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Fig. 1 – Uncurated generated images by latent DiffiT on ImageNet [15] dataset.

Abstract. Diffusion models with their powerful expressivity and high
sample quality have achieved State-Of-The-Art (SOTA) performance in
the generative domain. The pioneering Vision Transformer (ViT) has
also demonstrated strong modeling capabilities and scalability, especially
for recognition tasks. In this paper, we study the effectiveness of ViTs
in diffusion-based generative learning and propose a new model denoted
as Diffusion Vision Transformers (DiffiT). Specifically, we propose a
methodology for finegrained control of the denoising process and introduce
the Time-dependant Multihead Self Attention (TMSA) mechanism. DiffiT
is surprisingly effective in generating high-fidelity images with significantly
better parameter efficiency. We also propose latent and image space DiffiT
models and show SOTA performance on a variety of class-conditional
and unconditional synthesis tasks at different resolutions. The Latent
DiffiT model achieves a new SOTA FID score of 1.73 on ImageNet-
256 dataset while having 19.85%, 16.88% less parameters than other
Transformer-based diffusion models such as MDT and DiT, respectively.

https://github.com/NVlabs/DiffiT
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1 Introduction

Diffusion models [28,68,71] have revolutionized the domain of generative learning,
with successful frameworks in the front line such as DALL·E 3 [58], Imagen [27]
and Stable diffusion [59,60] and achieving state-of-the-art (SOTA) performance in
various tasks. They have enabled generating diverse complex scenes in high fidelity
which were once considered out of reach for prior models. Specifically, synthesis
in diffusion models is formulated as an iterative process in which random image-
shaped Gaussian noise is denoised gradually towards realistic samples [28, 68, 71].
The core building block in this process is a denoising autoencoder network that
takes a noisy image and predicts the denoising direction, equivalent to the score
function [32, 76]. This network, which is shared across different time steps of the
denoising process, is often a variant of Convolutional Neural Network (CNN)-
based U-Net [28, 61]. However, with a lack of standard design pattern, several
architecture variants [16,53,70] have been proposed for the denoising network.

Vision Transformers (ViTs) [20] have demonstrated SOTA performance for
various recognition tasks and offer compelling advantages such as long-range
dependency modeling and scalability. Recently, a number of efforts such as
Diffusion Transformers (DiT) [56] and Masked Diffusion Transformer (MDT) [23]

DiffiT- w TMSA DiffiT- wo TMSA

Fig. 2 – Side-by-side qualitative comparison of at-
tention maps during the denoising process for mod-
els with and without TMSA. The denoising process
starts from the top row in each column.

have proposed to leverage the
strong modeling capability and
scalability of ViTs for diffusion-
based image generation. In DiT
and MDT, Adaptive LayerNorm
(AdaLN) [57] is used for in-
put noise conditioning. How-
ever, this scheme significantly
increases the number of param-
eters and does not effectively
model the unique temporal dy-
namics of the denoising pro-
cess [13,44]. Specifically, in the
beginning of denoising, the high-
frequency content of the im-
age is completely perturbed as
the denoising network primarily
focuses on predicting the low-
frequency content. Towards the
end of denoising, in which most
of the image structure is gener-
ated, the network tends to focus
on predicting high-frequency de-
tails. The conditioning in DiT
is realized by modulating the in-
put with channel-wise scale and
shift parameters predicted by adaLN layers. However, this mechanism cannot
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optimally capture the dynamics of the denoising process since it does not ef-
fectively model the joint spatial and temporal dependencies. In this work, we
introduce the Time-dependant Multihead Self-Attention (TMSA) mechanism
which allows for fine-grained control over spatial and temporal dependencies and
their interaction during the denoising process. Specifically, our TMSA proposes
to integrate the temporal component into the self-attention where the key, query,
and value weights are adapted per time step during denoising. This allows the
denoising network to dynamically change its attention mechanism in different
stages by considering both spatial and temporal components and their correspon-
dence. In Fig. 2, we visualize attention maps from a token at the center of a
feature map to all surrounding tokens during the sampling trajectory of a models
that are trained on CIFAR10 [45] dataset. The DiffiT model with TMSA has a
better image generation quality and its attention maps demonstrate a progressive
localization towards detailed salient features. However, the model without TMSA
is not capable of recovering such details.

In addition, employing TMSA significantly improves the parameter efficiency
as it only learns three temporal components for query, key and value in each block.
In comparison, AdaLN requires learning the shift, scale and gate parameters
for self-attention as well as MLP (i.e. six components per Transformer block).
We also extend TMSA to a window-based scheme without cross-communication
among the local regions. This design is surprisingly effective and decreases the
computational cost of self-attention by reducing the token sequence length.

Using TMSA as a core building block, we introduce a novel ViT-based diffusion
model, called DiffiT (pronounced di-feet), for image generation in latent and
image space. DiffiT achieves a new SOTA performance in terms of FID score using
ImageNet-256 [15] dataset (see Fig.1) with 19.85%, 16.88% less parameters than
MDT and DiT models, respectively. DiffiT also achieves SOTA performance for
image space generation tasks on FFHQ-64 [36] and CIFAR10 [45] datasets.

The following summarizes our contributions in this work:
– We introduce TMSA which is a novel time-dependent self-attention mech-

anism and is specifically tailored to capture both temporal and spatial
dependencies as well as their interaction. Our proposed time-dependent
self-attention dynamically adapts its behavior over sampling time steps.

– We introduce a new ViT-based diffusion model, denoted as DiffiT, which
unifies the design patterns of denoising networks and can be used in a variety
of image generation tasks in the latent and image space.

– We demonstrate that DiffiT can achieve SOTA performance on a variety of
datasets for both conditional and unconditional generation tasks in the latent
and image space. The latent DiffiT model achieves a new FID score of 1.73
with significantly less number of parameters than competing approaches.

