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Abstract

In this paper, we present an effective and efficient face
deblurring algorithm by exploiting semantic cues via deep
convolutional neural networks (CNNs). As face images are
highly structured and share several key semantic compo-
nents (e.g., eyes and mouths), the semantic information of
a face provides a strong prior for restoration. As such, we
propose to incorporate global semantic priors as input and
impose local structure losses to regularize the output within
a multi-scale deep CNN. We train the network with percep-
tual and adversarial losses to generate photo-realistic re-
sults and develop an incremental training strategy to handle
random blur kernels in the wild. Quantitative and qualita-
tive evaluations demonstrate that the proposed face deblur-
ring algorithm restores sharp images with more facial de-
tails and performs favorably against state-of-the-art meth-
ods in terms of restoration quality, face recognition and ex-
ecution speed.

1. Introduction
Single image deblurring aims to recover a clear image

from a single blurred input image. Conventional methods
model the blur process (assuming spatially invariant blur) as
the convolution operation between a latent clear image and
a blur kernel, and formulate this problem based on the max-
imum a posteriori (MAP) framework. As the problem is ill-
posed, the state-of-the-art algorithms rely on natural image
priors (e.g., L0 gradient [48] and dark channel prior [31]) to
constrain the solution space.

While existing image priors are effective for deblurring
natural images, the underlying assumption may not hold
for images from specific categories, e.g., text, face and
low-light conditions. Therefore, numerous approaches ex-
ploit domain-specific priors or strategies, such as L0 in-
tensity [30] for text images and light streaks [13] for ex-
tremely low-light images. As face images typically have
fewer textures and edges for estimating blur kernels, Pan et
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Figure 1. Face deblurring results. We exploit the semantic in-
formation of face within an end-to-end deep CNN for face image
deblurring. (a) Ground truth images (b) Blurred images (c) Ours
w/o semantics (d) Ours w/ semantics.

al. [29] propose to search a similar face exemplar from an
external dataset and extract the contour as reference edges.
However, a similar reference image may not always exist to
cover the diversity of face images in the wild. Furthermore,
those methods based on the MAP framework typically en-
tail heavy computational cost due to the iterative optimiza-
tion of latent images and blur kernels. The long execution
time limits the applications on resource-sensitive platforms,
e.g., cloud and mobile devices.

In this work, we focus on deblurring face images and
propose an efficient as well as effective solution using
deep CNNs. Since face images are highly structured and
composed of similar components, the semantic information
serves as a strong prior for restoration. Therefore, we pro-
pose to leverage the face semantic labels as global priors
and local constraints for deblurring face images. Specifi-
cally, we first generate the semantic labels of blurred input
images using a face parsing network. The face deblurring
network then takes the blurred image and semantic labels
as input to restore a clear image in a coarse-to-fine man-
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ner. To encourage the network for generating fine details,
we further impose a local structure loss on important face
components (e.g., eyes, noses, and mouths). Figure 1 shows
deblurred examples with and without the proposed seman-
tic priors and losses. The proposed method is able to recon-
struct better facial details than the network trained with only
the pixel-wise L1 loss function (i.e., without using seman-
tics). As our method is end-to-end without any blur kernel
estimation or post-processing, the execution time is much
shorter than the state-of-the-art MAP-based approaches.

To handle blurred images produced by unknown blur
kernels, existing methods typically synthesize blur kernels
by modeling the camera trajectories [4, 12] and generate a
large number of blurred images for training. Instead of si-
multaneously using all synthetic blurred images for train-
ing, we propose an incremental training strategy by first
training the network on a set of small blur kernels and then
incorporating larger blur kernels sequentially. We show that
the proposed incremental training strategy facilitates the
convergence and improves the performance of our deblur-
ring network on various sizes of blur kernels. Finally, we
impose a perceptual loss [14] and an adversarial loss [10] to
generate photo-realistic deblurred results.

