
Convolutional Tensor-Train LSTM for
Spatio-Temporal Learning

Jiahao Su∗12† Wonmin Byeon∗2 Jean Kossaifi2

jiahaosu@umd.edu, {wbyeon,jkossaifi}@nvidia.com

Furong Huang1 Jan Kautz2 Anima Anandkumar2
furongh@cs.umd.edu, {jkautz,aanandkumar}@nvidia.com

1University of Maryland, College Park, MD 2NVIDIA Research, Santa Clara, CA

Abstract

Learning from spatio-temporal data has numerous applications such as human-
behavior analysis, object tracking, video compression, and physics simulation.
However, existing methods still perform poorly on challenging video tasks such
as long-term forecasting. The gap partially is because these kinds of challenging
tasks require learning long-term spatio-temporal correlations in the video sequence.
We propose a higher-order convolutional LSTM model that can efficiently learn
these correlations with a succinct representation of the history. Our model relies on
a novel tensor-train module that performs prediction by combining convolutional
features across time. To make computation and memory requirements feasible,
we develop a novel convolutional tensor-train decomposition of the higher-order
model. This decomposition reduces the model complexity by jointly approximating
a sequence of convolutional kernels as a low-rank tensor-train factorization. As
a result, our model outperforms existing approaches but uses only a fraction of
parameters, including the baseline models. Our results achieve state-of-the-art
performance in a wide range of applications and datasets, including the multi-steps
video prediction on the Moving-MNIST-2 and KTH action datasets as well as early
activity recognition on the Something-Something V2 dataset.

1 Introduction

While computer vision has achieved remarkable successes, e.g., on image classification, many real-life
tasks remain out-of-reach for current deep learning systems, such as prediction from complex spatio-
temporal data. Such data naturally arises in a wide range of applications such as autonomous driving,
robot control [1], visual perception tasks such as action recognition [2] or object tracking [3], and even
weather prediction [4]. This kind of video understanding problems is challenging, since they require
learning spatial-temporal representations that capture both content and dynamics simultaneously.

Learning from (video) sequences. Most state-of-the-art video models are based on recurrent neural
networks (RNNs), typically some variations of Convolutional LSTM (ConvLSTM) where spatio-
temporal information is encoded explicitly in each cell [4–7]. These RNNs are first-order Markovian
models in nature, meaning that the hidden states are updated using information from the previous
time step only, resulting in an intrinsic difficulty in capturing long-range temporal correlations.
∗Equal contribution
†This work was done while the first author was an intern at NVIDIA.
Project page: https://sites.google.com/nvidia.com/conv-tt-lstm

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://sites.google.com/nvidia.com/conv-tt-lstm

Incorporating higher-order correlations. For one-dimensional sequence modeling, Soltani and
Jiang [8] and Yu et al. [9] proposed higher-order generalizations of RNNs for long-term forecasting
problems. Higher-order RNNs explicitly incorporate an extended history of previous states in each
update, which requires higher-order tensors to characterize the transition function (instead of a
transition matrix as in the first-order RNNs). However, this typically leads to an exponential blow-
up in the complexity of the transition function. This problem is compounded when generalizing
ConvLSTM to higher-orders and no prior work explores these generalizations.

Scaling up with tensor methods. To avoid the exponential blow-up in the complexity of transition
function, tensor decompositions [10] have been investigated within higher-order RNNs [9]. Tensor
decomposition avoids the exponential growth of model complexity and introduces an information
bottleneck that facilitates effective representation learning. This bottleneck restricts how much
information can be passed on from one sub-system to another in a learning system [11, 12]. Previously,
low-rank tensor factorization has been used to improve various deep network architectures [13–16].
However, its application has not been explored in the context of spatio-temporal LSTMs. The
only approach that leveraged tensor factorization for compact higher-order LSTMs [9] considers
exclusively sequence forecasting, which does not naturally extend to general spatio-temporal data.