2 Related Work

Diffusion Image Generation Diffusion models [28, 68, 71] have driven significant
advances in various domains, such as text-to-image generation [8, 58, 63], natural
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language processing [49], text-to-speech synthesis [43], 3D point cloud genera-
tion [82,83,89], time series modeling [72], molecular conformal generation [79], and
machine learning security [54]. These models synthesize samples via an iterative
denoising process and thus are also known in the community as noise-conditioned
score networks. Since its initial success on small-scale datasets like CIFAR-10 [28],
diffusion models have been gaining popularity compared to other existing families
of generative models. Compared with variational autoencoders [42], diffusion
models divide the synthesis procedure into small parts that are easier to optimize,
and have better coverage of the latent space [4,67,74]; compared with generative
adversarial networks [25], diffusion models have better training stability and are
much easier to invert [22, 69]. Diffusion models are also well-suited for image
restoration, editing and re-synthesis tasks with minimal modifications to the
existing architecture [5,6,14,22,37–39,52,62,75], making it well-suited for various
downstream applications.

Transformers in Generative Modeling Transformer-based models have achieved
competitive performance in different generative learning models in the visual
domain [12, 17, 18, 29, 84, 85]. A number of transformer-based architectures
have emerged for GANs [47,48,80,87]. TransGAN [33] proposed to use a pure
transformer-based generator and discriminator architecture for pixel-wise image
generation. Gansformer [31] introduced a bipartite transformer that encourages
the similarity between latent and image features. Styleformer [55] uses Linform-
ers [77] to scale the synthesis to higher resolution images. Recently, a number of
efforts [9, 23, 50, 56] have leveraged Transformer-based architectures for diffusion
models and achieved competitive performance. In particular, DiT [56] proposed
a latent diffusion model in which the regular U-Net backbone is replaced with a
Transformer. Using the DiT architecture, MDT [23] introduced a masked latent
modeling approach to effectively capture contextual information. In comparison
to DiT, although MDT achieves faster learning speed and better FID scores on
ImageNet-256 dataset [15], it has a more complex training pipeline. Recently
with a similar architecture to DiT, SiT [51] was proposed to incorporate flow
matching [1, 2]. Unlike DiT, MDT or SiT, the proposed DiffiT does not use shift
and scale, as in AdaLN formulation, for conditioning. Instead, DiffiT proposes
a time-dependent self-attention (i.e. TMSA) to jointly learn the spatial and
temporal dependencies. In addition, DiffiT proposes both image and latent space
models for different image generation tasks with different resolutions with SOTA
performance.

3 Methodology

3.1 Diffusion Model Preliminaries

Diffusion models [28, 68, 71] are a family of generative models that synthesize
samples via an iterative denoising process. Given a data distribution as q0(z0),
a family of random variables zt for t ∈ [0, T ] are defined by injecting Gaussian
noise to z0, i.e., qt(zt) =

∫
q(zt|z0)q0(z0)dz0, where q(zt|z0) = N (z0, σ

2
t I) is a
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Gaussian distribution. Typically, σt is chosen as a non-decreasing sequence such
that σ0 = 0 and σT being much larger than the data variance. This is called the
“Variance-Exploding” noising schedule in the literature [71]; for simplicity, we use
these notations throughout the paper, but we note that it can be equivalently
converted to other commonly used schedules (such as “Variance-Preserving” [28])
by simply rescaling the data with a scaling term, dependent on t [34, 69].

The distributions of these random variables are the marginal distributions
of forward diffusion processes (Markovian or not [69]) that gradually reduces
the “signal-to-noise” ratio between the data and noise. As a generative model,
diffusion models are trained to approximate the reverse diffusion process, that is,
to transform from the initial noisy distribution (that is approximately Gaussian)
to a distribution that is close to the data one.

Training Despite being derived from different perspectives, diffusion models can
generally be written as learning the following denoising autoencoder objective [76]

Eq0(z0),t∼p(t),ϵ∼N (0,I)[λ(t)∥ϵ− ϵθ(z0 + σtϵ, t)∥22]. (1)

Intuitively, given a noisy sample from q(zt) (generated via zt := z0+σtϵ), a neural
network ϵθ is trained to predict the amount of noise added (i.e., ϵ). Equivalently,
the neural network can also be trained to predict z0 instead [28,64]. The above
objective is also known as denoising score matching [76], where the goal is to
try to fit the data score (i.e., ∇zt log q(zt)) with a neural network, also known
as the score network sθ(zt, t). The score network can be related to ϵθ via the
relationship sθ(zt, t) := −ϵθ(zt, t)/σt.

Sampling Samples from the diffusion model can be simulated by the following
family of stochastic differential equations that solve from t = T to t = 0 [19,26,
34,86]:

dz = −(σ̇t + βt)σtsθ(z, t)dt+
√
2βtσtdωt, (2)

where ωt is the reverse standard Wiener process, and βt is a function that describes
the amount of stochastic noise during the sampling process. If βt = 0 for all t,
then the process becomes a probabilistic ordinary differential equation [3] (ODE),
and can be solved by ODE integrators such as denoising diffusion implicit models
(DDIM [69]). Otherwise, solvers for stochastic differential equations (SDE) can be
used, including the one for the original denoising diffusion probabilistic models
(DDPM [28]). Typically, ODE solvers can converge to high-quality samples in
fewer steps and SDE solvers are more robust to inaccurate score models [34].

3.2 DiffiT Model

Time-dependent Self-Attention At every layer, our transformer block receives
{xs}, a set of tokens arranged spatially on a 2D grid in its input. It also receives
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Fig. 3 – Overview of the latent DiffiT framework.

xt, a time token representing the time step. Similar to [28], we obtain the
time token by feeding positional time embeddings to a small MLP with swish
activation [21]. This time token is passed to all layers in our denoising network.
We introduce our time-dependent multi-head self-attention, which captures both
long-range spatial and temporal dependencies by projecting feature and time
token embeddings in a shared space. Specifically, time-dependent queries q, keys
k and values v in the shared space are computed by a linear projection of spatial
and time embeddings xs and xt via

qs = xsWqs + xtWqt, (3)
ks = xsWks + xtWkt, (4)
vs = xsWvs + xtWvt, (5)

where Wqs, Wqt, Wks, Wkt, Wvs, Wvt denote spatial and temporal linear
projection weights for their corresponding queries, keys, and values respectively.