We make the following contributions in this work:
• We propose a deep multi-scale CNN that exploits

global semantic priors and local structural constraints
for face image deblurring.
• We present an incremental strategy to train CNNs to

better handle unknown motion blur kernels.
• We demonstrate that the proposed method performs fa-

vorably against state-of-the-art deblurring approaches
in terms of restoration quality, face recognition and ex-
ecution speed.

2. Related Work

Single image deblurring can be categorized into non-
blind and blind deblurring based on whether the blur kernel
is available or not. We focus our discussion on blind image
deblurring in this section.

Generic methods. The recent progress in single im-
age blind deblurring can be attributed to the development
of effective natural image priors, including sparse image
gradient prior [8, 23], normalized sparsity measure [17],
patch prior [42], L0 gradient [48], color-line model [18],
low-rank prior [34], self-similarity [27] and dark channel
prior [31]. Through optimizing the image priors within the
MAP framework, those approaches implicitly restore strong
edges for estimating the blur kernels and latent sharp im-
ages. However, solving complex non-linear priors involve
several optimization steps and entail high computational
loads. As such, edge-selection based methods [6, 46] adopt
simple image priors (e.g., L2 gradients) with image filters

(e.g., shock filter) to explicitly restore or select strong edges.
While generic image deblurring methods demonstrate state-
of-the-art performance, face images have different statisti-
cal properties than natural scenes and cannot be restored
well using the above approaches.

Domain-specific methods. To handle images from spe-
cific categories, several domain-specific image deblurring
approaches have been developed. Pan et al. [30] introduce
the L0-regularized priors on both intensity and image gradi-
ents for text image deblurring as text images usually contain
nearly uniform intensity. To handle extreme cases such as
low-light images, Hu et al. [13] detect the light streaks in
images for estimating blur kernels. Anwar et al. [2] pro-
pose a frequency-domain class-specific prior to restore the
band-pass frequency components. In addition, a number
of approaches use reference images as guidance for non-
blind [43] and blind deblurring [11]. However, the perfor-
mance of such methods hinges on the similarity of the ref-
erence images and quality of dense correspondence.

As face images have fewer textures and edges, existing
algorithms based on implicit or explicit edge restoration are
less effective. Pan et al. [29] search for similar faces from
a face dataset and extract reference exemplar contours for
estimating blur kernels. However, this approach requires
manual annotations of the face contours and involves com-
putationally expensive optimization processes of blur ker-
nels and latent images in the MAP framework. In contrast,
we train an end-to-end deep CNN to bypass the blur ker-
nel estimation step and do not use any reference images or
manual annotations when deblurring an image.

CNN-based methods. Deep CNNs have been adopted
for several image restoration tasks, such as denois-
ing [26], JPEG deblocking [7], dehazing [35] and super-
resolution [16, 19]. Recent approaches apply deep CNNs
for image deblurring in several aspects, including non-blind
deconvolution [37, 47, 50], blur kernel estimation [38] and
dynamic scene deblurring [28]. Chakrabarti et al. [4] train
a deep network to predict the Fourier coefficients of a de-
convolution filter. Despite computational efficiency, these
CNN-based methods do not perform as well as the state-of-
the-art MAP-based approaches, especially on large motion
kernels.

Since text images usually contain uniform intensities
with fewer texture regions, an end-to-end deep network [12]
performs well, especially under large noise levels. Xu
et al. [49] aim to jointly deblur and super-resolve low-
resolution blurred face and text images, which are typically
degraded by Gaussian-like blur kernels. In this work, we
focus on deblurring face images from complex motion blur.
We exploit global and local semantic cues as well as per-
ceptual [14] and adversarial [10] losses to restore photo-
realistic face images with fine details.
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Figure 2. Overview of the proposed semantic face deblurring network. The proposed network consists of two sub-networks: a semantic
face parsing network and a multi-scale deblurring network. The face parsing network generates the semantic labels of the input blurred
images. The multi-scale deblurring network has two scales. We concatenate the blurred image and semantic labels as the input to the first
scale. At the second scale, the input is the concatenation of the upsampled deblurred image from the first scale, the blurred image and the
corresponding semantic labels. Each scale of the deblurring network receives the supervision from the pixel-wise content loss and local
structural losses. We impose the perceptual and adversarial losses at the output of the second scale.