Generalizing ConvLSTM to higher-orders. When extending to higher-orders, we aim to design a
transition function that can leverage all previous hidden states and satisfies three properties: (i) The
operations preserve the spatial structure of the hidden states; (ii) The receptive field increases with
time. In other words, the longer the temporal correlation is captured, the larger the spatial context
should be; (iii) Finally, space and time complexities grow at most linearly with the number of times
steps. Because previous transition functions in higher-order RNNs were designed for one-dimensional
sequence, when directly extended to spatio-temporal data, they do not satisfy all three properties. A
direct extension fails to preserve the spatial stricture or increases the complexity exponentially.

Contributions. In this paper, we propose a higher-order Convolutional LSTM model for complex
spatio-temporal data satisfying all three properties. Our model incorporates a long history of states
in each update while preserving their spatial structure using convolutional operations. Directly
constructing such a model leads to an exponential growth of parameters in both spatial and temporal
dimensions. Instead, our model is made computationally tractable via a novel convolutional tensor-
train decomposition, which recursively performs a convolutional factorization of the kernels across
time. Besides parameter reduction, this factorization introduces an information bottleneck enabling
the learning of better representations. As a result, it achieves better results than previous works with
only a fraction of parameters.

We empirically demonstrate our model’s performance on several challenging tasks, including early
activity recognition and video prediction. We report an absolute increase of 8% accuracy over the
state-of-the-art [7] for early activity recognition on the Something-Something v2 dataset. Our model
outperforms both 3D-CNN and ConvLSTM by a large margin. We also report a new state-of-the-art
for multi-step video prediction on both Moving-MNIST-2 and KTH datasets.

2 Background: Convolutional LSTM and Higher-order LSTM

In this section, we briefly review Long Short-Term Memory (LSTM), and its generalizations Convolu-
tional LSTM for sptio-temporal modeling, and higher-order LSTM for learning long-term dynamics.

Long Short-Term Memory (LSTM) [17] is a first-order Markovian model widely used in 1D
sequence learning. At each time step, an LSTM cell updates its states {h(t), c(t)} using the
immediate previous states {h(t− 1), c(t− 1)} and the current input x(t) as

[i(t);f(t); c̃(t);o(t)] = σ(Wx(t) + Kh(t− 1)); (1a)
c(t) = c(t− 1) ◦ f(t) + c̃(t) ◦ i(t), h(t) = o(t) ◦ σ(c(t)), (1b)

where σ(·) denotes a sigmoid(·) applied to the input gate i(t), forget gate f(t) and output gate o(t),
and a tanh(·) applied to the memory cell c̃(t) and cell state c(t). ◦ denotes element-wise product.
LSTMs have two major restrictions: (a) only 1D-sequences can be modeled, not spatio-temporal data
such as videos; (b) they are difficult to capture long-term dynamics as first-order models.

Convolutional LSTM (ConvLSTM) [4, 18] addresses the limitation (a) by extending LSTM to
model spatio-temporal structures within each cell, i.e., the states, cell memory, gates and parameters

2

are all encoded as high-dimensional tensors:
[I(t);F(t); C̃(t);O(t)] = σ(W ∗ X (t) +K ∗ H(t− 1)), (2)

where ∗ defines convolution between states and parameters as in convolutional neural networks.

Higher-order LSTM (HO-LSTM) is a higher-order Markovian generalization of the basic LSTM,
which partially addresses the limitation (b) in modeling long-term dynamics. Specifically, HO-LSTM
explicitly incorporates more previous states in each update, replacing the first step in LSTM by

[i(t);f(t); c̃(t);o(t)] = σ (Wx(t) + Φ (h(t− 1), · · · ,h(t−N))) , (3)
where Φ combinesN previous states {h(t− 1), · · · ,h(t−N)} andN is the order of the HO-LSTM.
Two realizations of Φ have been proposed: a linear function [8] and a polynomial one [9]:

Linear: Φ (h(t− 1), · · · ,h(t−N); T (1), · · · ,T (N)) =
∑N

i=1
T (i)h(t− i). (4)

Polynomial: Φ (h(t− 1), · · · ,h(t−N); T) = 〈T , h(t− 1)⊗ · · · ⊗ h(t−N)〉 . (5)

While a linear function requires the numbers of parameters and operations growing linearly in N , a
polynomial function has space/computational complexity exponential in N if implemented naively.

