
DexYCB: A Benchmark for Capturing Hand Grasping of Objects

Yu-Wei Chao1 Wei Yang1 Yu Xiang1 Pavlo Molchanov1 Ankur Handa1 Jonathan Tremblay1

Yashraj S. Narang1 Karl Van Wyk1 Umar Iqbal1 Stan Birchfield1 Jan Kautz1 Dieter Fox1,2

1NVIDIA, 2University of Washington
{ychao,weiy,yux,pmolchanov,ahanda,jtremblay,ynarang,kvanwyk,uiqbal,sbirchfield,jkautz,dieterf}@nvidia.com

Figure 1: Two captures (left and right) from the DexYCB dataset. In each case, the top row shows color images simultaneously captured
from three views, while the bottom row shows the ground-truth 3D object and hand pose rendered on the darkened captured images.

Abstract

We introduce DexYCB, a new dataset for capturing hand
grasping of objects. We first compare DexYCB with a re-
lated one through cross-dataset evaluation. We then present
a thorough benchmark of state-of-the-art approaches on
three relevant tasks: 2D object and keypoint detection, 6D
object pose estimation, and 3D hand pose estimation. Fi-
nally, we evaluate a new robotics-relevant task: generating
safe robot grasps in human-to-robot object handover. 1

1. Introduction
3D object pose estimation and 3D hand pose estimation

are two important yet unsolved vision problems. Tradition-
ally, these two problems have been addressed separately,
yet in many critical applications, we need both capabilities
working together [36, 6, 13]. For example, in robotics, a
reliable motion capture for hand manipulation of objects is
crucial for both learning from human demonstration [12]
and fluent and safe human-robot interaction [46].

State-of-the-art approaches for both 3D object pose [37,
20, 34, 27, 40, 26, 19] and 3D hand pose estimation [49,
23, 18, 2, 9, 14, 31] rely on deep learning and thus require
large datasets with labeled hand or object poses for training.

1Dataset and code available at https://dex-ycb.github.io.

Many datasets [48, 49, 16, 17] have been introduced in both
domains and have facilitated progress on these two prob-
lems in parallel. However, since they were introduced for
either task separately, many of them do not contain interac-
tion of hands and objects, i.e., static objects without humans
in the scene, or bare hands without interacting with objects.
In the presence of interactions, the challenge of solving the
two tasks together not only doubles but multiplies, due to
the motion of objects and mutual occlusions incurred by the
interaction. Networks trained on either of the datasets will
thus not generalize well to interaction scenarios.

Creating a dataset with accurate 3D pose of hands and
objects is also challenging for the same reasons. As a re-
sult, prior works have attempted to capture accurate hand
motion either with specialized gloves [10], magnetic sen-
sors [48, 8], or marker-based mocap systems [3, 35]. While
they can achieve unparalleled accuracy, the introduction of
hand-attached devices may be intrusive and thus bias the
naturalness of hand motion. It also changes the appearance
of hands and thus may cause issues with generalization.

Due to the challenge of acquiring real 3D poses, there
has been an increasing interest in using synthetic datasets to
train pose estimation models. The success has been notable
on object pose estimation. Using 3D scanned object models
and photorealistic rendering, prior work [16, 34, 38, 5, 17]
has generated synthetic scenes of objects with high fidelity
in appearance. Their models trained only on synthetic data

https://dex-ycb.github.io

can thus translate to real images. Nonetheless, synthesizing
hand-object interactions remains challenging. One problem
is to synthesize realistic grasp poses for generic objects [4].
Besides, synthesizing natural looking human motions is still
an active research area in graphics.

In this paper, we focus on marker-less data collection of
real hand interaction with objects. We take inspiration from
recent work [11] and build a multi-camera setup that records
interactions synchronously from multiple views. Compared
to the recent work, we instrument the setup with more cam-
eras and configure them to capture a larger workspace that
allows our human subjects to interact freely with objects.
In addition, our pose labeling process utilizes human anno-
tation rather than automatic labeling. We crowdsource the
annotation so that we can efficiently scale up the data la-
beling process. Given the setup, we construct a large-scale
dataset that captures a simple yet ubiquitous task: grasp-
ing objects from a table. The dataset, DexYCB, consists of
582K RGB-D frames over 1,000 sequneces of 10 subjects
grasping 20 different objects from 8 views (Fig. 1).

Our contributions are threefold. First, we introduce a
new dataset for capturing hand grasping of objects. We em-
pirically demonstrate the strength of our dataset over a re-
lated one through cross-dataset evaluation. Second, we pro-
vide in-depth analysis of current approaches thoroughly on
three relevant tasks: 2D object and keypoint detection, 6D
object pose estimation, and 3D hand pose estimation. To
the best of our knowledge, our dataset is the first that allows
joint evaluation of these three tasks. Finally, we demon-
strate the importance of joint hand and object pose estima-
tion on a new robotics relevant task: generating safe robot
grasps for human-to-robot object handover.

2. Constructing DexYCB
2.1. Hardware Setup

In order to construct the dataset, we built a multi-camera
setup for capturing human hands interacting with objects.
A key design choice was to enable a sizable capture space,
where a human subject can freely interact and perform tasks
with multiple objects. Our multi-camera setup is shown in
Fig. 2. We use 8 RGB-D cameras (RealSense D415) and
mount them such that collectively they can capture a table-
top workspace with minimal blind spots. The cameras are
extrinsically calibrated and temporally synchronized. For
data collection, we stream and record all 8 views together at
30 fps with both color and depth of resolution 640× 480.

2.2. Data Collection and Annotation

Given the setup, we record videos of hands grasping ob-
jects. We use 20 objects from the YCB-Video dataset [44],
and record multiple trials from 10 subjects. For each trial,
we select a target object together with 2 to 4 other objects

Figure 2: Our setup with 8 RGB-D cameras (red circle).

and place them on the table. We ask the subject to start from
relaxed, pick up the target object, and hold it in the air. For
some subjects, we also ask them to pretend to hand over the
object to someone across. We record for 3 seconds, which
is sufficient to contain the full course of action. For each
target object, we repeat the trial 5 times, each time with a
random set of accompanied objects and placement. We ask
the subject to perform the pick-up with the right hand in the
first two trials, and with the left hand in the third and fourth
trials. In the fifth trial, we randomize the choice. We rotate
the target among all 20 objects. This gives us 100 trials per
subject, and 1,000 trials in total for all subjects.

