A. From 2D Pose to 3D Pose (Sec. 3.1)
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Figure 8. (a) We represent each pose using the coordinates of 17
joints. We represent the pose location using the coordinates of the
pelvis joint (green dot). (b) We map each 2D pose from [27] to
a 3D pose in the Human3.6M dataset [12]. The last two columns
show corresponding 3D pose of the 2D pose in column 1 visual-
ized from two different views.

As discussed in Sec. 3.1, we map 2D poses anno-
tated by Wang et al. [27] to 3D poses in the Human3.6M
dataset [11]. This is carried out by first rotating each 3D
pose by 6 radian uniformly sampled from [—, 7], then pro-
jecting it onto the xy plane. For each 2D pose, we search
for its nearest neighbor with minimal Euclidean distance
among all projected 2D poses and take the corresponding
3D pose as its 3D mapping. Fig. 8(b) shows examples of
mapped 3D poses of 2D poses.

In this work, we represent pose location using the pelvis
joint coordinates as shown in Fig. 8(a). For pose gesture
representation, we use 17 joint coordinates, resulting a 34
dimensional vector for 2D poses and a 51 dimensional vec-
tor for 3D poses.

B. Mapping Poses into 3D Scenes (Sec. 3.2)
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Figure 9. (a) Mapping from pixel coordinate system to world co-
ordinate system. (b) Illustrations of human height H,, in pixel
coordinates, “highest joint” and “lowest joint” in the pose. (c) Il-

lustrations of human height in world coordinate system.

We present more details of how to estimate the depth of a
pose (denoted as d), given the generated human pose on the
image and the approximated human height in the real world,
as described in Sec. 3.2. We sample human height H in the

real world from a Gaussian distribution, i.e., N'(1.65,0.1)
for standing poses and N (1.20,0.1) for sitting poses. We
denote the 2D coordinates of the “highest joint” (usually
the head joint) and the “lowest joint” (usually the one of the
foot joint) as (up, vp,) and (u;, v;) as shown in Fig. 9. In ad-
dition, we denote camera intrinsic matrix M/; and extrinsic
matrix M, as:
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The world coordinates of joint (uy,vy) is calculated by:
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where (Zch, Yen, d, 1) is the camera coordinate of (up, vy,),
which is calculated by:
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From (8) we have Z, = r31x + 732yl + 733d + t1. Sim-
ilarly, we have the Z coordinate Z; = rs1x. + T32yc +
r3zd + t1 to represent the “lowest joint”. Given the hu-
man height H in real world, we have H = 7, — Z; =
731(Teh — Yer) +732(Yeh — Yer ). By substituting (9) into this
equation, we have H = % (up —ug)+ % (v, —v;). Note
that (us, —u;) and (v, —v;) are the pose height H,, and width
Wy, in the pixel coordinate system as shown in Figure 8(b),
thus we can calculate pose depth by d = m
Specifically, for the SUNCG dataset [30, 26], 32 = 0 for
all scenes, we simplify the depth estimation equation above

_ _HXf ;
asd = Taax i, 38 concluded in Sec. 3.2.

C. Location Prediction in 2D Scene Images
(Sec. 3.1)
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Figure 10. Architecture of the location prediction model. The en-
coder is a 18-layer ResNet [9] without the last two fully connected
layers. The decoder is a 11-layer CNN with an extra Softmax layer
at the end to normalized the generated heat map.

Fig. 10 illustrates the structure of our 2D pelvis location
prediction model, as discussed in Sec. 3.1. Fig. 15 shows
predicted heat maps and poses for the Sitcom [27] and the
SUNCG dataset. We train the heat map prediction model
for 5,000 iterations using the Adam [13] solver. For data



augmentation, we randomly crop a 384 x 384 patch from
a 448 x 448 image, we set batch size to 100 and learning
rate to 0.001. For pose generation at given locations, we use
the same model as [27]. Note that instead of predicting 2D
poses, we directly predict 3D poses obtained via 2D to 3D
pose mapping, as described in Appendix A and Sec. 3.1.

D. More Details for 3D Pose Prediction (Sec. 4)

The where and what modules. We first train the where
and what module discussed in Sec. 4.1 and 4.2 for 80000
iterations using the Adam [13] solver. Specifically, we set
the batch size as 100 and the learning rate as 0.0001. Then,
we connect the two modules and jointly finetune them with
the geometry-aware discriminator, as introduced in Sec. 4.3,
for another 50000 iterations. We adopt the similar training
strategy as Lee et al. [16] and only use the discriminator to
regularize an unsupervised path for both modules, i.e., the
discriminator is used to regularize the distributions of gen-
erated poses that coming from the random noises, instead of
interacting with the VAE block in a direct manner. We ob-
serve that such network architecture brings significant im-
provement to the generated results. Fig. 17 (a) shows the
detailed structure of our supervised and unsupervised path
and Fig. 17 (b), (c) shows the detailed structure of our where
and what module.