We note that the operations listed in Eq. 3 to 5 are equivalent to a linear
projection of each spatial token, concatenated with the time token. As a result,
key, query, and value are all linear functions of both time and spatial tokens and
they can adaptively modify the behavior of attention for different time steps.
We define Q := {qs}, K := {ks}, and V := {vs} which are stacked form of
query, key, and values in rows of a matrix. The self-attention is then computed
as follows

Attention(Q,K,V) = Softmax

(
QK⊤
√
d

+B

)
V. (6)

In which, d is a scaling factor for keys K, and B corresponds to a relative position
bias [66]. For computing the attention, the relative position bias allows for the
encoding of information across each attention head. Note that although the
relative position bias is implicitly affected by the input time embedding, directly
integrating it with this component may result in sub-optimal performance as it
needs to capture both spatial and temporal information. Please see Sec. 5.4 for
more analysis.
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DiffiT Transformer Block The transformer block is a core building block of the
proposed DiffiT architecture and is defined as

x̂s = TMSA (LN (xs),xt) + xs, (7)
xs = MLP (LN (x̂s)) + x̂s, (8)

where TMSA denotes time-dependent multi-head self-attention, as described in
the above, xt is the time-embedding token, xs is a spatial token, and LN and
MLP denote Layer Norm [7] and MLP respectively.

Latent Space Recently, latent diffusion models have been shown effective in
generating high-quality large-resolution images [59,74]. In Fig. 3, we show the
architecture of latent DiffiT model. We first encode the images using a pre-trained
variational auto-encoder network [59]. The feature maps are then converted into
non-overlapping patches and projected into a new embedding space. Similar
to the DiT model [56], we use a vision transformer, without upsampling or
downsampling layers, as the denoising network in the latent space. In addition,
we also utilize a three-channel classifier-free guidance to improve the quality of
generated samples. The final stage is a linear layer to decode the output.

Image Space

DiffiT Architecture As shown in Fig. 4, DiffiT uses a symmetrical U-Shaped
encoder-decoder architecture in which the contracting and expanding paths are
connected to each other via skip connections at every resolution. Specifically,
each resolution of the encoder or decoder paths consists of L consecutive DiffiT
blocks, containing our proposed time-dependent self-attention modules. In the
beginning of each path, for both the encoder and decoder, a convolutional layer
is employed to match the number of feature maps. A convolutional upsampling
or downsampling layer is also used for transitioning between each resolution.
We speculate that the use of these convolutional layers embeds inductive image
bias that can further improve the performance. In the remainder of this section,
we discuss the DiffiT Transformer block and our proposed time-dependent self-
attention mechanism. We use our proposed Transformer block as the residual
cells when constructing the U-shaped denoising architecture.

Local Attention The quadratic cost of attention scales poorly when the number
of spatial tokens is large, especially in the case of large feature maps. Without
loss of generality, the above Transformer block can be applied to local regions, in
which the self-attention is computed within non-overlapping partitioned windows.
Although these partitioned windows do not allow information to be propagated
between different regions, the U-Net structure with bottleneck layers permits
information sharing between different regions.
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Fig. 4 – Overview of the image-space DiffiT model. Downsample and Upsample
denote convolutional downsampling and upsampling layers, respectively. Please see
the supplementary materials for more information regarding the DiffiT architecture.

DiffiT ResBlock We define our final residual cell by combining our proposed
DiffiT Transformer block with an additional convolutional layer in the form:

x̂s = Conv3×3 (Swish (GN (xs))) , (9)
xs = DiffiT-Block (x̂s,xt) + xs, (10)

where GN denotes the group normalization operation [78] and DiffiT-Transformer
is defined in Eq. 7 and Eq. 8. Our residual cell for image space diffusion models
is a hybrid cell combining both a convolutional layer and our Transformer block.

4 Results

4.1 Latent Space

We have trained the latent DiffiT model on ImageNet-512 and ImageNet-256
dataset respectively. In Table. 1, we present a comparison against other ap-
proaches using various image quality metrics. For this comparison, we select
the best performance metrics from each model which may include techniques
such as classifier-free guidance. In ImageNet-256 dataset, the latent DiffiT model
outperforms competing approaches, such as SiT-XL [51], MDT-G [23], DiT-XL/2-
G [56] and StyleGAN-XL [65], in terms of FID score and sets a new SOTA FID
score of 1.73. In terms of other metrics such as IS and sFID, the latent DiffiT
model shows a competitive performance, hence indicating the effectiveness of the
proposed time-dependent self-attention. In the ImageNet-512 dataset, the latent
DiffiT model significantly outperforms DiT-XL/2-G in terms of both FID and
Inception Score (IS). Although StyleGAN-XL [65] shows better performance in
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Model Class ImageNet-256 ImageNet-512

FID ↓ IS ↑ Precision ↑ Recall ↑ FID ↓ IS ↑ Precision ↑ Recall ↑

LDM-4 [59] Diffusion 10.56 103.49 0.71 0.62 - - - -
BigGAN-Deep [10] GAN 6.95 171.40 0.87 0.28 8.43 177.90 0.88 0.29
MaskGIT [11] Masked Modeling 4.02 355.60 0.83 0.44 4.46 342.00 0.83 0.50
RQ-Transformer [46] Autoregressive 3.80 323.70 - - - - - -
ADM-G-U [16] Diffusion 3.94 215.84 0.83 0.53 3.85 221.72 0.84 0.53
LDM-4-G [59] Diffusion 3.60 247.67 0.87 0.48 - - - -
Simple Diffusion [30] Diffusion 2.77 211.80 - - 3.54 205.30 - -
DiT-XL/2-G [56] Diffusion 2.27 278.24 0.83 0.57 3.04 240.82 0.84 0.54
StyleGAN-XL [65] GAN 2.30 265.12 0.78 0.53 2.41 267.75 0.77 0.52
MDT-G [23] Diffusion 1.79 283.01 0.81 0.61 - - - -
SiT-XL [51] Diffusion 2.06 270.27 0.82 0.59 - - - -
DiffiT Diffusion 1.73 276.49 0.80 0.62 2.67 252.12 0.83 0.55

Table 1 – Comparison of image generation performance against state-of-the-art
models on ImageNet-256 and ImageNet-512 dataset. The latent DiffiT model achieves
SOTA performance in terms of FID score on ImageNet-256 dataset.

terms of FID and IS, GAN-based models are known to suffer from issues such as
low diversity that are not captured by the FID score. These issues are reflected
in sub-optimal performance of StyleGAN-XL in terms of both Precision and
Recall. In addition, in Fig. 5, we show a visualization of uncurated images that
are generated on ImageNet-256 and ImageNet-512 dataset. We observe that the
latent DiffiT model is capable of generating diverse high quality images across
different classes.