3. Semantic Face Deblurring

In this section, we describe the design methodology of
the proposed semantic face deblurring approach. We ex-
ploit the semantic labels from a face parsing network as the
global semantic priors and local structural losses within a
deep multi-scale CNN. We then train the proposed network
jointly with perceptual and adversarial losses to generate
photo-realistic deblurred results.

3.1. Face deblurring network

We use a multi-scale network similar to that from Nah
et al. [28], but with several differences. First, as face im-
ages typically have a spatial resolution of 128×128 or less,
we use only 2 scales instead of 3 scales for natural images
in [28]. Second, we use fewer ResBlocks (reduce from 19
to 6) and larger filter size (11×11) at the first convolutional
layer to increase the receptive field. Finally, we introduce
additional inputs from semantic face parsing as global pri-
ors and impose local structural constraints on the output at
each scale.

3.2. Global semantic priors

We propose to utilize the semantic parsing information
as a global prior for face deblurring. Given a blurred image,
we first use a face parsing network [24] to extract the se-
mantic labels. We then concatenate the probability maps of
the semantic labels with the blurred face image as the input
to our deblurring network. The input to the first scale of
the deblurring network has a spatial resolution of 64 × 64
and a total of 14 channels (3-channel RGB image and 11-
channel semantic probabilities). The deblurred image of the
first scale is then upsampled by 2× through a transposed
convolutional layer. The input of the second scale has a
spatial resolution of 128 × 128 and a total of 17 channels,
including the upsampled deblurred image, the blurred im-
age, and the corresponding semantic probabilities. Figure 2
shows an overview of our face parsing and deblurring net-
work. The semantic labels encode the essential appearance
information and rough locations of the facial components
(e.g., eyes, noses and mouths) and serve as a strong global
prior for reconstructing the deblurred face image.



3.3. Local structural constraints

We use the pixel-wise L1 robust function as the content
loss of our face deblurring network:

Lc = ‖G(B,P(B))− I‖1 , (1)

where P and G denote the face parsing and deblurring net-
works. In addition, B and I are the blurred and ground
truth clear images, respectively. However, the key compo-
nents (e.g., eyes, lips and mouths) on faces are typically
small and cannot be well reconstructed by solely minimiz-
ing the content loss on the whole face image. As human
vision is more sensitive to the artifacts on key components,
we propose to impose local structural losses:

Ls =

K∑
k=1

‖Mk(P(B))� (G(B,P(B))− I)‖1 , (2)

where Mk denotes the structural mask of the k-th compo-
nent and � is the element-wise multiplication. We apply
the local structural losses on eyebrows, eyes, noses, lips and
teeth. The local structural losses enforce the deblurring net-
work to restore more details on those key components.

3.4. Generating photo-realistic face images

As pixel-wise L2 or L1 loss functions typically lead to
overly-smooth results, we introduce a perceptual loss [14]
and an adversarial loss [10] to optimize our deblurring net-
work and generate photo-realistic deblurred results.

Perceptual loss. The perceptual loss has been adopted in
style transfer [9, 14], image super-resolution [22] and image
synthesis [5]. The perceptual loss aims to measure the simi-
larity in the high dimensional feature space of a pre-trained
loss network (e.g., VGG16 [41]). Given the input image x,
we denote φl(x) as the activation at the l-th layer of the loss
network φ. The perceptual loss is then defined as:

Lp =
∑
l

‖φl(G(B))− φl(I)‖22 . (3)

We compute the perceptual loss on the Pool2 and Pool5 lay-
ers of the pre-trained VGG-Face [32] network.

