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Abstract

In this supplementary document, we provide more im-
plementation details of our method, names of the sequences
used in the experiments on the Oxford RobotCar dataset,
more analysis and visualization of the experimental results
presented in the main paper, and the detailed derivation of
pose-graph optimization (PGO) in MapNet+PGO. Please
also refer to the supplementary video for more visualiza-
tions of the camera localization results.

1. Pose Graph Optimization in MapNet+PGO

The purpose of pose-graph optimization (PGO) is to re-
fine the input poses such that the refined poses are close
to the input poses (from MapNet+), and the relative trans-
forms between the refined poses agree with the input visual
odometries. It is an iterative optimization process [2, 3].

Inputs Pose predictions {pi}iT:1 and visual odometry
(VOs) ¥;; between consecutive poses. Both poses and VOs
are 6-dimensional (3d translation t + 3d log quaternion w).
For the rest of the algorithm, the log quaternions are con-
verted to unit quaternion using the exponential map [4]:

W
q = (cos [[wl|, — sin [|w]]) (1)

[wl

Objective Function State vector z is the concatenation of
all T' pose vectors. The total objective function is the sum
of the costs of all constraints. The constraints can be either
for the absolute pose or for the relative pose between a pair
of poses. For both of these categories, there are separate
constraints for translation and rotation.
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where h(-) is the pose distance function from Equation (7)
of the main paper. f, is a function that maps the state vector
to the quantity relevant for the constraint c. For example, it
selects p; from the state vector for a constraint on the ab-
solute pose, or computes the VO between poses for p; and
p; for a constraint on the relative pose. k. is the observa-
tion for that constraint, and remains constant throughout the
optimization process. For example:

e For the absolute pose constraints, k. is the MapNet+
prediction.

e For the relative pose constraints, k. is the input VO
Vij.

Following [2, 3], we define h(-) as:
B(fc(c)> ke) = (fe(2) — kC)TSC(fC(Z) — ke) (3)
where S, the covariance matrix for the constraint.

Optimization Following [2], We first linearize f. around
Z, the current value of z:
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and take the Cholesky decomposition of S.: S, = LCLCT,.
Hence the linearized objective function becomes:

B(Az) = S (folz + A2) — k)T S.(fu(2 + Az) — k)
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where Jacobian J. = LCT% and residue ., =

LT (k. — f.(2)). We will solve for Az.
Stacking the individual Jacobians and residuals verti-
cally, we arrive at the least squares problem:

AzZ* :rginHJAzfrH2 (6)

This can be solved by Az* = (JT.J)~1JTr.
Finally, we update the state vector:

z=zHAz (N

where H is the manifold update operation, needed because
of the quaternions (more details below).

Detour: Manifolds for Quaternion Update As men-
tioned in [3], if we had used a simple addition in the up-
date Equation (7), it would have broken the constraints in-
troduced by the over-parameterization of quaternions. So
we use manifolds. According to [3], “A mainfold is a space
that is not necessarily Euclidean in a global scale, but can be
seen as Euclidean on a local scale”. The idea is to calculate
the update for quaternion in a minimal 3d representation,
and then apply this update to the 4d representation of qua-
terinion in z using H. We use the “exponential map” [4] to
implement H. For this, we re-cast the objective function as
a function of the update on the manifold, Az:

E(sz:) = Z(.fc(ZHHAg)_kc)TSc(fc(ZEaAé)—kc) (8)
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The linearization step is:
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So the Jacobian in this case is:
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Let us see how z H AZ is implemented.
ZHAzZz=z Az (11)

where AZ is the normal 4d quaternion that has been created
from the 3d minimal representation AZ using the exponen-
tial map (Equation (1)). So the derivative of the exponential
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map at AZ =0is M, = 01 0 . Hence,
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For the first term, we use the formula for derivative of
quaternion product from [5].

Jacobian of Absolute Translation Constraint f. just se-
lects the appropriate 3 translation elements of a pose from
the state vector 2, so J. = LT[0,... I3,...,0].

Jacobian of Absolute Rotation Constraint f. selects the
appropriate 4 quaternion elements of a pose from the state
vector z. However, since the update is on the manifold,
the Jacobian jc is computed as shown in Equations (10)
and (12) with J. = LT - I,.