To acquire accurate ground-truth 3D pose for hands and
objects, our approach (detailed in Sec. 2.3) relies on 2D key-
point annotations for hands and objects in each view. To
ensure accuracy, we label the required keypoints in RGB
sequences fully through human annotation. Our annota-
tion tool is based on VATIC [39] for efficient annotation of
videos. We set up annotation tasks on the Amazon Mechan-
ical Turk (MTurk) and label every view in all the sequences.

For hands, we adopt 21 pre-defined hand joints as our
keypoints (3 joints plus 1 tip for each finger and the wrist).
We explicitly ask the annotators to label and track these
joints throughout a given video sequence. The annotators
are also asked to mark a keypoint as invisible in a given
frame when it is occluded.

Pre-defining keypoints exhaustively for every object
would be laborious and does not scale as the number of ob-
jects increases. Our approach (Sec. 2.3) explicitly addresses
this issue by allowing user-defined keypoints. Specifically,
given a video sequence in a particular view, we first ask the
annotator to find 2 distinctive landmark points that are eas-
ily identified and trackable on a designated object, and we
ask them to label and track these points throughout the se-
quence. We explicitly ask the annotators to find keypoints
that are visible most of the time, and mark a keypoint as
invisible whenever it is occluded.

2.3. Solving 3D Hand and Object Pose

To represent 3D hand pose, we use the popular MANO
hand model [28]. The model represents a right or left hand
with a deformable triangular mesh of 778 vertices. The
mesh is parameterized by two low-dimensional embeddings
(θ, β), where θ ∈ R51 accounts for variations in pose (i.e.
articulation) and β ∈ R10 in shape. We use the version
from [14], which implements MANO as a differentiable
layer in PyTorch that maps (θ, β) to the mesh together with
the 3D positions of 21 hand joints defined in the keypoint
annotation. We pre-calibrate the hand shape β for each sub-
ject and fix it throughout each subject’s sequences.

Since our objects from YCB-Video [44] also come with
texture-mapped 3D mesh models, we use the standard 6D
pose representation [16, 17] for 3D object pose. The pose of
each object is represented by a matrix T ∈ R3×4 composed
of a 3D rotation matrix and a 3D translation vector.

To solve for hand and object pose, we formulate an op-
timization problem similar to [50, 11] by leveraging depth
and keypoint annotations from all views and multi-view ge-
ometry. For a given sequence with NH hands and NO ob-
jects, we denote the overall pose at a given time frame by
P = (PH , PO), where PH = {θh}NH

h=1 and PO = {To}NO
o=1.

We define the pose in world coordinates where we know
the extrinsics of each camera. Then at each time frame, we
solve the pose by minimizing the following energy function:

E(P) = Edepth(P) + Ekpt(P) + Ereg(P). (1)

Depth The depth termEdepth measures how well the mod-
els given poses explain the observed depth data. Let {di ∈
R3}ND

i=1 be the total point cloud merged from all views after
transforming to the world coordinates, with ND denoting
the number of points. Given a pose parameter, we denote
the collection of all hand and object meshes as M(P) =
({Mh(θh)}, {Mo(To)}). We define the depth term as

Edepth(P) =
1

ND

ND∑
i=1

|SDF(di,M(P))|2, (2)

where SDF(·) calculates the signed distance value of a 3D
point from a triangular mesh in mm. While Edepth is differ-
entiable, calculating Edepth and also the gradients is compu-
tationally expensive for large point clouds and meshes with
a huge number of vertices. Therefore, we use an efficient
point-parallel GPU implementation for it.

Keypoint The keypoint term Ekpt measures the reprojec-
tion error of the keypoints on the models with the annotated
keypoints, and can be decomposed by hand and object:

Ekpt(P) = Ekpt(PH) + Ekpt(PO). (3)

For hands, let Jh,j be the 3D position of joint j of hand
h in the world coordinates, pch,j be the annotation of the

same joint in the image coordinates of view c, and γch,j be
its visibility indicator. The energy term is defined as

Ekpt(PH) =
1∑
γch,j

NC∑
c=1

NH∑
h=1

NJ∑
j=1

γch,j ||projc(Jh,j)−pch,j ||22,

(4)
where projc(·) returns the projection of a 3D point onto the
image plane of view c, and NC = 8 and NJ = 21.

For objects, recall that we did not pre-define keypoints
for annotation, but rather asked annotators to select distinc-
tive points to track. Here, we assume an accurate initial
pose is given at the first frame where an object’s keypoint
is labeled visible. We then map the selected keypoint to a
vertex on the object’s 3D model by back-projecting the key-
point’s position onto the object’s visible surface. We fix that
mapping afterwards. Let Kc

o,k be the 3D position of the se-
lected keypoint k of object o in view c in world coordinates.
Similar to Eq. (4), with NK = 2, the energy term is

Ekpt(PO) =
1∑
γco,k

NC∑
c=1

NO∑
o=1

NK∑
k=1

γco,k||projc(Kc
o,k)−pco,k||22.

(5)
To ensure an accurate initial pose for keypoint mapping, we
initialize the pose in each time frame with the solved pose
from the last time frame. We initialize the pose in the first
frame by running PoseCNN [44] on each view and select an
accurate pose for each object manually.

Regularization Following [24, 13], we add an `2 regular-
ization to the low-dimensional pose embedding of MANO
to avoid irregular articulation of hands:

Ereg(P) =
1

NH

NH∑
h=1

||θh||22. (6)

To minimize Eq. (1), we use the Adam optimizer with a
learning rate of 0.01. For each time frame, we initialize the
pose P with the solved pose from the last time frame and
run the optimizer for 100 iterations.

3. Related Datasets
3.1. 6D Object Pose

Most datasets address instance-level 6D object pose es-
timation, where 3D models are given a priori. The recent
BOP challenge [16, 17] has curated a decent line-up of these
datasets which the participants have to evaluate on. Yet ob-
jects are mostly static in these datasets without human inter-
actions. A recent dataset [41] was introduced for category-
level 6D pose estimation, but the scenes are also static.