Adversarial loss. The adversarial training framework has
been shown effective to synthesize realistic images [10, 22,
28]. We treat our face deblurring network as the generator
and construct a discriminator based on the architecture of
DCGAN [33]. The goal of the discriminator D is to distin-
guish the real image from the output of the generator. The
generator G aims to generate images as real as possible to
fool the discriminator. The adversarial training is formu-
lated as solving the following min-max problem:

min
G

max
D

E [logD(I)] + E [log(1−D(G(B)))] . (4)

When updating the generator, the adversarial loss is:

Ladv = − logD(G(B)). (5)

Our discriminator takes an input image with a size of
128 × 128 and has 6 strided convolutional layers followed
by the ReLU activation function. In the last layer, we use
the sigmoid function to output a single scalar as the proba-
bility to be a real image.

Overall loss function. The overall loss function for train-
ing our face deblurring network consists of the content loss,
local structural losses, perceptual loss and adversarial loss:

L = Lc + λsLs + λpLp + λadvLadv, (6)

where λs, λp and λadv are the weights to balance the lo-
cal structural losses, perceptual loss and adversarial loss,
respectively. In this work, we empirically set the weights
to λs = 50, λp = 1e−5 and λadv = 5e−5. We apply the
content and local structural losses at all scales of the de-
blurring network while only adopt the perceptual and ad-
versarial losses at the finest scale (i.e., second scale).

3.5. Implementation details

We use a variant of Liu et al. [24] as our semantic
face parsing network, which is an encoder-decoder archi-
tecture with skip connections from the encoder to the de-
coder (see Figure 2(a)). Our face deblurring network has
two scales, where each scale has 6 ResBlocks and a total
of 18 convolutional layers. All convolutional layers except
the first layer have the kernel size of 5× 5 and 64 channels.
The upsampling layer uses a 4×4 transposed convolutional
layer to upsample the image by 2×. The detailed archi-
tecture of our face deblurring network is described in the
supplementary material.

We implement our network using the MatConvNet tool-
box [45]. We use a batch size of 16 and set the learning rate
to 5e−6 when training the parsing network and 4e−5 when
training the deblurring network. The parsing network con-
verges within 60,000 iterations and the training takes less
than one day. We train the deblurring network for 17 million
iterations, which takes about 5 days on an NVIDIA Titan X
GPU. We note that we first train the semantic face parsing
network until convergence. We then fix the parsing network
while training the deblurring network.

4. Experimental Results
In this section, we first describe the training and test

datasets used in our experiments. We then analyze the per-
formance of the semantic face parsing network and face de-
blurring network, describe our incremental training strategy
to handle random blur kernels, and finally compare with
state-of-the-art deblurring algorithms.



4.1. Datasets

We use the Helen dataset [21], which has ground truth
face semantic labels, for training our semantic face parsing
network. The Helen dataset consists of 2,000 training im-
ages and 330 validation images. We use the method of Sun
et al. [44] to detect the facial key points and align all face
images using the method of Kae et al. [15]. During training,
we apply data augmentation using affine transformations to
avoid over-fitting.

To train the deblurring network, we collect training im-
ages from the Helen dataset [21] (2,000 images), CMU PIE
dataset [40] (2,164 images) and CelebA dataset [25] (2,300
images) as our training data. We synthesize 20,000 motion
blur kernels from random 3D camera trajectories [3]. The
size of blur kernels range from 13× 13 to 27× 27. By con-
volving the clear images with blur kernels and adding Gaus-
sian noise with σ = 0.01, we obtain 130 million blurred
images for training.

In addition to the training set, we synthesize another 80
random blur kernels, which are different from the 20,000
blur kernels used for training. We collect 100 clear face
images from the validation set of the Helen and CelebA
datasets, respectively. There are a total of 16,000 blurred
images for testing.

