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Abstract: We propose Hymba, a family of small language models featuring a hybrid-head parallel architecture
that integrates transformer attention mechanisms with state space models (SSMs) for enhanced efficiency.
Attention heads provide high-resolution recall, while SSM heads enable efficient context summarization.
Additionally, we introduce learnable meta tokens that are prepended to prompts, storing critical information
and alleviating the “forced-to-attend” burden associated with attention mechanisms. This model is further
optimized by incorporating cross-layer key-value (KV) sharing and partial sliding window attention, resulting
in a compact cache size. During development, we conducted a controlled study comparing various architectures
under identical settings and observed significant advantages of our proposed architecture. Notably, Hymba
achieves state-of-the-art results for small LMs: Our Hymba-1.5B-Base model surpasses all sub-2B public
models in performance and even outperforms Llama-3.2-3B with 1.32% higher average accuracy, an 11.67×
cache size reduction, and 3.49× throughput.

Models on Hugging Face: Hymba-1.5B-Base | Hymba-1.5B-Instruct

1. Introduction

Transformers, with their attention-based architecture,
have become the dominant choice for language mod-
els (LMs) due to their strong performance, paral-
lelization capabilities, and long-term recall through
key-value (KV) caches [1]. However, their quadratic
computational cost and high memory demands pose
efficiency challenges. In contrast, state space models
(SSMs) like Mamba [2] and Mamba-2 [3] offer con-
stant complexity and efficient hardware optimization
but struggle with memory recall tasks, affecting their
performance on general benchmarks [4, 5]. While
existing hybrid models that stack attention and SSM
layers have demonstrated potential [6, 7], they can
introduce bottlenecks when one layer type is not well-
suited for specific tasks, requiring compensation from
subsequent layers.

We propose Hymba, a novel LM architecture that
integrates attention heads and SSM heads within
the same layer, offering parallel and complementary
processing of the same inputs. This hybrid-head ap-
proach allows each layer to simultaneously harness
both the high-resolution recall of attention and the
efficient context summarization of SSMs, increasing
the model’s flexibility and expressiveness in handling
various types of information flows and memory access
patterns.

To further enhance the achievable performance of
Hymba, we introduce learnable meta tokens that are
prepended to the input sequences and interact with all
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Figure 1 | (a) Visualize the hybrid-head module in
Hymba; (b) Interpret from the memory aspect.

subsequent tokens even in sliding window attention.
These meta tokens appear to act as a compressed
representation of world knowledge and alleviate the
issue of “softmax attention not being able to attend
to nothing” [8, 9, 10], improving performance across
both general and recall-intensive tasks.

Sharing KV cache between attention heads is com-
mon practice. Inspired by findings in [11] that consec-
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Figure 2 | Performance comparison of Hymba-1.5B against sub-2B models in terms of average task accuracy,
cache size (MB) relative to sequence length, and throughput (tok/sec). Specifically, the tasks include 5-shot
MMLU, ARC-C, ARC-E, PIQA, Hellaswag, Winogrande, and SQuAD-C, and the throughput is measured on
an NVIDIA A100 with a sequence length of 8k and a batch size of 128 using PyTorch. For models encountering
out-of-memory (OOM) issues during throughput measurement, we halve the batch size until the OOM is
resolved. This approach is used to measure the maximal achievable throughput without OOM.

utive layers have a high correlation in the KV cache,
we propose sharing the KV cache between layers as
well. Additionally, for most layers, we choose sliding
window attention to further minimize cache costs.

Comprehensive evaluations and ablation stud-
ies demonstrate that Hymba not only establishes
new state-of-the-art (SOTA) benchmark performance
across a wide range of representative tasks but also
achieves greater efficiency compared to transformers
and previous hybrid models. We provide the bench-
mark with other representative small LMs in Fig. 2,
with more comprehensive benchmarks in Fig. 9. For
instance, in commonsense reasoning tasks, Hymba-
1.5B can outperform Llama-3.2-3B with 1.32% higher
average accuracy, while requiring 11.67× smaller
cache size and being 3.49× faster.

To optimize Hymba for on-device tasks, we em-
ploy supervised finetuning and direct preference
optimization [12]. Our instruction-tuned model,
Hymba-1.5B-Instruct, achieves best-in-class per-

formance on GSM8K, GPQA, and the Berkeley
function-calling leaderboard, surpassing Llama-3.2-
1B. Additionally, parameter-efficient finetuning shows
Hymba’s strong potential in this setting. For in-
stance, a DoRA [13]-finetuned version of Hymba-
1.5B outperforms Llama3.1-8B-Instruct by 2.4% on
RoleBench [14].

2. Hymba: The Proposed Hybrid-
Head Architecture

SSMs such as Mamba [2] were introduced to address
the quadratic complexity and large inference-time KV
cache issues of transformers. However, due to their
low-resolution memory, SSMs struggle with memory
recall and performance [4, 15, 5]. To overcome these
limitations, we propose a roadmap for developing
efficient and high-performing small LMs in Tab. 1
and outlined as follows:

Fused hybrid modules. Fusing attention and SSM

Configuration Commonsense
Reasoning (%)

Recall
(%)

Throughput
(token/sec)

Cache Size
(MB) Design Reason

Ablations on 300M model size and 100B training tokens
Transformer (Llama) 44.08 39.98 721.1 414.7 Accurate recall while inefficient

State Space Models (Mamba) 42.98 19.23 4720.8 1.9 Efficient while inaccurate recall
A. + Attention heads (sequential) 44.07 45.16 776.3 156.3 Enhance recall capabilities
B. + Multi-head structure (parallel) 45.19 49.90 876.7 148.2 Better balance of two modules
C. + Local / global attention 44.56 48.79 2399.7 41.2 Boost compute/cache efficiency
D. + KV cache sharing 45.16 48.04 2756.5 39.4 Cache efficiency
E. + Meta tokens 45.59 51.79 2695.8 40.0 Learned memory initialization
Scaling to 1.5B model size and 1.5T training tokens
F. + Size / data 60.56 64.15 664.1 78.6 Further boost task performance
G. + Extended context length (2K→8K) 60.64 68.79 664.1 78.6 Improve multi-shot and recall tasks

Table 1 | Design roadmap of our Hymba model. We evaluate the models’ (1) commonsense reasoning accuracy,
averaged over 8 tasks, and (2) recall accuracy, averaged over 2 tasks, which corresponds to retrieving relevant
information from past input. The throughput is on NVIDIA A100, sequence length 8k, batch size 128. The
cache size is measured with a 8k sequence length, assuming the FP16 format.
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heads in parallel within a hybrid-head module out-
performs sequential stacking (Tab. 1 (A)-(B)). Both
heads process the same information simultaneously,
leading to improved reasoning and recall accuracy. We
argue that sequential fusion lacks synergy, as both
blocks operate on each set of inputs independently.

Efficiency and KV cache optimization. While
attention heads improve task performance, they in-
crease KV cache requirements and reduce throughput.
To mitigate this, we optimize the hybrid-head module
by combining local and global attention and employ-
ing cross-layer KV cache sharing, as shown in Tab. 1
(C) and (D). This improves throughput by 3× and
reduces cache by almost 4×.

Meta Tokens – A set of 128 pretrained embeddings
prepended to inputs, functioning as learned cache
initialization to enhance focus on relevant informa-
tion. These tokens serve a dual purpose: (i) they
mitigate attention drain by acting as backstop tokens,
redistributing attention effectively, and (ii) they en-
capsulate compressed world knowledge, see Tab. 1 (E)
and Sec. 2.3.

Scaling – Ablation studies were performed on a 300M
parameter model using 100B training tokens; the final
models were trained with 1.5T tokens and scaled up
to models with 350M and 1.5B parameters (see Tab. 1
(F)).