3.2. 3D Hand Pose

We present a summary of related 3D hand pose datasets
in Tab. 1. Some address pose estimation with depth only,

dataset visual
modality

real
image

marker-
less

hand- hand- 3D 3D
resolution #frames #sub #obj #views motion #seq dynamic

grasp labelhand obj obj hand
int int pose shape

BigHand2.2M [48] depth X × × × – × 640×480 2,200K 10 – 1 X – – magnetic
sensor

SynthHands [25] RGB-D × – × X × × 640×480 220K – 7 5 × – – synthetic
Rendered Hand Pose [49] RGB-D × – × × – × 320×320 44K 20 – 1 × – – synthetic
GANerated Hands [23] RGB × – × X × × 256×256 331K – – 1 × – – synthetic
ObMan [14] RGB-D × – × X X X 256×256 154K 20 3K 1 × – – synthetic

FPHA [8] RGB-D X × × X X × 1920×1080 105K 6 4 1 X 1,175 X
magnetic

sensor

ContactPose [3] RGB-D X × × X X X 960×540 2,991K 50 25 3 X 2,303 × mocap
+ thermal

GRAB [35] – – × × X X X – 1 ,624K 10 51 – X 1,335 X mocap
Mueller et al. [24] depth × – X × – × 640×480 80K 5 – 4 X 11 – synthetic
InterHand2.6M [22] RGB X X X × – X 512×334 2,590K 27 – >80 X – – semi-auto
Dexter+Object [32] RGB-D X X × X X × 640×480 3K 2 2 1 X 6 X manual
Simon et al. [30] RGB X X X X × × 1920×1080 15K – – 31 X – X automatic
EgoDexter [25] RGB-D X X × X × × 640×480 3K 4 – 1 X 4 X manual
FreiHAND [50] RGB X X × X × X 224×224 37K 32 27 8 × – – semi-auto
HO-3D [11] RGB-D X X × X X X 640×480 78K 10 10 1–5 X 27 X automatic
DexYCB (ours) RGB-D X X × X X X 640×480 582K 10 20 8 X 1,000 X manual

Table 1: Comparison of DexYCB with existing 3D hand pose datasets.

e.g., BigHand2.2M [48]. These datasets can be large but
lack color images and capture only bare hands without inter-
actions. Some others address hand-hand interactions, e.g.,
Mueller et al. [24] and InterHand2.6M [22]. While not fo-
cused on interaction with objects, their datasets address an-
other challenging scenario and is orthogonal to our work.
Below we review datasets with hand-object interactions.

Synthetic Synthetic data has been increasingly used for
hand pose estimation [25, 49, 23, 14]. A common down-
side is the gap to real images on appearance. To bridge this
gap, GANerated Hands [23] was introduced by translating
synthetic images to real via GANs. Nonetheless, other chal-
lenges remain. One is to synthesize realistic grasp pose for
objects. ObMan [14] was introduced to address this chal-
lenge using heuristic metrics. Yet besides pose, it is also
challenging to synthesize realistic motion. Consequently,
these datasets only offer static images but not videos. Our
dataset captures real videos with real grasp pose and mo-
tion. Furthermore, our motion data from real can help boot-
strapping synthetic data generation.

Marker-based FPHA [8] captured hand interaction with
objects in first person view by attaching magnetic sensors
to the hands. This offers a flexible and portable solution,
but the attached sensors may hinder natural hand motion
and also bias the hand appearance. ContactPose [3] cap-
tured grasp poses by tracking objects with mocap markers
and recovering hand pose from thermal imagery of the ob-
jects surface. While the dataset is large in scale, the thermal
based approach can only capturing rigid grasp poses but not
motions. GRAB [35] captured full body motion together
with hand-object interactions using marker-based mocap. It
provides high-fidelity capture of interactions but does not

come with any visual modalities. Our dataset is marker-
less, captures dynamic grasp motions, and provides RGB-D
sequences in multiple views.

Marker-less Our DexYCB dataset falls in this category.
The challenge is to acquire accurate 3D pose. Some datasets
like Dexter+Object [32] and EgoDexter [23] rely on man-
ual annotation and are thus limited in scale. To acquire 3D
pose at scale others rely on automatic or semi-automatic ap-
proaches [30, 50]. While these datasets capture hand-object
interactions, they do not offer 3D pose for objects.

Most similar to ours is the recent HO-3D dataset [11].
HO-3D also captures hands interacting with objects from
multiple views and provides both 3D hand and object pose.
Nonetheless, the two datasets differ both quantitatively and
qualitatively. Quantitatively (Tab. 1), DexYCB captures
interactions with more objects (20 versus 10), from more
views (8 versus 1 to 5), and is one order of magnitude larger
in terms of number of frames (582K versus 78K) 2 and num-
ber of sequences (1,000 versus 27). 3 Qualitatively (Fig. 3),
we highlight three differences. First, DexYCB captures full
grasping processes (i.e. from hand approaching, opening
fingers, contact, to holding the object stably) in short seg-
ments, whereas HO-3D captures longer sequences with the
object in hand most of the time. Among the 27 sequences
from HO-3D, we found 17 with hand always rigidly at-
tached to the object, only rotating the object from the wrist
with no finger articulation. Second, DexYCB captures a full
tabletop workspace with 3D pose of all the on table objects,
whereas in HO-3D one object is held close to the camera
each time and only the held object is labeled with pose. Fi-
nally, regarding annotation, DexYCB leverages keypoints

2We count the number of frames over all views.
3We count the same motion across different views as one sequence.

Figure 3: Qualitative comparison of HO-3D [11] (top) and
DexYCB (bottom). DexYCB captures full grasping processes in a
tabletop workspace with 3D pose of all the on table objects.

fully labeled by humans through crowdsourcing, while HO-
3D relies on a fully automatic labeling pipeline.

4. Cross-Dataset Evaluation
To further assess the merit of our DexYCB dataset, we

perform cross-dataset evaluation following prior work [50,
29, 47]. We focus specifically on HO-3D [11] due to its rel-
evance, and evaluate generalizability between HO-3D and
DexYCB on single-image 3D hand pose estimation. For
DexYCB, we generate a train/val/test split following our
benchmark setup (“S0” in Sec. 5.1). For HO-3D, we se-
lect 6 out of its 55 training sequences for test. We use Spurr
et al. [31] (winner of the HAND 2019 Challenge) as our
method, and train the model separately on three training
sets: the training set of HO-3D, the training set of DexYCB,
and the combined training set from both datasets. Finally,
we evaluate the three trained models separately on the test
set of HO-3D and DexYCB.