4.2 Image Space

Table 2 – FID performance comparison
against various generative approaches on
the CIFAR10, FFHQ-64 datasets. VP and
VE denote Variance Preserving and Vari-
ance Exploding respectively.
Method Class Space Type CIFAR-10 FFHQ

32×32 64×64

NVAE [73] VAE - 23.50 -
GenViT [81] Diffusion Image 20.20 -
AutoGAN [24] GAN - 12.40 -
TransGAN [33] GAN - 9.26 -
INDM [40] Diffusion Latent 3.09 -
DDPM++ (VE) [71] Diffusion Image 3.77 25.95
U-ViT [9] Diffusion Image 3.11 -
DDPM++ (VP) [71] Diffusion Image 3.01 3.39
StyleGAN2 w/ ADA [35] GAN - 2.92 -
LSGM [74] Diffusion Latent 2.01 -
EDM (VE) [34] Diffusion Image 2.01 2.53
EDM (VP) [34] Diffusion Image 1.99 2.39
DiffiT (Ours) Diffusion Image 1.95 2.22

We have trained the image space Dif-
fiT model on FFHQ-64 [36] and CI-
FAR10 [45] datasets. In Table. 2, we
compare the performance of our model
against a variety of different generative
models including other score-based dif-
fusion models as well as GANs, and
VAEs. DiffiT achieves a state-of-the-art
image generation FID score of 1.95 on
the CIFAR-10 dataset, outperforming
state-of-the-art diffusion models such
as EDM [34] and LSGM [74]. In com-
parison to two recent ViT-based diffu-
sion models, our proposed DiffiT signif-
icantly outperforms U-ViT [9] and Gen-
ViT [81] models in terms of FID score
in CIFAR-10 dataset. Additionally, DiffiT significantly outperforms EDM [34]
and DDPM++ [71] models, both on VP and VE training configurations, in terms
of FID score. In Fig. 6, we illustrate the generated images on FFHQ-64 dataset.
Please see supplementary materials for CIFAR-10 generated images.
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Fig. 5 – Visualization of uncurated generated images on ImageNet-256 and ImageNet-
512 datasets by latent DiffiT model.

5 Ablation

In this section, we provide additional ablation studies to provide insights into
DiffiT. We address different questions such as: (1) What strikes the right balance
between time and feature token dimensions ? (2) How do different components
of DiffiT contribute to the final generation performance, (3) What is the optimal
way of introducing time dependency in our Transformer block? and (4) How does
our time-dependent attention behave as a function of time?

5.1 Time and Feature Token Dimensions

Time Dimension Dimension CIFAR10 FFHQ64

512 512 1.99 2.27
256 256 2.13 2.41
512 512 1.95 2.22

Table 3 – Ablation study on the effectiveness of time
and feature dimensions.

We conduct experiments to
study the effect of the size
of time and feature token di-
mensions on the overall per-
formance. As shown below,
we observe degradation of
performance when the token
dimension is increased from 256 to 512. Furthermore, decreasing the time embed-
ding dimension from 512 to 256 impacts the performance negatively.
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Fig. 6 – Visualization of uncurated generated images for FFHQ-64 dataset. Best
viewed in color.

5.2 Effect of Architecture Design

As presented in Table 4, we study the effect of various components of both
encoder and decoder in the architecture design on the image generation perfor-
mance in terms of FID score on CIFAR-10. For these experiments, the projected
temporal component is adaptively scaled and simply added to the spatial com-
ponent in each stage. We start from the original ViT [20] base model with 12
layers and employ it as the encoder (config A). For the decoder, we use the
Multi-Level Feature Aggregation variant of SETR [88] (SETR-MLA) to gener-
ate images in the input resolution. Our experiments show this architecture is
sub-optimal as it yields a final FID score of 5.34. We hypothesize this could be
due to the isotropic architecture of ViT which does not allow learning repre-
sentations at multiple scales. We then extend the encoder ViT into 4 different

Config Encoder Decoder FID Score

A ViT [20] SETR-MLA [88] 5.34
B + Multi-Resolution SETR-MLA [88] 4.64
C Multi-Resolution + Multi-Resolution 3.71
D + DiffiT Encoder Multi-Resolution 2.27
E + DiffiT Encoder + DiffiT Decoder 1.95

Table 4 – Ablation study on the effectiveness of en-
coder and decoder architecture.

multi-resolution stages with
a convolutional layer in be-
tween each stage for down-
sampling (config B). We de-
note this setup as Multi-
Resolution and observe that
these changes and learning
multi-scale feature represen-
tations in the encoder sub-
stantially improve the FID score to 4.64. In addition, instead of SETR-MLA [88]
decoder, we construct a symmetric U-like architecture by using the same
Multi-Resolution setup except for using convolutional layers between stages
for upsampling (config C). These changes further improve the FID score to
3.71. Furthermore, we first add the DiffiT Transformer blocks and construct a
DiffiT Encoder and observe that FID scores substantially improve to 2.27 (config
D). As a result, this validates the effectiveness of the proposed TMSA in which the
self-attention models both spatial and temporal dependencies. Using the DiffiT
decoder further improves the FID score to 1.95 (config E), hence demonstrating
the importance of DiffiT Transformer blocks for decoding.
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5.3 Time-Dependent Self-Attention

Model TMSA FID Score

DDPM++(VE) [71] No 3.77
DDPM++(VE) [71] Yes 3.49
DDPM++(VP) [71] No 3.01
DDPM++(VP) [71] Yes 2.76

Table 5 – Effectiveness of TMSA.

We evaluate the effectiveness
of our proposed TMSA lay-
ers in a generic denoising
network. Specifically, using
the DDPM++ [71] model,
we replace the original self-
attention layers with TMSA
layers for both VE and VP settings for image generation on the CIFAR10 dataset.
Note that we did not change the original hyper-parameters for this study. As
shown in Table 5 employing TMSA decreases the FID scores by 0.28 and 0.25
for VE and VP settings respectively. These results demonstrate the effectiveness
of the proposed TMSA to dynamically adapt to different sampling steps and
capture temporal information.