2.1. A Fused Hybrid-Head Module

SSM models are efficient but suffer from limited recall
capabilities and task performance [4, 15, 5, 16] as seen
in Tab. 1. Given the high recall resolution of attention,
in this step we aim to (1) combine the processing
efficiency and context summarization capabilities of
SSMs with the high recall resolution of attention,
and (2) develop a fused building block to achieve this
goal, so it can serve as a fundamental component for
constructing future foundation models.

Previous hybrid models [7, 17, 6] often combine
attention and SSMs in a sequential manner. This
strategy may lead to information bottlenecks when
a layer type that is poorly suited for a specific task
cannot effectively process the information. Motivated
by the multi-head attention structure in the vanilla
Transformer [1], where different heads undertake dif-
ferent roles and focus on different contexts [18, 19],
we propose an alternative approach: fusing attention
and SSMs in parallel into a hybrid-head module, as
shown in Fig. 1 (a). The advantage of this design
is that different attention and SSM heads can store,
retrieve, and process the same piece of information
in distinct ways, thereby inheriting the strengths of
both operators.

Design formulation. We show that the hybrid-
head module can be represented by a unified and
symmetric formulation. As shown in Fig. 1 (a),
given the input sequence �̃�, which is the original
input sequence 𝑋 prepended with meta tokens intro-
duced in Sec. 2.3, the input projection 𝑊in_proj =
[𝑊 𝑄, 𝑊 𝐾 , 𝑊 𝑉 , 𝑊 𝑆𝑆𝑀 , 𝑊 𝐺] projects �̃� to the query,
key, and value of the attention heads using 𝑊 𝑄, 𝑊 𝐾 ,
and 𝑊 𝑉 , respectively, as well as the input features
and gates of the SSM heads using 𝑊 𝑆𝑆𝑀 and 𝑊 𝐺,
respectively.

Following [1], the output of attention heads 𝑌attn
can be formulated as:

𝑌attn = softmax(𝑄𝐾𝑇 ) 𝑊 𝑉 �̃� = 𝑀attn�̃� (1)

where 𝑀attn = softmax(𝑄𝐾𝑇 ) 𝑊 𝑉 and 𝑄 = 𝑊 𝑄�̃�,
𝐾 = 𝑊 𝐾�̃�.

Similar to the attention heads, the SSM heads in
our model, for which we adopt Mamba [2], can also
be represented using a data-controlled linear operator
𝑀ssm, following [20, 16]. Specifically, the SSM head
output 𝑌ssm can be formulated as:

𝛼𝑖,𝑗 = 𝐶𝑖

⎛⎝ 𝑖∏︁
𝑘=𝑗+1

exp(𝐴Δ𝑘)

⎞⎠ 𝐵𝑗Δ𝑗 ,

𝑌ssm = 𝐺 ⊙ 𝛼(𝐴, 𝐵, 𝐶, Δ) 𝑊 𝑆𝑆𝑀 �̃� = 𝑀ssm�̃�,

(2)

where 𝑀ssm = 𝐺 ⊙ 𝛼(𝐴, 𝐵, 𝐶, Δ) 𝑊 𝑆𝑆𝑀 , 𝐺 = 𝑊 𝐺�̃�
is an output gate, and 𝐴, 𝐵, 𝐶, Δ are the SSM parame-
ters following the definition in [2]. More specifically, 𝐴
is a learnable matrix, 𝐵 = 𝑊𝐵𝑋𝑠𝑠𝑚, 𝐶 = 𝑊𝐶𝑋𝑠𝑠𝑚,
and Δ = Softplus(𝑊Δ𝑋𝑠𝑠𝑚) with 𝑋𝑠𝑠𝑚 = 𝑊 𝑆𝑆𝑀 �̃�.

We observed that the output magnitudes of the
SSM heads, 𝑌ssm, are consistently larger than those
of the attention heads, 𝑌attn, as visualized in Fig. 12
in Append. B. To ensure effective fusion, we normal-
ize and re-scale them using learnable vectors to im-
prove training stability, and then average the outputs,
followed by a final output projection. The overall
formulation of our fused module can be represented
symmetrically:

𝑌 = 𝑊out_proj
(︀
𝛽1norm(𝑀attn�̃�) + 𝛽2norm(𝑀ssm�̃�)

)︀
(3)

where 𝛽1 and 𝛽2 are learnable vectors that re-scale
each channel of the outputs from the attention and
SSM heads, respectively. We further explore the
optimal ratio of SSMs and attention in hybrid heads,
along with their fusion strategy, in Append. B.

Interpretation from the memory aspect. The
components in the hybrid-head module can be inter-
preted as analogous to human brain functions. Specif-
ically, as shown in Fig. 1 (b), the attention heads
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provide high recall resolution and thus act like snap-
shot memories in the human brain, storing detailed
recollections of a moment or event. In contrast, the
SSM heads summarize the context through a constant
cache and thus function as fading memories, which
gradually forget the details of past events while re-
taining their core or gist. As shown in Tab. 10 in
Append. B, in our Hymba, the summarized global
context from fading memories enables allocating more
snapshot memories for memorizing local information
while maintaining recall capabilities. This is achieved
by replacing most global attention with local atten-
tion, thus improving memory efficiency.

Figure 3 | Visualize the accuracy difference, measured
using 1000 samples from Hellaswag [21], after remov-
ing the Attention or SSM heads in each layer.

Head importance analysis. We analyze the
relative importance of attention and SSM heads in
each layer by setting 𝛽1 or 𝛽2 in Eq. 3 to 0 and
recording the final accuracy. We present the results
on Hellaswag [21] in Fig. 3 and on more tasks in
Fig. 13 in Append. C. We find that (1) the relative
importance of attention/SSM heads in the same layer
is input-adaptive and varies across tasks, suggesting
that they can serve different roles when handling var-
ious inputs; (2) The SSM head in the first layer is
critical for language modeling, and removing it causes
a substantial accuracy drop to random guess levels;
(3) Generally, removing one attention/SSM head re-
sults in an average accuracy drop of 0.24%/1.1% on
Hellaswag, respectively.

2.2. KV Cache Optimization

Our hybrid-head module improves recall and reason-
ing capabilities but can compromise memory and
throughput efficiency due to the KV cache required
by the attention heads. To address this, we aim to
reduce the KV cache while maintaining comparable
task performance.

Combine global and local attention. Local at-
tention, also known as Sliding Window Attention
(SWA) [22], offers a more efficient alternative to global
full attention, though it risks losing global context.
However, with the presence of SSM heads in our
hybrid-head module, which already summarize global
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Figure 4 | (a) The overall architecture of our Hymba
model; (b) The building block of Hymba.

context, we can more aggressively replace global full
attention with local attention, achieving a better bal-
ance between efficiency and performance.

Exploring the ratio of local attention and
global attention. As shown in Tab. 10 in Append. B,
we initially replace global attention in all layers with
SWA, which results in a significant degradation in
recall capabilities, with accuracy dropping by over
20% on recall-intensive tasks. In response, we pro-
gressively reinstate global attention in some layers.
Interestingly, as shown in Tab. 1 (C), we find that
using global attention in just three layers (i.e., the
first, middle, and last layers) is sufficient to recover
recall-intensive accuracy while maintaining compara-
ble commonsense reasoning accuracy. In turn, this
strategy achieves 2.7× throughput and 3.8× cache
reduction.

Cross-layer KV sharing. Recent works [23] ob-
serve that KV cache shares a high similarity between
adjacent layers, suggesting that using separate KV
caches for each layer leads to both cache and parame-
ter redundancy. In light of this, we employ cross-layer
KV sharing [11], where keys and values are shared
between consecutive layers (e.g., every two layers
share the same KV cache). This strategy reduces
both KV memory usage and model parameters, allow-
ing the saved parameters to be reallocated to other
model components. As shown in Tab. 1 (D), cross-
layer KV sharing improves throughput by 1.15× while
maintaining comparable recall accuracy and boosting
commonsense accuracy by +0.60%.