Tab. 2 shows the results in mean per joint position er-
ror (MPJPE) reported on two different alignment methods
(details in Sec. 5.4). We experiment with two different
backbones: ResNet50 and HRNet32 [33]. Unsurprisingly,
when training on a single dataset, the model generalizes
better to the respective test set. The error increases when
tested on the other dataset. When we evaluate the DexYCB
trained model on HO-3D, we observe a consistent increase
from 1.4× to 1.9× (e.g., for ResNet50, from 18.05 to 31.76
mm on root-relative). However, when we evaluate the HO-
3D trained model on DexYCB, we observe a consistent
yet more significant increase, from 3.4× to 3.7× (e.g., for
ResNet50, from 12.97 to 48.30 mm on root-relative). This
suggests that models trained on DexYCB generalize better
than on HO-3D. Furthermore, when we train on the com-
bined training set and evaluate on HO-3D, we can further
reduce the error from only training on HO-3D (e.g., from
18.05 to 15.79 mm). However, when tested on DexYCB,
the error rather rises compared to training only on DexYCB
(e.g., from 12.97 to 13.36 mm). We conclude that DexYCB
complements HO-3D better than vice versa.

test
train

HO-3D [11] DexYCB
HO-3D [11]
+ DexYCB

HO-3D 18.05 / 10.66 31.76 / 15.23 15.79 / 9.51
DexYCB 48.30 / 24.23 12.97 / 7.18 13.36 / 7.27

HO-3D 17.46 / 10.44 33.11 / 15.51 15.89 / 9.00
DexYCB 46.38 / 23.94 12.39 / 6.79 12.48 / 6.87

Table 2: Cross-dataset evaluation with HO-3D [11] on 3D hand
pose estimation. Results are in MPJPE (mm) (root-relative / Pro-
crustes aligned). Top: [31] + ResNet50. Bottom: [31] + HRNet32.

5. Benchmarking Representative Approaches
We benchmark three tasks on our DexYCB dataset: 2D

object and keypoint detection, 6D object pose estimation,
and 3D hand pose estimation. For each task we select rep-
resentative approaches and analyze their performace.

5.1. Evaluation Setup

To evaluate different scenarios, we generate train/val/test
splits in four different ways (referred to as “setup”):
• S0 (default). The train split contains all 10 subjects, all

8 camera views, and all 20 grasped objects. Only the
sequences are not shared with the val/test split.

• S1 (unseen subjects). The dataset is split by subjects
(train/val/test: 7/1/2).

• S2 (unseen views). The dataset is split by camera views
(train/val/test: 6/1/1).

• S3 (unseen grasping). The dataset is split by grasped
objects (train/val/test: 15/2/3). Objects being grasped in
the test split are never being grasped in the train/val split,
but may appear static on the table. This way the training
set still contain examples of each object.

5.2. 2D Object and Keypoint Detection

We evaluate object and keypoint detection using the
COCO evaluation protocol [21]. For object detection, we
consider 20 object classes and 1 hand class. We collect
ground truths by rendering a segmentation mask for each
instance in each camera view. For keypoints, we consider
21 hand joints and collect the ground truths by reprojecting
each 3D joint to each camera image.

We benchmark two representative approaches: Mask R-
CNN (Detectron2) [15, 43] and SOLOv2 [42]. Mask R-
CNN has been the de facto for object and keypoint detec-
tion and SOLOv2 is a state-of-the-art on COCO instance
segmentation. For both we use a ResNet50-FPN backbone
pre-trained on ImageNet and finetune on DexYCB.

Tab. 3 shows results for object detection in average pre-
cision (AP). First, Mask R-CNN and SOLOv2 perform sim-
ilarly in mean average precision (mAP). Mask R-CNN has
a slight edge on bounding box (e.g., 75.76 versus 75.13
mAP on S0) while SOLOv2 has a slight edge on segmenta-
tion (e.g., 71.56 versus 69.58 mAP on S0). This is because

S0 (default) S1 (unseen subjects) S2 (unseen views) S3 (unseen grasping)
Mask R-CNN SOLOv2 Mask R-CNN SOLOv2 Mask R-CNN SOLOv2 Mask R-CNN SOLOv2
bbox segm bbox segm bbox segm bbox segm bbox segm bbox segm bbox segm bbox segm

