes textured Lambertian surface assumption

Correspondence Term

Test a range of discrete depths d_i along ray through each pixel x in reference frame

Cache correspondence error in **cost volume** C

Reference frame Neighbouring frames

$$E[d(x)] = \int_{\Omega} \lambda C(x, d(x)) + g(x) \|\nabla d(x)\|_{\epsilon} dx$$
$$g(x) = \exp(-\gamma \|\nabla I_{s}\|)$$

Allow spatially varying parameters

$$E\left[d(x)\right] = \int_{\Omega} \lambda C(x, d(x)) + g(x) \left\|\nabla d(x)\right\|_{\epsilon} \, \mathrm{d}x$$

 $g(x) = \exp\left(-\gamma \left\|\nabla I_{s}\right\|\right)$

Smoothness brush

Downweight data term locally to increase influence of regularisation term

$$E\left[d(x)\right] = \int_{\Omega} \lambda C(x, d(x)) + g(x) \left\|\nabla d(x)\right\|_{\epsilon} \, \mathrm{d}x$$

$$g(x) = \exp\left(-\gamma \left\|\nabla I_{\rm s}\right\|\right)$$

Discontinuity brush

Increase edge sensitivity locally

Downweight data term locally

Inequality / Ordering brush

Requires both front and back strokes

Add linear constraint term for minimum separation between pairs of pixels on strokes

$$\Phi\left[d\right] + t_{\rm dist}\mathbf{1} < \mathbf{0}$$

Front-back pixel correspondences encoded in sparse matrix ${\it \Phi}$

Optimisation

- Energy made up of convex and non-convex terms
- First-order primal-dual solver for convex terms
- Use quadratic relaxation to minimize cost-volume term in alternation [Steinbrücker 2009, Newcombe 2011]
- Please see our paper for full details

Lawn

[Zhang 2009]

Lawn - Baseline

Lawn - Smoothness

Lawn - Discontinuity

Lawn - Ordering

Lawn - Result

Lawn - Baseline

Flower

Flower - Baseline

Flower - Smoothness

Flower - Discontinuity

Flower - Ordering

Flower - Result

Flower - Baseline

Desk

Desk - Baseline

Desk - Result

Desk - Failures

Conclusion

- Enhance multi-view-stereo with user-interaction
- User edits are incorporated into energy model
- High level markup can improve depth map recovery
- Limitations: Edge refinement not always successful. Discontinuity and inequality normally used together and could be combined in workflow. Some smoothness edits take many iterations to converge with current solver.
- Contact: y.doron@cs.ucl.ac.uk