After the above optimization, Hymba’s overall ar-
chitecture is visualized in Fig. 4.

2.3. Meta Tokens

We observed that the initial tokens, though not seman-
tically important, often receive significant attention
scores from subsequent tokens, similar to observa-
tions in prior work [10, 27]. As shown in Fig.7, more
than 50% of the attention is focused on the BOS
token for Llama3.2-3B. To address this, we aim to
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Figure 5 | Averaged attention scores received by the
meta tokens in the last layer of Hymba-1.5B model.
Prompts of ‘Article’, ‘Math’ and ‘Code’ are from
SQuAD [24], GSM8K [25], and GitHub-Code [26]
datasets, respectively.

guide the attention to focus more on tokens that
meaningfully contribute to task performance. Specif-
ically, we introduce a set of learnable meta tokens
𝑅 = [𝑟1, 𝑟2, . . . , 𝑟𝑚] to serve as the initial tokens.
Given the input sequence 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], these
meta tokens are prepended to the input sequence,
forming the modified input sequence:

�̃� = [𝑅, 𝑋] = [𝑟1, 𝑟2, . . . , 𝑟𝑚, 𝑥1, 𝑥2, . . . , 𝑥𝑛] (4)

where �̃� represents the new input sequence for our
model. At inference time, since the meta tokens
are fixed and appear at the beginning of any input
sequences, their computation can be performed offline.
Thus, the role of meta tokens at inference can also
be viewed as learned cache initialization to modulate
the subsequent tokens, allowing subsequent tokens to
focus more on those that contribute meaningfully to
task performance.

Interpretation from the memory aspect. Sim-
ilar to the analogy in Sec. 2.1, the meta tokens par-
ticipate in the attention and SSM calculations of all
subsequent tokens, analogous to metamemory in the
human brain, which helps recognize where to locate
needed information in other memories. To see this, we
visualize the averaged attention scores received by the
meta tokens in Fig. 5 for a Hymba-1.5B model. We
observe that when the prompts are from different do-
mains (e.g., article, math, and codes), different meta

Figure 6 | Schematics of the attention map of Hymba
as a combination of meta tokens, sliding window at-
tention, and Mamba contributions.
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Attention fusion in the latter disentangles attention.

tokens are activated. This suggests that different meta
tokens encapsulate different world knowledge, which
can be leveraged to guide the attention mechanism
to focus on relevant information. We further analyze
others roles of meta tokens and their connections with
related works in Append. D.

The role of Meta Tokens. We hypothe-
sise, that they perform the following functions.
Prevent token overwriting. As shown in [30], atten-
tion tends to overwrite and over-attend to some to-
kens, acting as a garbage collector. Adding learnable
tokens allowed for much more representative feature
maps. Later, the same phenomenon was discovered
in LLMs and named “attention sinks” [10, 27]. There-
fore, the model should be provided with tokens that
are independent of the input.

Exit tokens to deal with “forced-to-attend”. Prepend-
ing tokens to the input affects the shape of the soft-
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Table 2 | Benchmark Hymba with SOTA small LMs. All models have fewer than 2B parameters, except for
Llama-3.2-3B, which is marked as gray. All results are obtained through lm-evaluation-harness [28].
SQuAD-C (SQuAD-Completion) indicates a variant of the SQuAD question answering task proposed by [29].
The throughput is measured with a 8k sequence length and a 128 batch size on an NVIDIA A100 GPU.
The best results are highlighted in bold, and the second-best results are highlighted in underline, where
Llama-3.2-3B is not included in the ranking due to its 3B model size.

Model #Params. Train Token/s Cache MMLU ARC-E ARC-C PIQA Wino. Hella. SQuAD-C Avg.
tokens (MB) 5-shot 0-shot 0-shot 0-shot 0-shot 0-shot 1-shot

OpenELM-1 1.1B 1.5T 246 346 27.06 62.37 19.54 74.76 61.80 48.37 45.38 48.47
Rene-v0.1 1.3B 1.5T 800 113 32.94 67.05 31.06 76.49 62.75 51.16 48.36 52.83
Phi-1.5 1.3B 0.15T 241 1573 42.56 76.18 44.71 76.56 72.85 48.00 30.09 55.85
SmolLM 1.7B 1T 238 1573 27.06 76.47 43.43 75.79 60.93 49.58 45.81 54.15
Cosmo 1.8B 0.2T 244 1573 26.10 62.42 32.94 71.76 55.80 42.90 38.51 47.20
h2o-danube2 1.8B 2T 271 492 40.05 70.66 33.19 76.01 66.93 53.70 49.03 55.65
Llama-3.2-1B 1.2B 9T 535 262 32.12 65.53 31.39 74.43 60.69 47.72 40.18 50.29
Qwen2.5 1.5B 18T 469 229 60.92 75.51 41.21 75.79 63.38 50.20 49.53 59.51
AMD-OLMo 1.2B 1.3T 387 1049 26.93 65.91 31.57 74.92 61.64 47.30 33.71 48.85
SmolLM2 1.7B 11T 238 1573 50.29 77.78 44.71 77.09 66.38 53.55 50.50 60.04
Llama-3.2-3B 3.0B 9T 191 918 56.03 74.54 42.32 76.66 69.85 55.29 43.46 59.74

Hymba 1.5B 1.5T 664 79 51.19 76.94 45.90 77.31 66.61 53.55 55.93 61.06

max function by modifying the denominator. Quiet
Attention [31] modifies the softmax denominator by
adding one, allowing the attention to output zeros.
Adding one is equivalent to prepending an all-zero
token to the keys and values. Our meta tokens take
this idea further by being learnable, allowing to learn
an optimal softmax shape.

Initialization for KV cache and SSM state. Learning
initial tokens can be seen as a form of learned prompt
tuning [32, 33] or learned initialization. For inference,
meta tokens are fixed, and the keys and values can be
precomputed offline and stored. Task-specific meta
tokens can be used, though in this work we use one
set for all tasks.

Meta tokens boost recall capabilities and com-
monsense reasoning accuracy. To analyze the
impact of meta tokens on the attention mechanism,
we visualize the entropy of the attention map for
both the attention and SSM heads [20, 16] before and
after introducing meta tokens. Specifically, the atten-
tion map entropy reflects the distribution of attention
scores across tokens, where lower entropy indicates
stronger retrieval effects [7], as the attention scores

are concentrated around a smaller subset of tokens,
and vice versa.

We provide the visualization in Fig. 15 in Ap-
pend. D, where we observe that, after introducing
meta tokens, both the attention and SSM heads ex-
hibit an overall reduction in entropy. Combined with
the improved reasoning and recall capabilities shown
in Tab. 1 (E), this suggests that meta tokens may
help both the attention and SSM heads focus more
on a subset of important tokens that contribute most
to task performance.

2.4. Hymba Attention Map

Hymba’s attention pattern (Fig. 6) can be viewed as
a combination of individual components from sliding
window attention, meta tokens, and SSM.

We further categorize elements in the attention
map into four types: (1) ‘Meta’: attention scores
from all real tokens to meta tokens. This category
reflects the model’s preference for attending to meta
tokens. In attention map, they are usually located in
the first few columns (e.g., 128 for Hymba) if a model
has meta tokens. (2) ‘BOS’: attention scores from
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High quality datasets

SmolLM and Proprietary

500B tokens total

8k context length extension

Supervised finetuning

Code, math, MMLU,  function 
calling, Q&A, roleplay

6.5M samples / 10B tokens

Direct Preference Optimization

Further improve Instruction 
Following

200K samples / 0.7B tokens

General instruction following

900K samples / 3B tokens

High quality data

Base Model Instruct Model

3. SFT-12. LR annealing1. General pretraining

Figure 8 | Training pipeline adapted for Hymba family. For detailed loss curve of Hymba-Base-1.5B see Fig 14.
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all real tokens to the beginning-of-sequence token. In
the attention map, they are usually located in the
first column right after the meta tokens. (3) ‘Self’:
attention scores from all real tokens to themselves.
In the attention map, they are usually located in the
diagonal line. (4) ‘Cross’: attention scores from all
real tokens to other real tokens. In the attention map,
they are usually located in the off-diagonal area.