002 master chef can 83.87 82.68 84.90 85.20 82.41 80.69 82.74 81.67 85.82 84.44 83.52 83.39 83.96 83.72 84.53 85.44
003 cracker box 85.85 83.72 89.08 88.07 82.12 80.18 84.26 84.39 88.74 87.60 89.61 87.85 85.51 83.68 79.75 88.00
004 sugar box 81.30 77.71 80.45 79.26 78.35 74.75 77.17 76.66 83.72 79.53 81.91 79.25 78.06 75.68 74.87 77.40
005 tomato soup can 76.03 74.75 75.70 75.33 73.65 71.33 72.66 71.35 77.66 76.70 75.25 73.82 76.70 76.29 76.50 76.48
006 mustard bottle 81.56 79.40 79.94 81.87 78.76 75.41 77.76 75.92 81.12 79.06 79.87 78.29 81.74 82.37 82.24 84.45
007 tuna fish can 68.08 67.14 67.76 67.34 68.99 67.76 68.07 67.59 73.37 72.06 71.72 70.68 75.76 77.70 75.76 77.61
008 pudding box 73.60 70.39 74.05 72.58 69.77 68.04 69.78 68.20 78.88 76.74 79.01 76.58 71.32 71.43 65.11 70.94
009 gelatin box 69.51 68.43 68.64 68.09 67.37 64.99 66.16 63.14 72.87 71.45 73.34 69.36 61.19 58.41 60.98 59.49
010 potted meat can 75.63 72.66 77.28 75.80 73.86 71.95 70.87 71.76 78.96 78.35 79.63 76.84 77.48 78.03 78.40 79.24
011 banana 70.53 63.43 69.67 65.49 68.07 60.50 67.31 60.57 72.46 58.18 70.80 70.68 71.67 67.54 73.25 70.28
019 pitcher base 87.17 84.67 89.95 88.98 86.21 82.00 90.07 86.38 90.47 86.67 86.88 87.02 85.62 83.69 90.22 89.91
021 bleach cleanser 80.98 77.52 75.52 79.71 79.59 76.68 78.77 78.52 84.75 81.71 82.79 81.75 77.36 71.54 77.01 75.54
024 bowl 80.62 78.12 75.79 80.30 78.75 76.42 78.06 77.39 83.25 80.12 81.54 79.72 81.12 79.69 81.91 82.99
025 mug 76.01 71.95 76.35 74.35 74.64 69.64 72.72 69.93 80.14 75.99 78.24 74.13 75.51 73.19 76.78 75.86
035 power drill 81.83 73.80 82.85 77.20 76.89 69.02 77.90 71.50 82.57 74.66 82.42 74.09 83.67 77.62 84.06 80.77
036 wood block 83.75 81.41 85.72 85.59 80.45 78.15 79.45 79.32 83.78 83.40 41.24 64.85 77.52 73.84 78.01 77.78
037 scissors 64.07 29.36 59.00 32.63 55.05 20.68 50.85 26.51 63.16 17.93 38.00 16.93 58.01 24.35 57.92 31.11
040 large marker 52.69 42.42 50.95 42.46 50.14 38.46 44.94 36.46 53.98 36.47 50.78 33.58 55.35 41.23 53.66 45.22
052 extra large clamp 73.41 54.03 71.71 55.38 68.12 51.26 65.26 52.33 75.61 52.77 61.14 53.59 75.24 57.28 72.52 58.87
061 foam brick 72.68 72.85 72.54 72.93 68.34 66.62 67.98 65.72 75.24 74.10 73.01 71.05 71.36 71.32 71.50 71.59
hand 71.85 54.83 66.41 54.27 64.88 46.86 58.33 46.66 70.23 54.70 59.28 52.08 71.23 54.89 66.33 53.51
mAP 75.76 69.58 75.13 71.56 72.69 66.26 71.48 67.24 77.94 70.60 72.37 68.66 75.02 69.69 74.35 72.05

Table 3: 2D object detection results in AP (%) on the four setups. We compare Mask R-CNN (Detectron2) [15, 43] with SOLOv2 [42]
on both bounding box (bbox) and segmentation (segm).

S0 S1 S2 S3
hand 36.42 26.85 32.90 35.18

Table 4: 2D keypoint detection results in AP (%) with Mask R-
CNN (Detectron2) [15, 43].

Mask R-CNN predicts bounding boxes first and uses them
to generate segmentations. Therefore the error can accumu-
late for segmentation. SOLOv2 in contrast directly predicts
segmentations and uses it to generate bounding boxes. Sec-
ond, the AP for hand is lower than the AP for objects (e.g.,
for Mask R-CNN, 71.85 for hand versus 75.76 mAP on S0
bbox). This suggests that hands are more difficult to detect
than objects, possibly due to its larger variability in posi-
tion. Finally, performance varies across setups. For exam-
ple, mAP in S1 is lower than in S0 (e.g., for Mask R-CNN,
72.69 versus 75.76 on bbox). This can be attributed to the
challenge introduced by unseen subjects. Tab. 4 shows the
AP for keypoint detection with Mask R-CNN. We observe
a similar trend on the ordering of AP over different setups.

5.3. 6D Object Pose Estimation

We evaluate single-view 6D pose estimation following
the BOP challenge protocol [16, 17]. The task asks for a
6D pose estimate for each object instance given the num-
ber of objects and instances in each image. The evaluation
computes recall using three different pose-error functions
(VSD, MSSD, MSPD), and the final score is the average of
the three recall values (AR).

We first analyze the challenge brought by hand grasping
by comparing static and grasped objects. We use PoseCNN

all static grasped
52.68 56.53 41.65

Table 5: PoseCNN (RGB) [44] results in AR (%) on S0 (default).

(RGB) [44] as a baseline and retrain the model on DexYCB.
Tab. 5 shows the AR on S0 evaluated separately on the full
test set, static objects only, and grasped objects only. With-
out surprise the AR drops significantly when only consid-
ering the grasped objects. This recapitulates the increas-
ing challenge of object pose estimation under hand interac-
tions. To better focus on this regime, we evaluate only on
the grasped objects in the remaining experiments.

We next evaluate on the four setups using the same base-
line. Results are shown in Tab. 6 (left). On S1 (unseen
subjects), we observe a drop in AR compared to S0 (e.g.,
38.26 versus 41.65 on all) as in object detection. This can
be attributed to the influence of interaction from unseen
hands as well as different grasping styles. The column of
S3 (unseen grasping) shows the AR of the three only ob-
jects being grasped in the test set (i.e. “009 gelatin box”,
“021 bleach cleanser”, “036 wood block”). Again, the AR
is lower compared to on S0, and the drop is especially sig-
nificant for smaller objects like “009 gelatin box” (33.07
versus 46.62). Surprisingly, AR on S2 (unseen views) does
not drop but rather increases slightly (e.g., 45.18 versus
41.65 on all). This suggests that our multi-camera setup
has a dense enough coverage of the scene such that training
on certain views can translate well to some others.

Finally, we benchmark five representative approaches:
PoseCNN [44], DeepIM [20], DOPE [38], PoseRBPF [5],

S0 S1 S2 S3 PoseCNN [44] DeepIM [20] DOPE [38] PoseRBPF [5] CosyPose [19]
RGB + depth ref RGB RGB-D RGB RGB RGB-D RGB