5.4 Impact of Self-Attention Components

Config Component FID Score

F Relative Position Bias 3.97
G MLP 3.81
H TMSA 1.95

Table 6 – Effectiveness of different components.

In Table 6, we study different
design choices for introduc-
ing time-dependency in self-
attention layers. In the first
baseline, we remove the tem-
poral component from our
proposed TMSA and we only
add the temporal tokens to relative positional bias (config F). We observe a
significant increase in the FID score to 3.97 from 1.95. In the second baseline,
instead of using relative positional bias, we add temporal tokens to the MLP layer
of DiffiT Transformer block (config G). We observe that the FID score slightly
improves to 3.81, but it is still suboptimal compared to our proposed TMSA
(config H). Hence, this experiment validates the effectiveness of our proposed
TMSA that integrates time tokens directly with spatial tokens when forming
queries, keys, and values in self-attention layers.

5.5 Time Token in TMSA

Model TMSA Design CIFAR10 FFHQ64

DiffiT Separate 2.28 2.59
DiffiT Mixed 1.95 2.22

Table 7 – Impact of time embedding.

We investigate if treating
time embedding as a separate
token in TMSA is a beneficial
choice. Specifically, we apply
self-attention to spatial and
time tokens separately to un-
derstand the impact of decoupling them. As shown in Table 7, we observe the
degradation of performance for CIFAR10, FFHQ64 datasets, in terms of FID
score. Hence, the decoupling of spatial and temporal information in TMSA leads
to suboptimal performance.
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Fig. 7 – (a) Effect of classifier-free guidance scale on FID score for ImageNet-256 and
ImageNet-512. (b) Performance comparison of TMSA and DiT modulation.

5.6 Time Embedding

Model Time Embedding CIFAR10 FFHQ64

DiffiT Fourier 2.02 2.37
DiffiT Positional 1.95 2.22

Table 8 – Effectiveness of TMSA time token.

We study the sensitivity of
the DiffiT model to differ-
ent time embeddings such as
Fourier and positional time
embeddings. As shown in Ta-
ble 8, using a Fourier time embedding leads to degradation of performance in
terms of FID score for both CIFAR10 [45] and FFHQ-64 [36] datasets.

5.7 Computational Efficiency

Model Parameters (M) FLOPs (G) FID

DiT-XL/2-G [56] 675 119 2.27
SiT-XL [51] 675 119 2.06
MDT-G [23] 700 121 1.79
DiffiT 561 114 1.73

Table 9 – Computational efficiency comparison.

In Table 9, we study the
significance of model capac-
ity in generating high-quality
images by comparing the
number of parameters for
models that are trained on
ImageNet-256 dataset. All models use the same number of function evaluations
for sample generation for fair comparisons. We also use the same global window
size for computing self-attention. We observe that DiffiT has 19.85%, 16.88% and
16.88% less number of parameters and 6.14%, 4.38% and 4.38% less number of
FLOPs in comparison to MDT-G, SiT-XL and DiT-XL/2-G models, respectively
while demonstrating a better FID score.

5.8 Effect of Classifier-Free Guidance

As shown in Fig. 7 (a), we investigate the effect of classifier-free guidance scale
on the quality of generated samples in terms of FID score. For the ImageNet-
256 experiment, we used the improved classifier-free guidance [23] which uses
a power-cosine schedule to increase the diversity of generated images in early
sampling stages. This scheme was not used for the ImageNet-512 experiment,
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since it did not result in any significant improvements. The guidance scales of 4.6
and 1.49 correspond to best FID scores of 1.73 and 2.67 for ImageNet-256 and
ImageNet-512 experiments, respectively. Increasing the guidance scale beyond
these values results in degradation of FID score.

5.9 TMSA and DiT Modulation

We directly compare the performance of TMSA and DiT modulation mechanisms
in Fig. 7 (b). For this purpose, we employ a DiT-XL as the base model with TMSA
as well as its original modulation and train both models for 1000K iterations on
ImageNet-256 dataset. The model with TMSA consistently shows better FID
scores in different training iterations, hence validating the effectiveness of TMSA.

5.10 Effect of Window Size
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Fig. 8 – Impact of TMSA window size on FID.

As illustrated in Fig. 8, we study
the impact of window size in
TMSA on the FID score of gen-
erated images for models that
are trained on CIFAR10 (32×32
resolution) and FFHQ-64 (64×
64 resolution) datasets. Increas-
ing the TMSA window size from
2 to 4 decreases the FID score
by 23.23% and 12.17% for CI-
FAR10 and FFHQ-64 models,
respectively. As expected, in-
creasing the effective receptive field seems to improve the generation performance.
However, increasing the window size further from 4 to 8 only results in marginal
improvement of 1.53% and 3.60% for CIFAR10 and FFHQ-64, respectively. This
is due to the spatial redundancy of adjacent pixels which may not contribute
significantly to the generation quality upon increasing the receptive field. As also
discussed in the supplementary materials, for image space experiments, we have
used our window-based TMSA formulation to benefit from the efficiency gains
while maintaining high image generation quality.

6 Conclusion

In this work, we presented DiffiT which is a novel ViT-based diffusion model for
both latent and image space generation tasks. Specifically, we proposed the TMSA
which allows self-attention to dynamically adapt to different stages of denoising
while learning spatial and temporal dependencies and their interaction. The pro-
posed TMSA also significantly improves the parameter efficiency. DiffiT achieves
a new SOTA performance on ImageNet-256 dataset while having significantly
less number of parameters in comparison to other competitive Transformer-based
diffusion models such as SiT, MDT and DiT.