Jacobian of Relative Translation Constraint f. com-
putes the translation component of the VO v;; between p;
and p;, which is q; (t; — tj)qj_1 according to Equation (6)

qjtiq;

. . 0 .
in the main paper. Hence J. has —5—=— in the block cor-

. dq;tjq; " . .
responding to t; and — % in the block corresponding

to t;. Both these formulae czdn be found in [5].

Jacobian of Relative Rotation Constraint f. computes
the rotation component of the VO v;; between p; and p;,
which is ¢;- 1. ¢; according to Equation (6) in the main paper.
dq; " q;
1 9q;
to q; and Bqé;q;qi in the Jacobian block corresponding to
q,;. Both these %ormulae can be found in [5].

Hence J, has in the Jacobian block corresponding

Update on the Manifold The updates for translation parts
of the state vector are performed by simply adding the up-
date vector to the state vector. For the quaternion parts,
the minimal representations in the update need to be con-
verted back to the 4d representation using the exponential
map in Equation (1), and then quaternion-multiplied to the
state vector quaternions.

Implementation Details The covariance matrix S, is set
to identity for all the translation constraints and tuned to o I3
(0=10 to 35) for different scenes in the 7-Scenes dataset.
For the RobotCar dataset, we use ¢ = 20 for LOOP and
o = 10 for FULL.

2. Details of Image Pair Sampling

In both MapNet and MapNet+ (Sections 3.2 and 3.3 of
the main paper) training, we need to sample image pairs
(I;,1;) from each input image sequence. This sampling is
done within each tuple of s images sampled with a gap k
frames. More specifically, suppose we have N images in an
input sequence, I1,--- ,Ix. Each entry in each minibatch
during the training of MapNet and MapNet+ consists of a
tuple of s conseutive images that are k frames apart from
each other, i.e., (I, Lk, -+, Lt p(s—2); Ligr(s—1))-



Table 1: Statistics of state-of-the-art methods on the 7-Scenes dataset.

Scene PoseNet+logq DSO [1] ‘ MapNet MapNet+ MapNet+PGO
Avg Median (Scene) 0.23m, 8.49 0.51m, 29.44 | 0.21m, 7.77 0.19m, 7.29  0.18m, 6.55
Avg Median (Seq) 0.24m, 7.40 0.93m, 39.20 | 0.22m, 6.88 0.20m, 6.18 0.21m, 6.16
Avg Mean (Scene) 0.28m, 10.43 1.27m, 46.48 | 0.27m, 10.08 0.23m, 8.27  0.22m, 7.89
Avg Mean (Seq) 0.30m, 9.84 1.62m, 40.28 | 0.28m, 9.12 0.24m, 7.42  0.23m, 7.29

Within this tuple of s images, each two neighboring el-
ements will form an image pair for training. For example,
both (I;, i1 %) and (Lifr(s—2), Liyr(s—1)) are valid image
pairs.

3. Details of the Sequences used in the Experi-
ments on the RobotCar Dataset

Sequences in RobotCar are named by the date and time
of their capture.

Experiments on the LOOP Scene To train the baseline
PoseNet and MapNet, we used the following two sequences
as the dataset D with ground truth supervision.

o 2014-06-26-09-24-58
e 2014-06-26-08-53-56

We used the following two sequences as the unlabeled
dataset T to train MapNet+

e 2014-05-14-13-50-20
e 2014-05-14-13-46-12

MapNet+(1seq) used the first sequence in 7, and Map-
Net+(2seq) used both sequences in 7. These two sequences
are also used in MapNet+(GPS) for updating the MapNet
with GPS measurements.

We used the following sequences for testing, which are
completely separated from all the sequences in D and 7.

e 2014-06-23-15-36-04
e 2014-06-23-15-41-25

Figure 5 in our main paper showed the testing results
on 2014-06-23-15-41-25 for visualization (we obtained
similar results on the other testing sequence).