In Fig. 7, we visualize the real attention maps from
Llama-3.2-3B and Hymba-1.5B on texts from Oliver
Twist Chapter 29 [34] and sum up the attention scores
from different categories. The summed scores are
normalized by the context length. For SSM heads, we
follow Ben-Kish et al. [16] and Zimerman et al. [35]
to calculate their attention maps and normalize the
attention maps to ensure each row sums to 1.

We observe that the attention pattern of Hymba is
significantly different from the vanilla Transformers.
In vanilla Transformers, attention scores are more
concentrated on ‘BOS’, which is consistent with the
findings in [10]. In addition, vanilla Transformers also
have a higher proportion of ‘Self’ attention scores.
In Hymba, meta tokens, attention heads and SSM
heads work complimentary to each other, leading to a
more balanced distribution of attention scores across
different types of tokens. Specifically, meta tokens
offload the attention scores from ‘BOS’, allowing the
model to focus more on the real tokens. SSM heads
summarize the global context, which focus more on
current tokens (i.e., ‘Self’ attention scores). Attention
heads, on the other hand, pay less attention to ‘Self’
and ‘BOS’ tokens, and more attention to other tokens
(i.e., ‘Cross’ attention scores). This suggests that the
hybrid-head design of Hymba can effectively balance
the attention distribution across different types of
tokens, potentially leading to better performance.

2.5. Hymba Model Family

Building on the design insights explored above, we
scale up the model sizes and training tokens to deliver
the Hymba model family, which includes a 125M
model, a 350M model, and a 1.5B model.

We train Hymba-125M/350M/1.5B models using a
mix of DCLM-Baseline-1.0 [36], SmoLM-Corpus [37],
and a proprietary high-quality dataset, with 1T,
250B, and 50B tokens, respectively. We combine the
Warmup-Stable-Decay (WSD) learning rate sched-
uler [38], with maximum and minimum learning
rates of 3e-3 and 1e-5, and the data annealing tech-
nique [39, 40] to ensure stable pretraining. We use
a sequence length of 2k and a batch size of 2M to-
kens throughout the training process until the last
100B tokens, where we increase the sequence length

to 8k and change the ROPE base following [41]. The
overall training pipeline is illustrated in Fig. 8. More
pretraining details are provided in Append. E.

3. Model Evaluations

3.1. Experiment Settings

Baselines. Our baselines include popular (small)
LMs with quadratic attention (e.g., Llama 3.2 [42],
SmolLM [43], SmolLM2 [44], AMD-OLMo [45], Sta-
bleLM [46], Olmo [47], Cosmo [48], Phi-1.5 [49], H2O-
Danube [50], OpenELM [51], and MiniCPM [38]), as
well as hybrid models (e.g., Rene [52]).

Benchmark settings. We adopt two benchmarking
settings: (1) In Sec. 3.2, we directly benchmark our
delivered Hymba against SOTA public small LMs,
and (2) in Sec. 3.3, we train different architectures
from scratch with the same dataset, number of layers,
model size, and training recipes.

Benchmark tasks. In addition to evaluating com-
monsense reasoning and recall-intensive tasks on our
base models, we also evaluate our instruction-tuned
models on downstream tasks such as math, function
calling, and role-playing in Sec. 3.4.

3.2. Benchmark with SOTA Small LMs

We present the benchmark results of our Hymba mod-
els with parameter sizes of 125M, 350M, and 1.5B,
compared to SOTA small language models within the
same size range.

As highlighted in Tab. 2, with only 1.5T pretrain-
ing tokens, our Hymba-1.5B model achieves the best
performance among all sub-2B LMs and demonstrates
better throughput and cache efficiency compared to
all transformer-based LMs, with this speedup becom-
ing even more pronounced as the sequence length
increases. For instance, compared to the strongest
sub-2B baseline, SmolLM2-1.7B, trained on 11T to-
kens, our Hymba-1.5B, trained on only 1.5T tokens,
achieves a 1.02% average accuracy improvement, a
19.91× cache size reduction, and 2.79× throughput.
When comparing with small LMs trained on no more
than 2T tokens, our model achieves a 5.21%/5.41%
average accuracy improvement over the most com-
petitive baselines, Phi-1.5 and h2o-danube2-1.8B, re-
spectively. Additionally, our model even outperforms
Llama-3.2-3B, with 1.32% higher average accuracy, an
11.67× cache size reduction, and 3.49× throughput.

We visualize the trade-offs between commonsense
reasoning accuracy and cache size/throughput in
Fig. 9. In addition, our delivered tiny LMs, Hymba-
125M/350M, consistently outperform all LMs of com-
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(a) (b)

19.91    Cache Reduction 2.79    Faster

Figure 9 | Visualize the trade-off between (a) commonsense reasoning accuracy (avr. ARC-C, ARC-E, PIQA,
Hellaswag, OBQA, and Winogrande using [28]) and cache size, with throughput represented by the point size
of different models, and (b) commonsense reasoning accuracy and throughput, with cache size represented by
the point size. The throughput is measured with a 8k sequence length and a 128 batch size on an NVIDIA
A100 GPU. The cache size is measured with a 8k sequence length, assuming the FP16 format.

parable model size, as summarized in Tab. 6 and
Tab. 7 in Append. A.1. We have also provided a
Hymba-1.5B model trained exclusively on public data
in Append. A.2.

3.3. Benchmark Different Architectures Under
The Same Setting

General and recall-intensive tasks performance
comparison. We do a comprehensive comparison
between Hymba and other model architectures, in-
cluding standard Transformer (Llama3 [53]), pure
Mamba [2, 3], Mamba with FFN and hybrid archi-
tecture with sequential layer stacking (Samba [7]) on
several downstream tasks. All models have the same
number of layers and total parameters to facilitate
equal comparison. Models are trained on the same
data with the same hyperparameters and under the
same codebase. To ensure our conclusions are gener-
ally valid, we run comparison experiments at different
scales (1B and 300M) and different training datasets
(SmolLM-corpus [37] and FineWeb [54]) in Tab. 3
and Tab. 9, respectively. We evaluate the models on
language modeling, real-world recall-intensive, com-
monsense reasoning, and question-answering tasks.

As shown in Tab. 3, our Hymba model consistently
outperforms other 1B architectures across most tasks,
e.g., achieving an average score 1.45% higher than
the second-best model at the 300M scale and 1.74%
higher at the 1B scale. The ablation study for the
300M scale is in Append. A.

In addition, considering that Mamba models suffer
from limited recall capabilities due to their constant-
size cache and recurrent nature [16, 5, 15], we test

the models on two real-world recall-intensive tasks,
SWDE [5, 55] and SQuAD [5, 56], where the former
is to to extract semi-structured relations from given
raw HTML websites and the latter is to extract an-
swers from a given context passages. Echoing the
previous findings, Mamba2 and Mamba2 with FFN
architectures under-perform the Transformer model
(i.e. Llama3) on these tasks (see Tab. 3). Hymba
model augments the Mamba heads with attention
heads, which allows the model to have a large effective
receptive field to establish long-range dependencies
and high-resolution memory to store and retrieve key
information in all layers. As a result, Hymba out-
performs the Transformer and Samba architectures
(where the latter stacks Mamba and attention layers
sequentially).