Diffusion Vision Transformers for Image Generation 15

References

1. Albergo, M.S., Boffi, N.M., Vanden-Eijnden, E.: Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797 (2023) 4

2. Albergo, M.S., Vanden-Eijnden, E.: Building normalizing flows with stochastic
interpolants. arXiv preprint arXiv:2209.15571 (2022) 4

3. Anderson, B.D.: Reverse-time diffusion equation models. Stochastic Processes and
their Applications 12(3), 313–326 (1982) 5

4. Aneja, J., Schwing, A., Kautz, J., Vahdat, A.: A contrastive learning approach for
training variational autoencoder priors. Advances in neural information processing
systems 34, 480–493 (2021) 4

5. Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Transactions
on Graphics (TOG) 42(4), 1–11 (2023) 4

6. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of
natural images. In: Proc. CVPR (2022) 4

7. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (July 2016) 7

8. Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M., Aila,
T., Laine, S., Catanzaro, B., et al.: ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022) 3

9. Bao, F., Li, C., Cao, Y., Zhu, J.: All are worth words: a vit backbone for score-based
diffusion models. In: NeurIPS 2022 Workshop on Score-Based Methods (2022) 4, 9

10. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018) 9

11. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: Maskgit: Masked generative
image transformer. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11315–11325 (2022) 9

12. Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Generative
pretraining from pixels. In: International Conference on Machine Learning. pp.
1691–1703. PMLR (2020) 4

13. Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., Yoon, S.: Perception prioritized training
of diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11472–11481 (2022) 2

14. Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: DiffEdit: Diffusion-based semantic
image editing with mask guidance. arXiv preprint arXiv:2210.11427 (2022) 4

15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition. pp. 248–255. Ieee (2009) 1, 3, 4, 20, 23, 25, 26, 27, 28, 29, 30,
31

16. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems 34, 8780–8794 (2021) 2, 9, 22

17. Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao,
Z., Yang, H., et al.: Cogview: Mastering text-to-image generation via transformers.
Advances in Neural Information Processing Systems 34, 19822–19835 (2021) 4

18. Ding, M., Zheng, W., Hong, W., Tang, J.: Cogview2: Faster and better text-to-
image generation via hierarchical transformers. Advances in Neural Information
Processing Systems 35, 16890–16902 (2022) 4

19. Dockhorn, T., Vahdat, A., Kreis, K.: Score-Based generative modeling with
Critically-Damped langevin diffusion. arXiv preprint arXiv:2112.07068 (December
2021) 5



16 Hatamizadeh et al.

20. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. In: International Conference on
Learning Representations (2020) 2, 11

21. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks 107, 3–11 (2018)
5

22. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G., Cohen-
Or, D.: An image is worth one word: Personalizing text-to-image generation using
textual inversion. arXiv preprint arXiv:2208.01618 (2022) 4

23. Gao, S., Zhou, P., Cheng, M., Yan, S.: Masked diffusion transformer is a strong
image synthesizer. In: 2023 IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 23107–23116 (oct 2023) 2, 4, 8, 9, 13

24. Gong, X., Chang, S., Jiang, Y., Wang, Z.: Autogan: Neural architecture search for
generative adversarial networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 3224–3234 (2019) 9

25. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014) 4

26. Grenander, U., Miller, M.I.: Representations of knowledge in complex systems.
Journal of the Royal Statistical Society: Series B (Methodological) 56(4), 549–581
(1994) 5

27. Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D.P.,
Poole, B., Norouzi, M., Fleet, D.J., Salimans, T.: Imagen Video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303 (2022) 2

28. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239 (June 2020) 2, 3, 4, 5, 22

29. Hong, W., Ding, M., Zheng, W., Liu, X., Tang, J.: Cogvideo: Large-scale pretraining
for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868 (2022)
4

30. Hoogeboom, E., Heek, J., Salimans, T.: simple diffusion: End-to-end diffusion for
high resolution images. arXiv preprint arXiv:2301.11093 (2023) 9

31. Hudson, D.A., Zitnick, L.: Generative adversarial transformers. In: International
conference on machine learning. pp. 4487–4499. PMLR (2021) 4

32. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
JMLR 6(24), 695–709 (2005) 2

33. Jiang, Y., Chang, S., Wang, Z.: Transgan: Two transformers can make one strong
gan. arXiv preprint arXiv:2102.07074 (2021) 4, 9

34. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-
based generative models. In: Proc. NeurIPS (2022) 5, 9, 21, 22

35. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training
generative adversarial networks with limited data. Advances in neural information
processing systems 33, 12104–12114 (2020) 9

36. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 4401–4410 (2019) 3, 9, 13, 20, 21, 22, 24

37. Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models.
arXiv preprint arXiv:2201.11793 (2022) 4

38. Kawar, B., Song, J., Ermon, S., Elad, M.: Jpeg artifact correction using denoising
diffusion restoration models. arXiv preprint arXiv:2209.11888 (2022) 4



Diffusion Vision Transformers for Image Generation 17

39. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., Mosseri, I., Irani,
M.: Imagic: Text-based real image editing with diffusion models. arXiv preprint
arXiv:2210.09276 (2022) 4

40. Kim, D., Na, B., Kwon, S.J., Lee, D., Kang, W., Moon, I.C.: Maximum likelihood
training of implicit nonlinear diffusion models. arXiv preprint arXiv:2205.13699
(2022) 9

41. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (December 2014) 21

42. Kingma, D.P., Welling, M.: Auto-Encoding variational bayes. arXiv preprint
arXiv:1312.6114v10 (December 2013) 4

43. Kong, Z., Ping, W., Huang, J., Zhao, K., Catanzaro, B.: Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761 (2020) 4

44. Kreis, K., Gao, R., Vahdat, A.: CVPR tutorial on denoising diffusion-based gen-
erative modeling: Foundations and applications. https://cvpr2022-tutorial-
diffusion-models.github.io/ (July 2022) 2

45. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009) 3, 9, 13, 20, 21, 22, 23

46. Lee, D., Kim, C., Kim, S., Cho, M., Han, W.S.: Autoregressive image generation
using residual quantization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 11523–11532 (2022) 9

47. Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., Liu, C.: Vitgan: Training gans
with vision transformers. arXiv preprint arXiv:2107.04589 (2021) 4

48. Li, S., Chen, X., He, D., Hsieh, C.J.: Can vision transformers perform convolution?
arXiv preprint arXiv:2111.01353 (2021) 4

49. Li, X.L., Thickstun, J., Gulrajani, I., Liang, P., Hashimoto, T.B.: Diffusion-lm
improves controllable text generation. arXiv preprint arXiv:2205.14217 (2022) 4

50. Luhman, T., Luhman, E.: Improving diffusion model efficiency through patching.
arXiv preprint arXiv:2207.04316 (2022) 4