4.2. Semantic face parsing

We first validate the performance of our semantic face
parsing network. We use the images from the Helen dataset
for training and evaluate the F-scores of each facial compo-
nent on the Helen validation set. We report the performance
on clear and blurred images in Table 1. Due to motion blur,
the face parsing network does not perform well on blurred
images, especially for small and thin components, e.g., eye-
brows, lips, and teeth. We further fine-tune the parsing net-
work on blurred images to improve the performance. Fig-
ure 3 shows the parsing results before and after fine-tuning
on blurred images. The fine-tuned model is more robust to
motion blur and parses facial components well.

4.3. Face image deblurring

In this section, we evaluate the effect of using semantic
information on face image deblurring, describe our incre-
mental training strategy for handling random blur kernels,
and compare with state-of-the-art deblurring methods.

Effect of semantic parsing. We train a baseline model
using only the content loss function (1). We then train
another two models by first introducing the semantic la-
bels as input priors and then including the local structural
losses (2).

Figure 4 shows two deblurred results from our Helen test
set. The network optimized solely from the content loss
produces overly smooth deblurred results. The shape of the

Table 1. Performance of our semantic face parsing network.
We measure the F-score on each facial component. “Pre-trained”
model denotes the network trained on clear images. “Fine-tuned”
model is the network fine-tuned on blurred images.

Input image Clear Blurred
Evaluated model Pre-trained Pre-trained Fine-tuned

face 0.923 0.891 0.896
left eyebrow 0.730 0.574 0.596

right eyebrow 0.731 0.581 0.618
left eye 0.748 0.602 0.677

right eye 0.786 0.630 0.608
nose 0.893 0.875 0.855

upper lip 0.645 0.489 0.477
lower lip 0.744 0.605 0.650

teeth 0.451 0.303 0.369
hair 0.557 0.481 0.499

average 0.721 0.603 0.625

(a) (b) (c) (d)

Figure 3. Labeling results of our semantic face parsing net-
work. (a) Ground truth images (b) Blurred images (c) Results
from pre-trained model (trained on clear images) (d) Results from
fine-tuned model (fine-tuned on blurred images).

faces and lips cannot be well recovered as in Figure 4(c).
By introducing the semantic labels as the global priors, the
network better reconstructs the outline of faces. However,
the results may not contain fine details in several key com-
ponents, such as teeth and eyes. The network with the addi-
tional local structural losses restores more details and tex-
tures as shown in Figure 4(e). Table 2 shows the perfor-
mance contribution of each component on both the Helen
and CelebA test sets.

Incremental training. Real-world blurred images are
likely formed by a large diversity of camera motion. In
order to handle random blur kernels in the wild, a simple
strategy is to synthesize a large number of blur kernels and
blurred images for training. However, it is difficult to train
a deep network from scratch using all blurred images si-
multaneously as the network has to learn N -to-1 mapping
where N is the number of blur kernels. The network may
converge to a bad local minimum and cannot restore images
well especially for large blur kernels.

To address this issue, we propose a simple yet effective
incremental training strategy by incorporating more blur
kernels sequentially during training. We first train the net-



(a) (b) (c) (d) (e)
Figure 4. Effects of semantic face parsing on image deblurring.
(a) Ground truth images (b) Blurred images (c) Content loss (d)
Content loss + global semantic priors (e) Content loss + global
semantic priors + local structural losses.

(a) (b) (c) (d)
Figure 5. Visual comparison of training strategies. (a) Ground
truth images (b) Blurred images (c) Direct training (d) Incremental
training.

work on smaller blur kernels (i.e., 13×13). We then gradu-
ally expand the training set by increasing the size of blur
kernels. Specifically, we train the network for K itera-
tions before introducing new blur kernels. While incorpo-
rating new blur kernels, we still sample the existing blur
kernels for training until all blur kernels are included. We
set K = 30000 iterations in our experiments and train the
network for a total of 17 million iterations.

We provide a comparison of the direct training (i.e.,
training all blurred kernels simultaneously) and the pro-
posed incremental training in Figure 5 and Table 2. Fig-
ure 6 shows the quantitative comparison on different sizes
of blur kernels. The proposed incremental training strategy
performs better on all sizes of blur kernels and restores the
images well.