002 master chef can 47.47 44.53 51.36 – 44.53 48.24 60.74 68.40 19.82 35.19 58.04 77.21
003 cracker box 61.04 57.46 60.65 – 57.46 62.62 79.43 84.56 53.50 43.62 67.37 88.39
004 sugar box 45.11 36.00 51.73 – 36.00 42.45 51.29 59.34 32.06 30.55 56.55 69.61
005 tomato soup can 36.68 34.88 45.44 – 34.88 42.99 46.87 55.46 20.52 23.76 40.03 52.76
006 mustard bottle 52.56 42.89 51.96 – 42.89 48.98 55.52 63.31 23.66 28.98 54.93 67.11
007 tuna fish can 32.70 29.58 31.96 – 29.58 36.17 39.18 46.98 5.86 20.13 36.77 49.00
008 pudding box 44.24 42.60 50.81 – 42.60 51.26 58.23 67.18 14.48 27.24 47.95 70.22
009 gelatin box 46.62 34.39 44.38 33.07 34.39 41.71 47.89 55.54 21.81 31.27 46.14 57.63
010 potted meat can 37.41 42.10 45.08 – 42.10 51.64 60.19 69.40 14.15 31.17 46.43 65.37
011 banana 38.33 36.71 44.42 – 36.71 40.21 41.82 48.63 16.15 21.39 39.15 35.48
019 pitcher base 53.49 46.03 53.51 – 46.03 49.62 54.27 63.46 7.02 19.94 51.38 52.68
021 bleach cleanser 49.41 42.54 56.03 38.52 42.54 46.29 51.54 61.44 16.70 22.94 53.50 63.62
024 bowl 57.42 54.25 58.15 – 54.25 57.05 60.30 69.40 – 37.00 62.49 74.74
025 mug 40.68 37.28 43.70 – 37.28 38.69 41.15 49.51 – 18.21 34.87 48.48
035 power drill 47.93 41.86 50.79 – 41.86 45.79 58.10 64.28 19.60 30.67 51.41 49.22
036 wood block 40.11 38.66 49.50 40.53 38.66 44.08 49.91 65.39 – 23.80 51.63 67.14
037 scissors 21.93 22.87 25.90 – 22.87 25.29 27.48 32.65 14.16 17.18 29.40 24.36
040 large marker 35.09 32.12 38.19 – 32.12 38.73 33.27 46.63 – 19.05 29.66 50.58
052 extra large clamp 30.48 31.89 34.42 – 31.89 33.60 39.63 47.04 – 22.99 35.99 50.78
061 foam brick 12.80 13.04 15.75 – 13.04 16.70 18.14 27.57 – 17.40 32.42 30.12
all 41.65 38.26 45.18 37.41 38.26 43.27 48.99 57.54 – 26.24 46.48 57.43

Table 6: 6D object pose estimation results in AR (%). Left: PoseCNN (RGB). Right: performance of representative approaches on S1.

and CosyPose [19] (winner of the BOP challenge 2020). All
of them take RGB input. For PoseCNN, we also include a
variant with post-process depth refinement. For DeepIM
and PoseRBPF, we also include their RGB-D variants. For
CosyPose, we use its single view version. For DeepIM
and CosyPose, we initialize the pose from the output of
PoseCNN (RGB). We retrain all the models on DexYCB
except for DOPE and PoseRBPF, which trained their mod-
els solely on synthetic images. For DOPE, we train models
for an additional 7 objects besides the 5 provided. Tab. 6
(right) compares the results on the most challenging S1 (un-
seen subjects) setup. First, we can see a clear edge on those
which also use depth compared to their respective RGB
only variants (for PoseCNN, from 38.26 to 43.27 AR on
all). Second, refinement based methods like DeepIM and
CosyPose are able to improve significantly upon their initial
pose input (e.g., for DeepIM RGB-D, from 38.26 to 57.54
AR on all). Finally, CosyPose achieves the best overall AR
among all the RGB-based methods (57.43 AR on all).

5.4. 3D Hand Pose Estimation

The task is to estimate the 3D position of 21 hand joints
from a single image. We evaluate with two metrics: mean
per joint position error (MPJPE) in mm and percentage of
correct keypoints (PCK). Besides computing error in abso-
lute 3D position, we also report errors after aligning the pre-
dictions with ground truths in post-processing [49, 50, 11].
We consider two alignment methods: root-relative and Pro-
crustes. The former removes ambiguity in translation by
replacing the root (wrist) location with ground thuths. The
latter removes ambiguity in translation, rotation, and scale,
thus focusing specifically on articulation. For PCK we re-

absolute root-relative Procrustes

S0
[31] + ResNet50 53.92 (0.307) 17.71 (0.683) 7.12 (0.858)
[31] + HRNet32 52.26 (0.328) 17.34 (0.698) 6.83 (0.864)
A2J [45] 27.53 (0.612) 23.93 (0.588) 12.07 (0.760)

S1
[31] + ResNet50 70.23 (0.240) 22.71 (0.601) 8.43 (0.832)
[31] + HRNet32 70.10 (0.248) 22.26 (0.615) 7.98 (0.841)
A2J [45] 29.09 (0.584) 25.57 (0.562) 12.95 (0.743)

S2
[31] + ResNet50 83.46 (0.208) 23.15 (0.566) 8.11 (0.838)
[31] + HRNet32 80.63 (0.217) 25.49 (0.530) 8.21 (0.836)
A2J [45] 23.44 (0.576) 27.65 (0.540) 13.42 (0.733)

S3
[31] + ResNet50 58.69 (0.281) 19.41 (0.665) 7.56 (0.849)
[31] + HRNet32 55.39 (0.311) 18.44 (0.686) 7.06 (0.859)
A2J [45] 30.99 (0.608) 24.92 (0.581) 12.15 (0.759)

Table 7: 3D hand pose estimation results in MPJPE (mm). Num-
bers in parentheses are AUC values.

port the area under the curve (AUC) over the error range
[0, 50 mm] with 100 steps.

We benchmark one RGB and one depth based approach.
For RGB, we select a supervised version of Spurr et al. [31]
which won the HANDS 2019 Challenge [1]. We experiment
with the original ResNet50 backbone as well as a stronger
HRNet32 [33] backbone, both initialized with ImageNet
pre-trained models and finetuned on DexYCB. For depth,
we select A2J [45] and retrain the model on DexYCB.