51. Ma, N., Goldstein, M., Albergo, M.S., Boffi, N.M., Vanden-Eijnden, E., Xie, S.:
Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740 (2024) 4, 8, 9, 13

52. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Guided
image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073 (2021) 4

53. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
International Conference on Machine Learning. pp. 8162–8171. PMLR (2021) 2

54. Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., Anandkumar, A.: Diffusion
models for adversarial purification. In: Proc. ICML (2022) 4

55. Park, J., Kim, Y.: Styleformer: Transformer based generative adversarial networks
with style vector. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 8983–8992 (2022) 4

56. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4195–4205
(2023) 2, 4, 7, 8, 9, 13, 20

57. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual
reasoning with a general conditioning layer. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 32 (2018) 2

58. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125
(2022) 2, 3

https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/


18 Hatamizadeh et al.

59. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)
2, 7, 9, 20

60. Rombach, R., Esser, P.: Stable diffusion v1-4. https://huggingface.co/CompVis/
stable-diffusion-v1-4 (July 2022) 2

61. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical
image segmentation. arXiv preprint arXiv:1505.04597 (May 2015) 2

62. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth:
Fine tuning text-to-image diffusion models for subject-driven generation. arXiv
preprint arXiv:2208.12242 (2022) 4

63. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., et al.: Photorealistic text-to-image
diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487
(2022) 3

64. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512 (February 2022) 5

65. Sauer, A., Schwarz, K., Geiger, A.: Stylegan-xl: Scaling stylegan to large diverse
datasets. In: ACM SIGGRAPH 2022 conference proceedings. pp. 1–10 (2022) 8, 9

66. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155 (2018) 6

67. Sinha, A., Song, J., Meng, C., Ermon, S.: D2c: Diffusion-decoding models for few-
shot conditional generation. Advances in Neural Information Processing Systems
34, 12533–12548 (2021) 4

68. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep
unsupervised learning using nonequilibrium thermodynamics. arXiv preprint
arXiv:1503.03585 (March 2015) 2, 3, 4

69. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International
Conference on Learning Representations (2021) 4, 5

70. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. arXiv preprint arXiv:1907.05600 (July 2019) 2

71. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. In: International
Conference on Learning Representations (2021) 2, 3, 4, 5, 9, 12

72. Tashiro, Y., Song, J., Song, Y., Ermon, S.: Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in Neural Information
Processing Systems 34, 24804–24816 (2021) 4

73. Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. Advances
in neural information processing systems 33, 19667–19679 (2020) 9

74. Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in latent space.
arXiv preprint arXiv:2106.05931 (June 2021) 4, 7, 9

75. Valevski, D., Kalman, M., Matias, Y., Leviathan, Y.: UniTune: Text-driven image
editing by fine tuning an image generation model on a single image. arXiv preprint
arXiv:2210.09477 (2022) 4

76. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural computation 23(7), 1661–1674 (July 2011) 2, 5

77. Wang, S., Li, B., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768 (2020) 4

78. Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (March
2018) 8

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/CompVis/stable-diffusion-v1-4


Diffusion Vision Transformers for Image Generation 19

79. Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., Tang, J.: GeoDiff: A geometric
diffusion model for molecular conformation generation. In: Proc. ICLR (2022) 4

80. Xu, R., Xu, X., Chen, K., Zhou, B., Loy, C.C.: Stransgan: An empirical study on
transformer in gans. arXiv preprint arXiv:2110.13107 (2021) 4

81. Yang, X., Shih, S.M., Fu, Y., Zhao, X., Ji, S.: Your vit is secretly a hybrid
discriminative-generative diffusion model. arXiv preprint arXiv:2208.07791 (2022)
9

82. Ye, M., Wu, L., Liu, Q.: First hitting diffusion models. arXiv preprint
arXiv:2209.01170 (2022) 4

83. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.:
Lion: Latent point diffusion models for 3d shape generation. In: Advances in Neural
Information Processing Systems (NeurIPS) (2022) 4

84. Zhang, B., Gu, S., Zhang, B., Bao, J., Chen, D., Wen, F., Wang, Y., Guo, B.:
Styleswin: Transformer-based gan for high-resolution image generation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11304–11314 (2022) 4

85. Zhang, H., Yin, W., Fang, Y., Li, L., Duan, B., Wu, Z., Sun, Y., Tian, H., Wu,
H., Wang, H.: Ernie-vilg: Unified generative pre-training for bidirectional vision-
language generation. arXiv preprint arXiv:2112.15283 (2021) 4

86. Zhang, Q., Tao, M., Chen, Y.: gddim: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564 (June 2022) 5

87. Zhao, L., Zhang, Z., Chen, T., Metaxas, D., Zhang, H.: Improved transformer
for high-resolution gans. Advances in Neural Information Processing Systems 34,
18367–18380 (2021) 4

88. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T.,
Torr, P.H., et al.: Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 6881–6890 (2021) 11

89. Zhou, L., Du, Y., Wu, J.: 3D shape generation and completion through Point-Voxel
diffusion. arXiv preprint arXiv:2104.03670 (April 2021) 4



20 Hatamizadeh et al.

Appendix

G Ablation

G.1 Comparison to DiT and LDM

On contrary to LDM [59] and DiT [56], the latent DiffiT does not rely on shift
and scale, as in AdaLN [56], or concatenation to incorporate time embedding
into the denoising networks. However, DiffiT uses a time-dependent self-attention
(i.e. TMSA) to jointly learn the spatial and temporal dependencies. In addition,
DiffiT proposes both image and latent space models for different image generation
tasks with different resolutions with SOTA performance. Specifically, as shown
in Table S.1, DiffiT significantly outperforms LDM [59] and DiT [56] by 31.26%
and 51.94% in terms of FID score on ImageNet-256 [15] dataset. In addition,
DiffiT outperforms DiT [56] by 13.85% on ImageNet-512 [15] dataset. Hence,
these benchmarks validate the effectiveness of the proposes architecture and
TMSA design in DiffiT model as opposed to previous SOTA for both CNN and
Transformer-based diffusion models.