Figure 8 of the main paper: The MapNet+ model trained
with one sequence of labeled data used D = {2014-06-
26-09-24-58} and increasingly larger subsets of unlabeled
data 7 = {2014-06-26-08-53-56, 2014-05-14-13-50-20,
2014-05-14-13-46-12}. The MapNet+ model trained with
2 sequences of labeled data used D = {2014-06-26-09-24-
58, 2014-06-26-08-53-56} and increasingly larger subsets

of unlabeled data 7 = {2014-05-14-13-50-20, 2014-05-
14-13-46-12}. All these models were tested on 2014-06-
23-15-36-04.

Experiments on the FULL Scene To train the baseline
PoseNet and MapNet, we used the following two sequences
as the labeled dataset D

e 2014-11-28-12-07-13
e 2014-12-02-15-30-08

We used the following sequence as the unlabeled dataset 7
e 2014-12-12-10-45-15

We used the following sequence for testing, which is com-
pletely separated from all the learning methods

e 2014-12-09-13-21-02

4. Experiments on the 7-Scenes Dataset

Figure 1 and Figure 2 show the results for all the 18 test-
ing sequences on the 7-Scenes dataset. Table 1 lists a variety
of statistics computed on all the 18 testing sequences, where
Avg Median (Scene) means the averaged values of the me-
dian error over each scene, and Avg Median (Seq) means
the averaged values of the median error over each sequence
in the scene. As shown, both these two figures and the table
support the same conclusion as described in the main paper.

5. Experiments on the RobotCar Dataset

Figure 3 shows the images corresponding to the outliers
in camera localization results of MapNet+PGO for both the
LOOP scene and the FULL scene. As shown, these outliers
often correspond to images with large over-exposed regions,
or large regions covered with moving objects (e.g., truck).
Some of these outliers can be filtered out simply with tem-
poral median filtering, as shown in Figure 4.

We also computed saliency maps s(z,y) =
3| 2?21 %| (magnitude gradient of the mean of
the 6-element output w.r.t. input image, maxed over the
3 color channels) of PoseNet and MapNet+ on both the
7-scenes and RobotCar dataset (redkitchen and loop
sequences). As shown in Fig 5, compared to PoseNet,
MapNet+ focuses more on geometrically meaningful
regions and its saliency map is more consistent over time.
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DSO [1] PoseNet [7, 8, 0] MapNet MapNet+ MapNet+PGO
Figure 1: Results on the 7-Scenes dataset. The 3d plots show the camera position (green for ground truth and red for predictions).
The colorbars below show the errors of the predicted camera orientation (blue for small error and yellow for large error) with frame
number on the X axis. From top to bottom are testing sequences: Chess-Seq-03, Chess-Seq-05, Fire-Seq-03, Fire-Seq-04, Head-Seq-01,
Office-Seq-02, Office-Seq-06, Office-Seq-07, and Office-Seq-09.
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DSO [1] PoseNet [7, &, 0] MapNet MapNet+ MapNet+PGO
Figure 2: Results on the 7-Scenes dataset (continued). The 3d plots show the camera position (green for ground truth and red for
predictions). The colorbars below show the errors of the predicted camera orientation (blue for small error and yellow for large error)
with frame number on the X axis. From top to bottom are testing sequences: Pumpkin-Seq-01, Pumpkin-Seq-07, Redkitchen-Seq-03,
Redkitchen-Seq-04, Redkitchen-Seq-06, Redkitchen-Seq-12, Redkitchen-Seq-14, Stairs-Seq-01, and Stairs-Seq-04.
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Figure 3: Images corresponding to the spurious estimation of MapNet+PGO for the LOOP scene (top) and the FULL
scene (bottom). These outliers usually corresponds to images with large over-exposed regions, or large regions on moving
objects (e.g., truck), which often can be filtered out with simple temporal median filtering (see Figure 4).
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Figure 4: Camera localization results before (TOP) and after (BOTTOM) temporal median filtering. The spurious estimations can
be effectively removed with a simple median filtering (with the window size of 51 frames).




Figure 5: Attention maps for example images from the 7 Scenes dataset (top) and RobotCar dataset (bottom). In all 4 exam-
ples, we observe that MapNet+ focuses more on geometrically meaningful regions compared to PoseNet, and its saliency map
is more consistent over time. Please see videos at http://youtu.be/197N30A9RdAE to observe temporal consistency
and more example frames.
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