Tab. 7 shows the results. For [31], we can see that es-
timating absolute 3D position solely from RGB is difficult
(e.g., 53.92 mm absolute MPJPE with ResNet50 on S0).
The stronger HRNet32 backbone reduces the errors over
ResNet50 but only marginally (e.g., 52.26 versus 53.92 mm
absolute MPJPE on S0). Similar to in object pose, the errors
on S1 (unseen subjects) increase from S0 (e.g., 70.10 versus
52.26 mm absolute MPJPE for HRNet32) due to the impact
of unseen hands and grasping styles. However, unlike the
trend in Tab. 6 (left), the errors on S2 (unseen views) also

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Coverage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

isi
on

PoseCNN RGB
PoseCNN + Depth
DeepIM RGB
DeepIM RGB-D
PoseRBPF RGB
PoseRBPF RGB-D
CosyPose RGB

Figure 4: Precision-coverage curves for grasp generation on S1.

increase pronouncedly and even surpasses the other setups
(e.g., 80.63 mm absolute MPJPE for HRNet32). This is be-
cause unlike objects, the subjects are always facing the same
direction from a situated position in this setup. This further
constrains the possible hand poses observed in each view,
making cross view generalization more challenging. Un-
surprisingly, A2J [45] outperforms [31] on absolute MPJPE
due to the depth input, but falls short on estimating artic-
ulation as shown by the errors after alignment (e.g., 12.07
versus 6.83 mm Procrustes MPJPE for HRNet32 on S0).

6. Safe Human-to-Robot Object Handover
Task Given an RGB-D image with a person holding an
object, the goal is to generate a diverse set of robot grasps
to take over the object without pinching the person’s hand
(we refer to as “safe” handovers). The diversity of grasps
is important since not all the grasps are kinematically feasi-
ble for execution. We assume a parallel-jaw Franka Panda
gripper and represent each grasp as a point in SE(3).

Evaluation We first sample 100 grasps for each YCB
object using farthest point sampling from a diverse set of
grasps pre-generated for that object in [7]. This ensures a
dense coverage of the pose space (Fig. 5). For each image,
we transform these grasps from the object frame to camera
frame using the ground-truth object pose, and remove those
collided with the ground-truth object and hand mesh. This
generates a reference set of successful graspsR.

Given a set of predicted grasps χ, we evaluate its di-
versity by computing the coverage [7] of R, defined by
the percentage of grasps in R having at least one matched
grasp in χ that is neither collided with the object nor the
hand. Specifically, two grasps g, h are considered matched
if |gt − ht| < σt and arccos(|〈gq, hq〉|) < σq , where gt is
the translation and gq is the orientation in quaternion. We
use σt = 0.05 m and σq = 15°.

One could potentially hit a high coverage by sampling
grasps exhaustively. Therefore we also compute precision,

Figure 5: Top: 100 successful grasps sampled from [7]. Bottom:
predicted grasps generated by the predicted object pose (textured
model) and hand segmentation (blue masks). Green ones denote
those covering successful grasps, red ones denote those collided
with the object or hand, and gray ones are failures not covering
any successful grasps in the reference set. Ground-truth objects
and hands are shown in translucent white and brown meshes.

defined as the percentage of grasps in χ that have at least
one matched successful grasp inR.

Baseline We experiment with a simple baseline that only
requires hand segmentation and 6D object pose. Similar to
constructing R, we transform the 100 grasps to the cam-
era frame but using the estimated object pose, then remove
those that are collided with the hand point cloud obtained by
the hand segmentation and the depth image. Specifically, a
grasp is collided if the distance of a pair of points from the
gripper point cloud and the hand point cloud is less than a
threshold ε. The gripper point cloud is obtained from a set
of pre-sampled points on the gripper surface. We use the
hand segmentation results from Mask R-CNN (Sec. 5.2).

Results We evaluate grasps generated with different ob-
ject pose methods at different threshold ε ∈ [0, 0.07 m] and
show the precision-coverage curves on S1 in Fig. 4. We see
that better object pose estimation leads to better grasp gen-
eration. Fig. 5 shows qualitative examples of the predicted
grasps. We see that most of the failure grasps (red and gray)
are due to inaccurate object pose. Some are hand-colliding
grasps caused by a miss detected hand when the hand is par-
tially occluded by the object (e.g., “003 cracker box”). This
can be potentially addressed by model based approaches
that directly predict the full hand shape.

7. Conclusions
We have introduced DexYCB for capturing hand grasp-

ing of objects. We have shown its merits, presented a thor-
ough benchmark of current approaches on three relevant
tasks, and evaluated a new robotics-relevant task. We envi-
sion our dataset will drive progress on these crucial fronts.

References
[1] Anil Armagan, Guillermo Garcia-Hernando, Seungryul

Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang,
Shipeng Xie, MingXiu Chen, Boshen Zhang, Fu Xiong,
Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei Ren, Weit-
ing Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk
Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee,
Angela Yao, Weiguo Zhou, Sijia Mei, Yunhui Liu, Adrian
Spurr, Umar Iqbal, Pavlo Molchanov, Philippe Weinzaepfel,
Romain Brégier, Grégory Rogez, Vincent Lepetit, and Tae-
Kyun Kim. Measuring generalisation to unseen viewpoints,
articulations, shapes and objects for 3D hand pose estimation
under hand-object interaction. In ECCV, 2020. 7

[2] Adnane Boukhayma, Rodrigo de Bem, and Philip H.S. Torr.
3D hand shape and pose from images in the wild. In CVPR,
2019. 1

[3] Samarth Brahmbhatt, Chengcheng Tang, Christopher D.
Twigg, Charles C. Kemp, and James Hays. ContactPose:
A dataset of grasps with object contact and hand pose. In
ECCV, 2020. 1, 4

[4] Enric Corona, Albert Pumarola, Guillem Alenyà, Francesc
Moreno-Noguer, and Grégory Rogez. GanHand: Predicting
human grasp affordances in multi-object scenes. In CVPR,
2020. 2

[5] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timo-
thy Bretl, and Dieter Fox. PoseRBPF: A Rao-Blackwellized
particle filter for 6D object pose estimation. In RSS, 2019. 1,
6, 7

[6] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David J.
Crandall. HOPE-Net: A graph-based model for hand-object
pose estimation. In CVPR, 2020. 1

[7] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. A
billion ways to grasps: An evaluation of grasp sampling
schemes on a dense, physics-based grasp data set. In ISRR,
2019. 8

[8] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul
Baek, and Tae-Kyun Kim. First-person hand action bench-
mark with RGB-D videos and 3D hand pose annotations. In
CVPR, 2018. 1, 4

[9] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying
Wang, Jianfei Cai, and Junsong Yuan. 3D hand shape and
pose estimation from a single RGB image. In CVPR, 2019.
1