Needle-in-the-Haystack performance com-
parison. We further do an apple-to-apple comparison
between Hymba, Mamba2, and Llama3 on the syn-
thetic retrieval task, needle-in-the-haystack. A ran-
dom and informative sentence (i.e., needle) is inserted
into a long document (i.e., haystack) and the model
is required to retrieve the needle from the haystack
to answer the questions. All models are of size 1B
and trained with the same setting: (i.) pretrain is
done with 1k sequence length; (ii.) finetune with 4k
sequence length; (iii.) test with up to 16k sequence
length. If model has ROPE, then we adjust the ROPE
as in [57] during finetuning. As shown in Fig. 10, the
Hymba model significantly outperforms the Mamba2
and Llama3 models. While the Mamba2 model has
good extrapolation capabilities when the needle is
inserted in the end of the haystack, it struggles to
retrieve the needle when the needle is in the beginning
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Task Type
Arch. Style

(1B) Mamba2 Mamba2
w/ FFN Llama3 Samba Hymba

Language Wiki. ppl. ↓ 19.17 20.42 19.28 19.91 18.62
LMB. ppl. ↓ 12.59 14.43 13.09 12.65 10.38

Recall
Intensive

SWDE ↑ 50.24 26.43 75.95 30.00 54.29
SQuAD-C ↑ 36.43 31.40 18.70 42.33 44.71
Avg. ↑ 43.34 28.92 47.33 36.17 49.50

Common-
sense

Reasoning
and

Question-
answering

Lambda ↑ 47.51 44.54 47.95 49.08 52.84
PIQA ↑ 73.94 73.07 73.45 73.23 74.97
ARC-C ↑ 38.91 37.03 39.68 39.59 41.72
ARC-E ↑ 70.96 71.00 73.74 73.36 74.12
Hella. ↑ 57.73 55.83 57.64 58.49 60.05
Wino. ↑ 58.48 55.56 56.20 57.54 57.85
TruthfulQA ↑ 30.75 29.86 31.64 28.84 31.76
SIQA ↑ 41.86 42.22 42.22 42.48 43.24
Avg. ↑ 52.52 51.14 52.82 52.83 54.57

Table 3 | Apple-to-apple comparison of our Hymba, pure Mamba2 [3], Mamba2 with FFN, Llama3 [39] style,
and Samba- [7] style (Mamba-FFN-Attn-FFN) architectures. All models have 1B parameters and are trained
from scratch for 100B tokens from SmolLM-Corpus [37] with exactly the same training recipe. All results are
obtained through lm-evaluation-harness [28] using a zero-shot setting by us on HuggingFace models.
The best and second best results are highlighted in bold and underline, respectively.

or middle of the haystack. In contrast, Llama3 model
has limited extrapolation capabilities [58, 57, 59] and
struggles to the “lost in the middle” [60] scenario.

Figure 10 | Needle-in-the-haystack performance com-
parison across different architecture under apple-to-
apple setting. The white vertical line represents the
finetuning sequence length (4k).

3.4. Instruction-tuned Model

Implementation details of post-training. We
post-trained Hymba-1.5B base model with a two-stage
strategy: the first full-finetuning (FFT) stage and
another direct preference optimization (DPO) [12]
training. The learning rates are 5e-5, and 3e-
6 for FFT and DPO, respectively. To acceler-
ate training, we follow the training recipe [61,
62, 63] to pack the samples and use a block
size of 8192. We compare Hymba-1.5B-Instruct
with competitive lightweight instruction-tuned mod-
els, i.e., Llama-3.2-1B-Instruct [42], OpenELM-1-
1B-Instruct [51], Qwen2.5-1.5B-Instruct [64], and
SmolLM-1.7B-Instruct [43]. We test the instruction-
tuned models on MMLU (5-shot), IFEval, GSM8K (5-
shot), GPQA (0-shot), and Berkeley Function-Calling
Leaderboard v2 (BFCLv2) [65]. More details about

the experimental settings, baseline models, and eval-
uation tasks are shown in Append. E.

Evaluation results. The evaluation results are
shown in Tab. 4. In general, Hymba-1.5B-Instruct
achieves the highest performance on an average of
all tasks, outperforming the previous SoTA model,
Qwen2.5-Instruct, by around 2%. It demonstrates a
great ability in math, reasoning, and function calling,
with the best-in-class performance.

Evaluation on role-play tasks. In addition to
full finetuning, we conduct experiments to evaluate
whether Hymba is compatible with DoRA [13], a
parameter-efficient finetuning method that updates
pretrained models using a minimal set of parame-
ters. This approach is especially well-suited for on-
device finetuning scenarios where computational re-
sources are constrained. Additionally, DoRA signifi-
cantly reduces storage requirements for saving mul-
tiple downstream models, as it only requires stor-
ing the finetuned DoRA parameters, which consti-
tute less than 10% of the original model’s total pa-
rameters. Specifically, we further finetune the post-
trained Hymba on RoleBench [14] using DoRA to
enhance its role-playing capabilities. The training
set of RoleBench is used for training, and the model
is evaluated on two sub-tasks: instruction general-
ization (Inst. Gene.) and role generalization (Role.
Gene.). As shown in the Tab. 5, our Hymba-DoRA
significantly outperforms larger models. For instance,
DoRA finetuned Hymba achieves scores of 40.0% /
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Table 4 | The comparison between lightweight instruction-tuned models. The best and second-best results
are highlighted in bold and underlined, respectively. * OpenELM and SmolLM cannot understand function
calling, leading to 0 accuracy in most categories.

Model #Params MMLU ↑ IFEval ↑ GSM8K ↑ GPQA ↑ BFCLv2 ↑ Avg. ↑

SmolLM 1.7B 27.80 25.16 1.36 25.67 -* 20.00
OpenELM 1.1B 25.65 6.25 56.03 21.62 -* 27.39
Llama-3.2 1.2B 44.41 58.92 42.99 24.11 20.27 38.14
Qwen2.5 1.5B 59.73 46.78 56.03 30.13 43.85 47.30
SmolLM2 1.7B 49.11 55.06 47.68 29.24 22.83 40.78

Hymba-1.5B 1.5B 52.79 57.14 58.76 31.03 46.40 49.22

Model #Params Instruction Role
Generalization Generalization

Llama-7B 7B 19.2 19.3
Aplaca-7B 7B 25.6 24.5

Vicuna-13B 13B 25.0 24.3
Llama2-7B-chat 7B 18.8 20.5
RoleLlama-7B 7B 35.5 33.5

Hymba-DoRA 1.5B 40.0 37.9

Table 5 | The comparison between DoRA-finetuned
Hymba and baselines on RoleBench. All baseline
results are from [14].

37.9% on instruction generalization/role generaliza-
tion, outperforming RoleLlama-7B [14] by 4.5%, and
4.4% respectively. This indicates the strong gener-
alization of our model and the effectiveness of using
parameter-efficient finetuning techniques to further
enhance its performance.

4. Related Works
Large language models. Prior to the rise of LLMs,
transformer-based models [1, 66, 67, 68] proved highly
effective at capturing relationships between tokens
in complex sequences through the use of the atten-
tion mechanism [1]. These models also demonstrated
considerable scalability [69, 70, 71] in terms of both
model size and the volume of pretraining data. This
scalability paved the way for the development of
LLMs, such as GLM [72], OPT [73], Mistral [74], the
Llama series [75, 53], Gemma [76], and GPT-4 [77],
which showcase remarkable zero-shot and few-shot
in-context learning abilities.