Comparisons with state-of-the-arts. We provide quali-
tative and quantitative comparisons with 7 state-of-the-art
deblurring algorithms, including MAP-based methods [6,
17, 39, 48, 51], a face deblurring method [29] and a CNN-
based method [28]. We denote our method with all the
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Figure 6. Quantitative evaluation of training strategies. We
compare the direct training (blue curve) and the proposed incre-
mental training (red curve) strategies on the Helen test set.

Table 2. Ablation study. While the model with the perceptual
loss achieves the highest PSNR/SSIM, including the adversarial
loss produces more realistic face images.

Approach Helen CelebA
PSNR SSIM PSNR SSIM

Content loss 24.85 0.849 24.23 0.864
+ Global semantic priors 25.32 0.857 24.32 0.864

+ Local structural loss 25.48 0.859 24.58 0.866
+ Incremental training 25.55 0.860 24.61 0.869

+ Perceptual loss 25.99 0.871 25.05 0.879
+ Adversarial loss 25.58 0.861 24.34 0.860

Table 3. Quantitative comparison with state-of-the-art meth-
ods. We compute the average PSNR and SSIM on two test sets.

Method Helen CelebA
PSNR SSIM PSNR SSIM

Krishnan et al. [17] 19.30 0.670 18.38 0.672
Pan et al. [29] 20.93 0.727 18.59 0.677

Shan et al. [39] 19.57 0.670 18.43 0.644
Xu et al. [48] 20.11 0.711 18.93 0.685

Cho and Lee [6] 16.82 0.574 13.03 0.445
Zhong et al. [51] 16.41 0.614 17.26 0.695
Nah et al. [28] 24.12 0.823 22.43 0.832

Ours 25.58 0.861 24.34 0.860

losses and semantic priors as “ours w/ semantics” and our
method using only the content loss as “ours w/o semantics”.

We evaluate the PSNR and SSIM on both the Helen and
CelebA datasets in Table 3. Figure 7 shows quantitative
comparisons on different sizes of blur kernels. The pro-
posed method performs favorably against the state-of-the-
art approaches on both datasets and all blur kernel sizes.
We present visual comparisons in Figure 8. Conventional
MAP-based methods [6, 17, 39, 48, 51] are less effective on
deblurring face images and lead to more ringing artifacts.
The MAP-based face deblurring approach [29] is not robust
to noise and highly relies on the similarity of the reference
image. The CNN-based method [28] does not consider the
face semantic information and thus produces overly smooth
results. In contrast, the proposed method utilizes the global
and local face semantics to restore face images with more
fine details and less visual artifacts. We provide more visual
comparisons in the supplementary material.
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Figure 7. Quantitative evaluation on different sizes of blur kernels. There are 100 latent clear images, 80 blur kernels and a total of
8,000 blurred images in the Helen and CelebA test sets, respectively. Our method performs well on all sizes of blur kernels.

(a) Ground (b) Blurred (c) [17] (d) [29] (e) [39] (f) [48] (g) [6] (h) [51] (i) [28] (j) Ours w/o (k) Ours w/
truth images images semantics semantics

Figure 8. Visual comparison with state-of-the-art methods. The results from the proposed method have less visual artifacts and more
details on key face components (e.g., eyes and mouths).

Table 4. Comparison of execution time. We report the average
execution time on 10 images with the size of 128× 128.

Method Implementation CPU / GPU Seconds

Krishnan et al. [17] MATLAB CPU 2.52
Pan et al. [29] MATLAB CPU 8.11

Shan et al. [39] C++ CPU 16.32
Xu et al. [48] C++ CPU 0.31

Cho and Lee [6] C++ CPU 0.41
Zhong et al. [51] MATLAB CPU 8.07
Nah et al. [28] MATLAB GPU 0.09

Ours MATLAB GPU 0.05

Execution time. We analyze the execution time on a ma-
chine with a 3.4 GHz Intel i7 CPU (64G RAM) and an
NVIDIA Titan X GPU (12G memory). Table 4 shows the
average execution time based on 10 images with a size of
128× 128. The proposed method is more efficient than the
state-of-the-art deblurring algorithms.