[10] Oliver Glauser, Shihao Wu, Daniele Panozzo, Otmar
Hilliges, and Olga Sorkine-Hornung. Interactive hand pose
estimation using a stretch-sensing soft glove. In SIGGRAPH,
2019. 1

[11] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A method for 3D annotation of
hand and object poses. In CVPR, 2020. 2, 3, 4, 5, 7

[12] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang, Yu-
Wei Chao, Qian Wan, Stan Birchfield, Nathan Ratliff, and
Dieter Fox. DexPilot: Vision-based teleoperation of dexter-
ous robotic hand-arm system. In ICRA, 2020. 1

[13] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,
Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-

ric consistency over time for sparsely supervised hand-object
reconstruction. In CVPR, 2020. 1, 3

[14] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In CVPR, 2019. 1, 3, 4

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 5, 6

[16] Tomáš Hodaň, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders Glent Buch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Man-
hardt, Federico Tombari, Tae-Kyun Kim, Jiřı́ Matas, and
Carsten Rother. BOP: Benchmark for 6D object pose esti-
mation. In ECCV, 2018. 1, 3, 6

[17] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
Labbé, Eric Brachmann, Frank Michel, Carsten Rother, and
Jiřı́ Matas. BOP challenge 2020 on 6D object localization.
ECCV Workshops, 2020. 1, 3, 6

[18] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen
Gall, and Jan Kautz. Hand pose estimation via latent 2.5D
heatmap regression. In ECCV, 2018. 1

[19] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. CosyPose: Consistent multi-view multi-object 6D
pose estimation. In ECCV, 2020. 1, 7

[20] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
DeepIM: Deep iterative matching for 6D pose estimation. In
ECCV, 2018. 1, 6, 7

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014. 5

[22] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. InterHand2.6M: A dataset and baseline
for 3D interacting hand pose estimation from a single RGB
image. In ECCV, 2020. 4

[23] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. GANerated Hands for real-time 3D hand
tracking from monocular RGB. In CVPR, 2018. 1, 4

[24] Franziska Mueller, Micah Davis, Florian Bernard, Oleksandr
Sotnychenko, Mickeal Verschoor, Miguel A. Otaduy, Dan
Casas, and Christian Theobalt. Real-time pose and shape
reconstruction of two interacting hands with a single depth
camera. In SIGGRAPH, 2019. 3, 4

[25] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-
chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.
Real-time hand tracking under occlusion from an egocentric
RGB-D sensor. In ICCV, 2017. 4

[26] Kiru Park, Timothy Patten, and Markus Vincze. Pix2Pose:
Pixel-wise coordinate regression of objects for 6D pose esti-
mation. In ICCV, 2019. 1

[27] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. PVNet: Pixel-wise voting network for 6DoF pose
estimation. In CVPR, 2019. 1

[28] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. In SIGGRAPH Asia, 2017. 3

[29] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F.
Fouhey. Understanding human hands in contact at internet
scale. In CVPR, 2020. 5

[30] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In CVPR, 2017. 4

[31] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,
and Jan Kautz. Weakly supervised 3D hand pose estimation
via biomechanical constraints. In ECCV, 2020. 1, 5, 7, 8

[32] Srinath Sridhar, Franziska Mueller, Michael Zollhoefer, Dan
Casas, Antti Oulasvirta, and Christian Theobalt. Real-time
joint tracking of a hand manipulating an object from RGB-D
input. In ECCV, 2016. 4

[33] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In CVPR, 2019. 5, 7

[34] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3D
orientation learning for 6D object detection from RGB im-
ages. In ECCV, 2018. 1

[35] Omid Taheri, Nima Ghorbani, Michael J. Black, and Dim-
itrios Tzionas. GRAB: A dataset of whole-body human
grasping of objects. In ECCV, 2020. 1, 4

[36] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+O: Uni-
fied egocentric recognition of 3D hand-object poses and in-
teractions. In CVPR, 2019. 1

[37] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-time
seamless single shot 6D object pose prediction. In CVPR,
2018. 1

[38] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,
Yu Xiang, Dieter Fox, and Stan Birchfield. Deep object pose
estimation for semantic robotic grasping of household ob-
jects. In CoRL, 2018. 1, 6, 7

[39] Carl Vondrick, Donald Patterson, and Deva Ramanan. Ef-
ficiently scaling up crowdsourced video annotation. IJCV,
101(1):184–204, Jan 2013. 2

[40] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin,
Cewu Lu, Li Fei-Fei, and Silvio Savarese. DenseFusion: 6D
object pose estimation by iterative dense fusion. In CVPR,
2019. 1

[41] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J. Guibas. Normalized object
coordinate space for category-level 6D object pose and size
estimation. In CVPR, 2019. 3

[42] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. SOLOv2: Dynamic, faster and stronger. In
NeurIPS. 2020. 5, 6

[43] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5, 6

[44] Yu Xiang, Tanner Schmidt, Venkatraman Nafurayanan, and
Dieter Fox. PoseCNN: A convolutional neural network for
6D object pose estimation in cluttered scenes. In RSS, 2018.
2, 3, 6, 7

[45] Fu Xiong, Boshen Zhang, Yang Xiao, Zhiguo Cao, Taidong
Yu, Joey Tianyi Zhou, and Junsong Yuan. A2J: Anchor-to-
joint regression network for 3D articulated pose estimation
from a single depth image. In ICCV, 2019. 7, 8

[46] Wei Yang, Chris Paxton, Maya Cakmak, and Dieter Fox.
Human grasp classification for reactive human-to-robot han-
dovers. In IROS, 2020. 1

[47] Zhixuan Yu, Jae Shin Yoon, In Kyu Lee, Prashanth
Venkatesh, Jaesik Park, Jihun Yu, and Hyun Soo Park.
HUMBI: A large multiview dataset of human body expres-
sions. In CVPR, 2020. 5

[48] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and Tae-
Kyun Kim. BigHand2.2M benchmark: Hand pose dataset
and state of the art analysis. In CVPR, 2017. 1, 4

[49] Christian Zimmermann and Thomas Brox. Learning to esti-
mate 3D hand pose from single RGB images. In ICCV, 2017.
1, 4, 7

[50] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max J. Argus, and Thomas Brox. FreiHAND: A
dataset for markerless capture of hand pose and shape from
single RGB images. In ICCV, 2019. 3, 4, 5, 7

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