Efficient language model architectures. De-
spite the promise of transformer-based LMs, the
quadratic computational complexity and the linearly
increasing KV cache size of attention modules with
longer sequences limit their processing efficiency. To
address this, efficient LMs featuring sub-quadratic
complexity in sequence length and strong scaling prop-
erties have emerged [78, 79, 2, 3, 80, 81]. As pointed
out by [2], popular efficient LM architectures such as
RWKV [78] and RetNet [79] can be viewed as vari-

ants of SSMs [82, 83]. These models utilize a linear
dynamical system approach with a constant-size mem-
ory to recurrently encode past information, achieving
linear scaling with sequence length. Mamba[2], one
of the most widely used SSMs, improves upon pre-
vious SSMs by selectively propagating or forgetting
information along the sequence length in an input-
dependent manner. This approach outperforms trans-
formers on several downstream tasks while offering
faster inference. Follow-up works such as Mamba2 [3]
and GLA [80] introduce more hardware-friendly gat-
ing mechanisms to enhance training throughput over
Mamba. However, despite their promise, SSMs have
been identified as having limited recall capabilities [4]
and underperforming on in-context learning tasks [84].

Hybrid language models. To combine the pro-
cessing efficiency of SSMs with the recall capabilities
of transformers, an emerging trend is the creation of
hybrid models that incorporate both types of opera-
tors. Specifically, [84] proposes a hybrid model called
MambaFormer, which interleaves Mamba and atten-
tion modules to improve in-context learning capabili-
ties. Similarly, [4] finds that introducing a small num-
ber of attention layers into a Mamba model can sig-
nificantly enhance both commonsense reasoning and
long-context capabilities. Jamba [6] and Zamba [17]
develop sequentially stacked Mamba-Attention hybrid
models. Jamba further integrates Mixture-of-Experts
into the MLP layers, while Zamba employs a shared
attention module. Both models demonstrate improve-
ments in inference speed and task accuracy compared
to previous transformer-based models of similar size.
Samba [7] introduces a structure that sequentially
stacks Mamba, SWA, and MLP layers by repeating
the Mamba-MLP-SWA-MLP structure, achieving con-
stant throughput as sequence lengths increase. Other
recent work has also explored hybrid models that
mix either linear RNNs or convolutions with atten-
tion [85, 86, 87, 88]. This work proposes a new hybrid
model featuring a fused multi-head building block that
stacks hybrid operators in parallel. Our model out-
performs previous architectures, as demonstrated by
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extensive benchmarking in Sec. 3.

5. Conclusion

In this work, we present Hymba, a new family of
small LMs featuring a hybrid-head architecture that
combines the high-resolution recall capabilities of at-
tention heads with the efficient context summarization
of SSM heads. To further optimize the performance of
Hymba, we introduce learnable meta tokens, which act
as a learned cache for both attention and SSM heads,
enhancing the model’s focus on salient information.
Through the roadmap of Hymba, comprehensive eval-
uations, and ablation studies, we demonstrate that
Hymba sets new SOTA performance across a wide
range of tasks, achieving superior results in both ac-
curacy and efficiency. Additionally, our work provides
valuable insights into the advantages of hybrid-head
architectures, offering a promising direction for future
research in efficient LMs.
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A. Extensive Benchmark for More
Hymba Model Variants

A.1. Comparison with SOTA Tiny LMs at
350M and 125M Scales

Besides our 1.5B model, we also evaluate the 350M
and 125M Hymba models on a diverse set of bench-
marks in Tab. 6 and Tab. 7, respectively. Consis-
tent with the results of our 1.5B model, Hymba-
350M/125M models outperform the SOTA tiny LMs
across most of tasks and achieve the best average
score. This indicates that our Hymba scales effec-
tively across different model sizes.

A.2. Evaluating Hymba-1.5B Trained on Pub-
lic Data Only

We have also trained our Hymba-1.5B model exclu-
sively on public data and evaluated its performance.
Specifically, following the training settings in Sec. 2.5,
we train Hymba-1.5B on DCLM-Baseline-1.0 [36]
for 1T tokens in the first phase and on SmoLM-
Corpus [37] for 500B tokens in the second phase, keep-
ing all other settings the same. The results are sum-
marized in Tab. 8, where only the most competitive
baselines from Tab. 2 are included. We observe that
(1) Hymba-1.5B trained exclusively on public data
only still surpasses all baseline small LMs in terms
of average accuracy; and (2) Hymba-1.5B trained on
public data primarily suffers from performance drops
on 5-shot MMLU compared to the version trained
on all data, including our proprietary dataset. This
suggests that the public data used may lack suffi-
cient factual knowledge, which is supplemented by
our proprietary one.

A.3. Apple-to-Apple Comparison with Other
Architectures at 300M Scale

In addition to the apple-to-apple architecture com-
parison under the same settings with a 1B model size
in Sec. 3.3 of our main paper, we further validate
the superiority of our architecture at the 300M size.
Specifically, we train different 300M model architec-
tures on 100B tokens from FineWeb [54]. We set peak
learning rates to 5e-4 and use warmup and cosine de-
cay scheduler. The training sequence length is set to
1K. For models with sliding window attention, we set
the sliding window size as 256. As shown in Tab. 9,
Hymba achieves the best performance in almost all
tasks (with a second-best result in one task), yielding
an average accuracy boost of +1.45% compared to
the strongest baseline.

B. Ablation Studies of Our Hymba
Architecture

We perform further ablation studies and analyses of
the design factors in our Hymba.

Parallel vs. Sequential fusion

We compare the hybrid-head module with a sequen-
tial counterpart, which interleaves local attention and
Mamba layers as adopted by [7], by calculating the
models’ effective receptive field (ERF) and their over-
all cache size. All the compared models have the same
parameter size and are training from scratch using
exactly the same training recipe. ERF is an empiri-
cal measure of the averaged distance among tokens
that allows effective information propagation [16, 89]
defined as the following,

𝐸𝑅𝐹 ≈
∑︁
𝑛≤𝑁

∑︁
ℎ≤𝐻

∑︁
𝑠≤𝑆

2𝑀ℎ (𝑆, 𝑠) · (𝑆 − 𝑠) · (𝑁 − 𝑛 + 1)
𝐻𝑁 (𝑁 + 1) , (5)

where 𝑆 is index of the last token in the sequence, 𝑁
is index of the last layer in the model, and 𝑀ℎ(𝑆, 𝑠)
is the normalized attention score between token 𝑠 and
the last token in head ℎ.

As shown in Fig. 11, we observe that (1) in line with
common intuitions, Llama3 exhibits a notably larger
ERF compared to Mamba due to its higher recall
resolution, albeit at the cost of a larger cache size; (2)
our multi-head structure demonstrates the best ERF
across the four designs, with an order of magnitude
larger ERF while maintaining a cache size compara-
ble to the sequential structure. This suggests that
the parallel structure can better leverage the limited
cache size to capture longer and more complex rela-
tionships among tokens compared to the sequential
one. The differences in ERF are also reflected in task
accuracy: According to Tab. 1, the multi-head design
(Tab. 1 (B)) improves commonsense reasoning and
recall accuracy by +1.08% and 4.74%, respectively,
over the sequential design (Tab. 1 (A)). Based on this
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Figure 11 | Visualize the ERF and cache size trade-off.
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Table 6 | Benchmark Hymba with SOTA tiny LMs, all of which have fewer than 200M parameters. All results
are obtained through Huggingface/LightEval, following Ben Allal et al. [43].

Model #Params. MMLU
(cloze) ↑

ARC
(c+e) ↑ PIQA ↑ Hella. ↑ OBQA ↑ Wino. ↑ Avg. ↑

Mamba-130m-hf 130M 27.41 33.01 63.33 33.86 30.40 51.54 42.43
Cerebras-GPT 111M 25.56 27.75 58.16 26.32 25.40 50.28 37.58
GPT-neo 125M 27.25 31.30 62.35 29.68 29.20 51.54 40.81
LaMini-GPT 124M 26.47 33.26 62.89 30.05 27.80 50.75 40.95
Opt 125M 25.67 31.25 61.97 31.04 29.00 53.20 41.29
GPT2 137M 26.29 31.09 62.51 29.76 29.40 49.72 40.50
Pythia 160M 26.68 31.92 61.64 29.55 27.80 49.49 40.08
MobileLM 125M - 35.51 65.30 38.90 39.50 53.10 46.46
SmolLM 135M 30.23 43.99 69.60 42.30 33.60 52.70 48.44
Hymba 125M 31.12 44.95 68.50 45.54 35.52 52.25 49.35

Table 7 | Benchmark Hymba with SOTA tiny LMs, all of which have fewer than 400M parameters. All results
are obtained through Huggingface/LightEval, following Ben Allal et al. [43].