Geometry-aware discriminator. As discussed in
Sec. 4.3, we propose a geometry-aware discriminator to
further regularize the generator to generate poses that obey
the rules of geometry in a scene. However, it is challenging
for the discriminator to associate joint coordinates, i.e.,
a 3-dimensional tensor, with the image. Therefore, we
first train a CNN to convert the coordinates and depth of
joints, into a “depth heat map” that has the same dimension
as the input image. Fig. 17(d) illustrates the structure of
this CNN. We train the CNN for 5000 iterations using the
Adam [13] solver with a learning rate of 0.0002. Fig. 17(e)
further shows the detailed structure of our geometry-aware
discriminator.

E. User Study Interface

Instructions
In this survey, we would like to estimate whether generated
poses in a scene are reasonable by different methods. For fair
comparison, we do not show occlusion in the user study.
Thus the circled pose looks unreasonable (left), but they are
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Figure 11. User study instructions and interface. (Left) Instruc-
tions, (Right) User interface.

We show the instructions and web UI for the user study
introduced in Sec. 5.1 in Fig. 11.

We visualize the sampled locations conditioned on each
scene image in Fig. 12. As shown in this figure, our “where”
module (a) understands the scene and predicts reasonable
locations for sitting poses around an affordable object or
locations on correct height for standing poses. (b) generates
multiple locations given a single scene image.

F. Sampled Locations by the Where Module

We show sampled locations by the where module in
Fig. 12
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Figure 12. Sampled locations by the “where” module. In each
scene, we show 30 locations sampled by our “where” module. For

visualization purpose, we color pelvis joint locations for standing
poses and sitting poses red and green respectively.

G. Depth Interpolation of the What Module

A 2D coordinate (x,y) in a 2D scene image may cor-
respond to multiple locations in the 3D scene with different
depth values. A model that is able to hallucinate the geome-
try of a scene should be able to predict different poses at the
same (x, y) location with different depth values. To inspect
whether such geometry knowledge has been learned by our
what module properly, we train another model that only de-
pends on 3D pose locations and scene images. We particu-
larly remove the pose class p. in order to eliminate any clue
that may indicate the geometrical information. Other set-
tings are the same as the what model described in Sec. 5.2.
During testing, we fix pelvis coordinates and the input scene
image while interpolating depth between d — 0.5 to d + 0.5,
where d is the ground truth pelvis depth. As we can see in
Fig. ??, our model is able to generate poses with different
scales and actions that well align with the scene according
to different depth values, indicating its ability to hallucinate
the 3D geometry of a scene properly.

H. Additional Experimental Results

We show synthesized poses in scene images and voxels
in Fig. 16. More results of generated poses in images and
scene voxels are shown in Fig. 14. Note that in this work
we use the SUNCG-PBR dataset by Sengupta et al. [25].
Despite noise introduced by the rendering process, our pose
prediction model is still able to predict plausible poses.



Figure 13. Failure cases. (Top) Semantic failure: failing to predict
socially acceptable poses. (Bottom) Geometric failure: incorrectly
hallucinating geometric information of the scene.

I. Failure Cases

Fig. 13 shows some failure cases. We mainly have two
types of failure cases: (a) generated poses do not align well
with the semantic context due to wrong semantic under-
standing of the scene (e.g., mistakenly sitting on the cab-
inet) (b) generated poses do not obey geometric rules (e.g.,
colliding with the objects in a scene). These are caused by a
failure of object functionality understanding or 3D geome-
try hallucination based on 2D information, i.e., reasoning,
which is an interesting open problem for future research.



Figure 14. Generated poses by our pose prediction model. We show generated poses in images (first column) and voxels visualized from
two different views (last two columns) for each scene. Poses are generated by our model which takes a single depth image as input.

Figure 15. Predicted pose location heat maps and sampled poses. First three columns show results on Sitcom and last three columns show
results on SUNCG. For visualization purpose, we summarize area suitable for sitting pose location (shown as red area), area suitable for
standing pose location (shown as blue) as well as area not suitable for any human poses (shown as light yellow) in predicted heat maps.
All poses shown in the bottom row are projections of 3D poses generated by our model.

Figure 16. Samples of synthesized poses. (Top) Sample poses shown in 3D scene geometry, and (Bottom) rendered images of the corre-
sponding scenes. Note that the generated poses contain information about occlusion in the scene.
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(a) Our pose prediction model framework.
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(c) Detailed illustration of the what module.
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(d) The CNN converts the joint coordinates and depth to a “depth (e) The structure of the geometry-aware discriminator.
heat map”.
Figure 17. Detailed structure of each block in our pose prediction model. We show the overview of our pose prediction model, including
the supervised and unsupervised path explained in Appendix D in Fig. (a). Detailed structure of each block is illustrated in (b), (c), (d) and
(e) respectively, same blocks are filled with same background color.