Face recognition. We first use the FaceNet [36] to com-
pute the identity distance (i.e., the L2 distance on the out-
puts of FaceNet) between the ground truth face image and
deblurred results. Figure 9 shows that the deblurred images
from the proposed method have the lowest identity distance,
which demonstrates that the proposed method preserves the
face identity well.

As the CelebA dataset contains identity labels, we con-
duct another experiment on face detection and identity
recognition. We consider our CelebA test images as a probe
set, which has 100 different identities. For each identity, we
collect additional 9 clear face images as a gallery set. Given
an image from the probe set, our goal is to find the most
similar face image from the gallery set and identify whether
they belong to the same identity.

We use the OpenFace toolbox [1] to detect the face for
each image in the probe set. However, due to the motion
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Figure 9. Quantitative evaluation on face identity distance. We use the FaceNet [36] to compute the identity distance between the clear
and deblurred face images. The proposed method achieves the lowest identity distance on both the Helen and CelebA test sets.

Table 5. Face detection and recognition on the CelebA dataset.
We show the success rate of face detection and top-1, top-3 and
top-5 accuracy of face recognition.

Method Detection Top-1 Top-3 Top-5

Clear images 100% 71% 84% 89%

Blurred images 81% 31% 46% 53%
Krishnan et al. [17] 84% 36% 51% 59%

Pan et al. [29] 82% 44% 57% 64%
Shan et al. [39] 80% 34% 49% 56%
Xu et al. [48] 86% 43% 57% 64%

Cho and Lee [6] 56% 21% 31% 37%
Zhong et al. [51] 73% 30% 44% 51%
Nah et al. [28] 90% 42% 57% 64%

Ours w/o semantics 95% 42% 55% 62%
Ours w/ semantics 99% 54% 68% 74%

blur and the ringing artifacts, faces in some of the blurred
and deblurred images cannot be well detected. We then
compute the identity distance with all images in the gallery
set and select the top-K nearest matches. We show the suc-
cess rate of the face detection for blurred images and state-
of-the-art deblurring approaches in Table 5. Furthermore,
we compute the recognition accuracy on those successfully
detected face images and show the top-1, top-3 and top-5
accuracy. The proposed method produces fewer artifacts
and thus achieves the highest success rate as well as recog-
nition accuracy against other evaluated approaches.

Real-world blurred images. We also test the proposed
method on face images collected from the real blurred
dataset of Lai et al. [20]. As shown in Figure 10, our method
restores more visually pleasing faces than state-of-the-art
approaches [29, 48]. We provide more deblurred results of
real-world blurred images in the supplementary material.

4.4. Limitations and discussions

Our method may fail when the input face image cannot
be well aligned, e.g., side faces or extremely large motion

(a) (b) (c) (d) (e)
Figure 10. Visual comparison of real-world blurred images.
(a) Blurred images (b) Xu et al. [48] (c) Pan et al. [29] (d) Nah et
al. [28] (e) Ours

blur. Future work includes improving the performance on
handling large and non-uniform blur kernels and relieving
the requirement of face alignment.

5. Conclusions

In this work, we propose a deep convolutional neural
network for face image deblurring. We exploit the face
semantic information as global priors and local structural
constraints to better restore the shape and detail of face im-
ages. In addition, we optimize the network with percep-
tual and adversarial losses to produce photo-realistic results.
We further propose an incremental training strategy for han-
dling random and unknown blur kernels in the wild. Experi-
mental results on image deblurring, execution time and face
recognition demonstrate that the proposed method performs
favorably against state-of-the-art deblurring algorithms.
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