Model #Params. MMLU
(cloze) ↑

ARC
(c+e) ↑ PIQA ↑ Hella. ↑ OBQA ↑ Wino. ↑ Avg. ↑

Bloom 560M 27.49 32.86 65.13 35.98 28.80 51.70 42.89
Cerebras-GPT-256M 256M 25.91 29.69 61.37 28.44 28.00 51.62 39.82
Cerebras-GPT-590M 590M 26.93 32.40 62.84 31.99 28.40 50.12 41.15
Opt 350M 26.57 31.94 64.36 36.09 27.80 52.57 42.55
Pythia 410M 28.94 35.05 66.92 39.21 28.40 52.80 44.48
GPT2-medium 380M 27.77 34.30 66.38 37.06 31.20 49.49 43.69
MobileLM 350M - 43.65 68.60 49.60 40.00 57.60 51.89
SmolLM 360M 34.17 51.10 72.00 53.80 37.20 53.70 53.56
Hymba 350M 34.54 52.46 72.91 55.08 38.40 57.85 55.34

benchmarking and analysis, we adopt the hybrid-head
module as our basic building block.

The ratio of SSMs and attention in hybrid
heads. To determine the proper number of attention
heads, we start with a Mamba model and gradually
replace Mamba’s hidden dimensions with attention
heads, maintaining the same overall model size. As
shown in Tab. 10 (1)∼ (4), we observe that model
performance improves as the ratio of attention pa-
rameters increases and gradually saturates when the
parameter ratio of attention to Mamba reaches 1:2.12.
We stop introducing more attention heads, consider-
ing that adding more would bring increased memory
overhead.

There are two interesting observations: (1) Al-
though the attention-only model outperforms the
Mamba-only model, the hybrid model with both at-
tention and Mamba heads achieves the best perfor-
mance; (2) with further KV cache optimization, the
ratio of attention heads decreases further. In our
final model, attention heads occupy no more than

1/5 of the Mamba heads, yet significantly boost both
recall and commonsense reasoning compared to the
vanilla Mamba. This suggests that the hybrid model
leverages the strengths and diversity of both attention
and SSM heads, achieving a better trade-off between
efficiency and performance.

The hybrid-head fusion strategy. We have
explored two straightforward methods to fuse the
outputs of attention and SSM heads: concatenation
and mean. For concatenation, we combine the out-
puts of all heads and use a linear layer to project the
concatenated output to the final output dimension.
However, the parameter size of the linear layer in-
creases with both the number of heads and the head
dimensions. Additionally, based on the empirical com-
parison between Tab. 10 (9) and (11), the performance
of concatenation fusion is not better than the simple
mean fusion. Therefore, we adopt the mean fusion
strategy in our final design.

Impact of KV cache optimization. After ap-
plying a series of KV cache optimization techniques,
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Table 8 | Benchmark Hymba-1.5B trained with all data and public data only against SOTA small LMs. All
models have fewer than 2B parameters, except for Llama-3.2-3B, which is marked in gray. The settings follow
Tab. 2 in our main paper and we only include the most competitive baselines here. Hymba (Public Data)
refers to our model trained exclusively on public datasets, without using our proprietary high-quality dataset.

Model #Params. Train Token/s Cache MMLU ARC-E ARC-C PIQA Wino. Hella. SQuAD-C Avg.
tokens (MB) 5-shot 0-shot 0-shot 0-shot 0-shot 0-shot 1-shot

Phi-1.5 1.3B 0.15T 241 1573 42.56 76.18 44.71 76.56 72.85 48.00 30.09 55.85
h2o-danube2 1.8B 2T 271 492 40.05 70.66 33.19 76.01 66.93 53.70 49.03 55.65
Qwen2.5 1.5B 18T 469 229 60.92 75.51 41.21 75.79 63.38 50.20 49.53 59.51
SmolLM2 1.7B 11T 238 1573 50.29 77.78 44.71 77.09 66.38 53.55 50.50 60.04
Llama-3.2-3B 3.0B 9T 191 918 56.03 74.54 42.32 76.66 69.85 55.29 43.46 59.74

Hymba 1.5B 1.5T 664 79 51.19 76.94 45.90 77.31 66.61 53.55 55.93 61.06
Hymba (Public Data) 1.5B 1.5T 664 79 44.31 78.58 47.01 77.53 64.56 53.89 59.82 60.81

Table 9 | Apple-to-apple comparison of our Hymba, pure Mamba [2], Mamba with FFN, Llama3 [39] style,
and Samba- [7] style (Mamba-FFN-Attn-FFN) architectures. All models have 300M parameters and are
trained for 100B tokens from FineWeb dataset [54] with exactly the same training recipes. All results are
obtained through lm-evaluation-harness [28]. The best and second best results are highlighted in
bold and underline, respectively.

Task Type
Arch. Style

(300M) Mamba Mamba
w/ FFN Llama3 Samba Hymba

Language Wiki. ppl. ↓ 30.78 33.41 30.04 31.41 28.53
LMB. ppl. ↓ 19.95 23.64 20.53 19.75 15.45

Recall
Intensive

SQuAD-C ↑ 21.31 17.56 22.10 39.88 45.24
SWDE ↑ 17.14 13.10 57.86 22.14 58.33
Avg. ↑ 19.23 15.33 39.98 31.01 51.79

Common-
sense

Reasoning
and

Question-
answering

Lambda ↑ 38.95 36.37 40.15 40.59 44.67
PIQA ↑ 69.64 69.26 70.29 69.86 70.73
ARC-C ↑ 24.91 25.00 24.83 25.76 26.28
ARC-E ↑ 50.67 50.34 50.24 49.79 53.20
Hella. ↑ 44.95 44.08 45.69 46.45 48.23
Wino. ↑ 51.70 51.78 52.64 52.49 53.35
TruthfulQA ↑ 23.86 26.23 28.97 27.27 27.87
SIQA ↑ 39.20 39.53 39.66 39.92 39.92
Avg. 42.98 42.82 44.08 44.02 45.53

moving from Tab. 10 (5) to Tab. 10 (9), we observe
that our Hymba maintains comparable recall and com-
monsense reasoning accuracy while being 2.74× faster.
In contrast, applying the same KV cache optimiza-
tion to a pure Transformer, as seen in the comparison
between Tab. 10 (6) and (10), results in a recall accu-
racy drop of 10% or more and degraded commonsense
reasoning accuracy. This supports our analysis in
Sec. 2.2, showing that the presence of SSM heads
in our hybrid-head module has already summarized
the global context, allowing us to more aggressively
replace global full attention with local attention in
our hybrid model.

Figure 12 | Left: visualization of output magnitudes
of attention and SSM heads. SSM heads consistently
have higher output magnitude than attention heads
due to their structure. Right: visualization of at-
tention and SSM heads’ gate magnitudes. Through
model learning, the relative magnitudes of attention
and SSM gates vary across different layers.
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Table 10 | Ablation study of the design choices of Hymba. The design finally adopted by Hymba is highlighted
in bold. Specifically, the task lists are the same as those in Tab. 3. The throughput is measured with a
8k sequence length and a 128 batch size on an NVIDIA A100 GPU. The cache size is measured with a 8k
sequence length, assuming the FP16 format.

Design
Factor Configuration Param. Ratio

Attn:Mamba
Avg.