Model Class ImageNet-256 ImageNet-512

FID ↓ IS ↑ Precision ↑ Recall ↑ FID ↓ IS ↑ Precision ↑ Recall ↑

LDM-4-G [59] Diffusion 3.60 247.67 0.87 0.48 - - - -
DiT-XL/2-G [56] Diffusion 2.27 278.24 0.83 0.57 3.04 240.82 0.84 0.54
DiffiT Diffusion 1.73 276.49 0.80 0.62 2.67 252.12 0.83 0.55

Table S.1 – Comparison of image generation performance against state-of-the-art
models on ImageNet-256 and ImageNet-512 dataset. The latent DiffiT model achieves
SOTA performance in terms of FID score on ImageNet-256 dataset.

H Architecture

H.1 Image Space

We provide the details of blocks and their corresponding output sizes for both the
encoder and decoder of the DiffiT model in Table S.2 and Table S.3, respectively.
The presented architecture details denote models that are trained with 64×64
resolution. Without loss of generality, the architecture can be extended for 32×32
resolution. For FFHQ-64 [36] dataset, the values of L1, L2, L3 and L4 are 4, 4,
4, and 4 respectively. For CIFAR-10 [45] dataset, the architecture spans across
three different resolution levels (i.e. 32, 16, 8), and the values of L1, L2, L3 are
4, 4, 4 respectively. Please refer to the paper for more information regarding the
architecture details.
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Table S.2 – Detailed description of components in DiffiT encoder for models that
are trained at 64× 64 resolution.

Component Description Output size

Input 64× 64× 3
Tokenizer 64× 64× 128
DiffiT ResBlock ×L1 64× 64× 128
Downsampler 32× 32× 128
DiffiT ResBlock ×L2 32× 32× 256
Downsampler 16× 16× 128
DiffiT ResBlock ×L3 16× 16× 256
Downsampler 8× 8× 256
DiffiT ResBlock ×L4 8× 8× 256

Table S.3 – Detailed description of components in DiffiT decoder for models that
are trained at 64× 64 resolution.

Component Description Output size

Input 8× 8× 256
Upsampler 16× 16× 256
DiffiT ResBlock ×L3 16× 16× 256
Upsampler 32× 32× 256
DiffiT ResBlock ×L2 32× 32× 256
Upsampler 64× 64× 256
DiffiT ResBlock ×L1 64× 64× 128
Head 64× 64× 3

H.2 Latent Space

In Fig S.1, we illustrate the architecture of the latent DiffiT model. Our model is
comparable to DiT-XL/2-G variant which 032 uses a patch size of 2. Specifically,
we use a depth of 30 layers with hidden size dimension of 1152, number of heads
dimension of 16 and MLP ratio of 4. In addition, for the classifier-free guidance
implementation, we only apply the guidance to the first three input channels
with a scale of (1 + x) where x is the input latent.

I Implementation Details

I.1 Image Space

We strictly followed the training configurations and data augmentation strategies
of the EDM [34] model for the experiments on CIFAR10 [45], and FFHQ-64 [36]
datasets, all in an unconditional setting. All the experiments were trained for
200000 iterations with Adam optimizer [41] and used PyTorch framework and
8 NVIDIA A100 GPUs. We used batch sizes of 512 and 256, learning rates of
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Fig. S.1 – Overview of the latent DiffiT framework.

1 × 10−3 and 2 × 10−4 and training images of sizes 32 × 32 and 64 × 64 on
experiments for CIFAR10 [45] and FFHQ-64 [36] datasets, respectively.

We use the deterministic sampler of EDM [34] model with 18, 40 and 40
steps for CIFAR-10 and FFHQ-64 datasets, respectively. For FFHQ-64 dataset,
our DiffiT network spans across 4 different stages with 1, 2, 2, 2 blocks at each
stage. We also use window-based attention TMSA with local window size of 8
at each stage. For CIFAR-10 dataset, the DiffiT network has 3 stages with 2
blocks at each stage. Similarly, we compute attentions on local windows with
size 4 at each stage. Note that for all networks, the resolution is decreased by
a factor of 2 in between stages. However, except for when transitioning from
the first to second stage, we keep the number of channels constant in the rest
of the stages to maintain both the number of parameters and latency in our
network. Furthermore, we employ traditional convolutional-based downsampling
and upsampling layers for transitioning into lower or higher resolutions. We
achieved similar image generation performance by using bilinear interpolation
for feature resizing instead of convolution. For fair comparison, in all of our
experiments, we used the FID score which is computed on 50K samples and using
the training set as the reference set.

I.2 Latent Space

We employ learning rates of 3× 10−4 and 1× 10−4 and batch sizes of 256 and
512 for ImageNet-256 and ImageNet-512 experiments, respectively. We also use
the exponential moving average (EMA) of weights using a decay of 0.9999 for
both experiments. We also use the same diffusion hyper-parameters as in the
ADM [16] model. For a fair comparison, we use the DDPM [28] sampler with 250
steps and report FID-50K for both ImageNet-256 and ImageNet-512 experiments.

J Qualitative Results

We illustrate visualization of generated images for CIFAR-10 [45] and FFHQ-
64 [36] datasets in Figures S.2 and S.3, respectively. In addition, in Figures S.4,
S.5, S.6 and S.7, we visualize the the generated images by the latent DiffiT model
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for ImageNet-512 [15] dataset. Similarly, the generated images for ImageNet-
256 [15] are shown in Figures S.8, S.9 and S.10. We observe that the proposed
DiffiT model is capable of capturing fine-grained details and produce high fidelity
images across these datasets.

Fig. S.2 – Visualization of uncurated generated images for CIFAR-10 [45] dataset.
Best viewed in color.
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Fig. S.3 – Visualization of uncurated generated images for FFHQ-64 [36] dataset.
Best viewed in color.
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Fig. S.4 – Visualization of uncurated generated 512×512 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.
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Fig. S.5 – Visualization of uncurated generated 512×512 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.
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Fig. S.6 – Visualization of uncurated generated 512×512 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.
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Fig. S.7 – Visualization of uncurated generated 512×512 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.
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Fig. S.8 – Visualization of uncurated generated 256×256 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.



30 Hatamizadeh et al.

Fig. S.9 – Visualization of uncurated generated 256×256 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.
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Fig. S.10 – Visualization of uncurated generated 256×256 images on ImageNet [15]
dataset by latent DiffiT model. Images are randomly sampled. Best viewed in color.
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