(General) ↑
Avg.

(Recall) ↑
Throughput
(Token/s) ↑

Cache
(MB) ↓

Attn/Mamba
Ratio

1) Mamba Heads Only 0:1 42.98 19.23 4720.8 1.87
2) Mamba + 4 Attn Heads 1:8.48 44.20 44.65 3278.1 99.09
3) Mamba + 8 Attn Heads 1:4.24 44.95 52.53 1816.5 197.39
4) Mamba + 16 Attn Heads 1:2.12 45.08 56.46 656.6 394.00
5) 4) + GQA 1:3.64 45.19 49.90 876.7 148.24
6) Attn Heads Only (Llama) 1:0 44.08 39.98 721.1 414.72

Sliding
Window

7) 5) + All SWA’s 1:3.64 44.42 29.78 4485.09 5.51
8) 5) + SWA’s + Full Attn 1:3.64 44.56 48.79 2399.7 41.19
9) 8) + Cross-layer KV sharing 1:5.23 45.16 48.04 2756.5 39.42

10) 6) + Same KV compression 1:0 43.60 28.18 3710.0 28.98
Fusion 11) 9) Replace Mean by Concat 1: 5.82 44.56 48.94 1413.9 39.42
Meta

Tokens
12) 1) + Meta Tokens 0:1 44.01 19.34 4712.8 1.87
13) 9) + Meta Tokens 1:5.23 45.53 51.79 2695.8 40.01

(a)

(b)

(c)

Figure 13 | Visualize the task performance difference
across three tasks after removing the Attention or
SSM heads in each layer. The task performance is
measured using 1000 samples from each task. Note
that removing critical modules in specific layers causes
a significant gap compared to others, making their
bars fall outside the box. For such layers, we annotate
the task performance with text.

C. Head Importance Analysis

Setup. To understand how hybrid heads contribute
to the final task performance, we zero out the at-

tention or SSM heads in each layer by setting 𝛽1 or
𝛽2 in Eq. 3 to 0 and record the final accuracy. We
consider four datasets, which are presented in Fig. 3
and Fig. 13, and the task performance is measured
using 1000 samples from each task, evaluated with
lm-evaluation-harness [28] in a zero-shot setting.

Observations. As shown in Fig. 13, we observe
that (1) the relative importance of attention/SSM
heads in the same layer, indicated by the change in
task performance before and after being removed,
may vary across different tasks. In other words, the
relative importance of attention/SSM heads in the
same layer is input-adaptive, indicating that different
types of heads learn to serve different roles and under-
take different responsibilities when handling various
inputs; (2) The SSM head in the first layer is criti-
cal for language modeling and removing it causes a
substantial increase in PPL or a substantial drop in
accuracy (to random guess levels). Generally, remov-
ing one attention/SSM head results in a 0.46%/1.2%
reduction in accuracy averaged across all layers and
tasks, respectively.

D. Meta Tokens: More Analysis and
Visualization

Relationship with prior works. Learnable tokens
have also been leveraged in previous transformer-
based models. Previous prompt tuning works [32, 33]
prepend learnable prompts while keeping the model
weights frozen during the task-specific tuning stage,
aiming to adapt a pretrained LM to downstream
tasks in a parameter-efficient manner. [90] introduces
both learnable tokens and corresponding memory up-
date modules to augment the memory mechanism in
transformers. [30] appends a set of learnable tokens
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Figure 14 | Training curves of Hymba-1.5B.

(a) (b)

Figure 15 | Visualize the layer-wise attention map
entropy of (a) attention heads, and (b) SSM heads
with and without meta tokens.

called registers to the image patches of vision trans-
formers [89] to store global information and improve
visual recognition. Our method combines ideas from
all of these works in a more flexible manner. It op-
timizes the meta tokens jointly with model weights
during the pretraining stage, is compatible with slid-
ing window attention heads and other attention types
or SSMs, and converts the meta tokens into KV-cache
initialization during inference, without modifying the
architecture.

Meta tokens reduce attention map entropy.
We visualize the entropy of the attention map for both
the attention and SSM heads [20, 16] before and after
introducing meta tokens. As introduced in Sec. 2.3 of
our main paper, the attention map entropy reflects the
distribution of attention scores across tokens, where
lower entropy indicates stronger retrieval effects [7],
as the attention scores are concentrated around a
smaller subset of tokens.

As shown in Fig. 15, we observe that after introduc-
ing meta tokens, both the attention and SSM heads
exhibit an overall reduction in entropy. Specifically,
entropy is significantly reduced in all attention heads
and in 10 out of 12 layers of the SSM heads. This
suggests that meta tokens can reduce attention map
entropy, potentially helping both the attention and
SSM heads focus more on a subset of important to-
kens that contribute most to task performance, as
indicated by the boosted performance in Tab. 10.

E. Pretraining and Post-training Im-
plementation Details

Pretraining settings. We train Hymba-
125M/350M/1.5B models on 1.3T tokens, using a
mix of DCLM-Baseline-1.0 [36], SmolLM-Corpus [37],
and an internal high-quality dataset for 1T, 250B, and
50B tokens, respectively. We adopt the WSD learning
rate scheduler [38] with three phases: (1) warmup
steps set to 1% of the total steps, (2) a stable phase
maintaining the peak learning rate of 3e-3, and (3) a
decay phase reducing the learning rate to 1e-5 over
20% of the total steps, while gradually annealing to
smaller, higher-quality datasets like SmolLM-Corpus
and the internal dataset. We use a sequence length
of 2K and a batch size of 2M tokens throughout the
training process, which is conducted on 128 NVIDIA
A100 GPUs. Details of Hymba-125M/350M/1.5B
models are shown in Tab. 11.

We also show the training curves of Hymba-1.5B
in Fig. 14.

Implementation details of post-training. We
post-trained our 1.5B base model with a two-stage
strategy: the first full-finetuning (FFT) stage and
another direct preference optimization (DPO) [12]
training. The learning rates are 5e-5, and 3e-6 for FFT
and DPO, respectively. Both FFT and DPO training
are carried out for one epoch with a cosine scheduler.
The global batch size is set to 1024. To accelerate
training, we follow the training recipe [61, 62, 63] to
pack the samples and use a block size of 2048. We
implement the finetuning and DPO training with the
LMFlow toolkit [62]. In addition to full-finetuning,
we also leverage Dora [13] to do parameter-efficient
finetuning.

Baselines and downstream tasks. We
compare Hymba-1.5B-Instruct with competitive
lightweight instruction-tuned models, i.e., Llama-
3.2-1B-Instruct [42], OpenELM-1-1B-Instruct [51],
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Table 11 | Architecture details of Hymba models of
different size.

Attribute 125M 350M 1.5B
Blocks 24 32 32
Hidden Size 512 768 1600
SSM State 16 16 16
Attn. Heads 8 12 25
Query Groups 4 4 5
Num. Full Attn 3 3 3
Window Size 1024 1024 1024
MLP Hidden 1664 2432 5504
Tie Embedding True True True
Parameters 125M 350M 1.52B

Qwen2.5-1.5B-Instruct [64], and SmolLM-1.7B-
Instruct [43]. We test the instruction-tuned models on
MMLU (5-shot), IFEval, GSM8K (5-shot), GPQA (0-
shot), and Berkeley Function-Calling Leaderboard v2
(BFCLv2) [65]. For BFCLv2, we use the official code
from Gorilla project [65] and evaluate the BFCLv2-
live category, including live_simple, live_multiple,
live_parallel, live_parallel_multiple, live_relevance.
We exclude live_irrelevance, since we found some
baseline models without function calling abilities,
could achieve high in the live_irrelevance category
(where the model is not required to call function)
and very low in other tasks, but still got high over-
all accuracy although these models are not helpful
at all. For the remaining tasks, we directly use the
lm-evaluation-harness [91].
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