3 Methodology: Convolutional Tensor-Train LSTM

Here, we detail the challenges and requirements for designing a higher-order ConvLSTM. We then
introduce our model and motivate the design of each module by these requirements.

3.1 Extending ConvLSTM to Higher-orders

We can express a general higher-order ConvLSTM by combining several previous states when
computing the gates for each step:[

I(t);F(t); C̃(t);O(t)
]

= σ (W ∗ X (t) + Φ (H(t− 1), · · · ,H(t−N))) . (6)

(1) The spatial structure in the hidden statesH(t)’s is preserved by the operations in Φ.
(2) The size of the receptive field for H(t − i) increases with i, the time gap from the current

step (i = 1, 2, · · · , N). In other words, the longer temporal correlation captured, the larger the
considered spatial context should be.

(3) Both space and time complexities grow at most linearly with times steps N , i.e., O(N).

Limitations of previous approaches. While it is possible to construct a function Φ by extending
the linear function in Eq.(4) or the polynomial function in Eq.(5) to the tensor case, none of these
extensions satisfy the all three properties. While the polynomial function with tensor-train decompo-
sition [9] meets requirement (3), the operations do not preserve the spatial structures in the hidden
states. On the other hand, augmenting the linear function with convolutions leads to a function:

Φ (H(t− 1), · · · ,H(t−N); K(1), · · · ,K(N)) =
∑N

i=1
K(i) ∗ H(t− i) (7)

which does not satisfy requirement (2) if all K(i) contain filters of the same size K. An immediate
remedy is to expand K(i) such that its filter size K(i) grows linearly in i. However, the resulting
function requires O(N3) space/computational complexity, violating the requirement (3).

3.2 Designing an Effective and Efficient Higher-order ConvLSTM

In order to satisfy all three requirements (1)-(3) introduced above, and enable efficient learn-
ing/inference, we propose a novel convolutional tensor-train decomposition (CTTD) that leverages a
tensor-train structure [19] to jointly express the convolutional kernels {K(1), · · · ,K(N)} in Eq.(7)
as a series of smaller factors {G(1), · · · ,G(N)} while maintaining their spatial structures.

Convolutional Tensor-Train module. Concretely, let K(i) be the i-th kernel in Eq.(7), of size
[K(i)×K(i)×C(i)×C(0)], where K(i) = i[K(1)− 1] + 1 is the filter size that increases linearly
with i; K(1) is the initial filter size; C(i) is the number of channels in H(t − i); and C(0) is the
number of channels for the output of the function Φ (thus C(0) = 4×Cout, where Cout is the number
of channels of the higher-order ConvLSTM). The CTTD factorizes K(i) using a subset of factors
{G(1), · · · ,G(i)} up to index i such that

K(i):,:,ci,c0 , CTTD
(
{G(j)}ij=1

)
=

C(i−1)∑
ci−1=1

· · ·
C(1)∑
c1=1

G(i):,:,ci,ci−1 ∗ · · · ∗ G(2):,:,c2,c1 ∗ G(1):,:,c1,c0 , (8)

3

*

7x7

3x3

 Preprocessing Module Conv. Tensor-Train Module

5x5

+

G(1)=K (1)

tanh

+

Convolution

Element-wise product

Addition

Sigmoid

Hyperbolic tangent

3x3

G(2)

G(3) *

K (2)H(t−2:t−4)

P(3)

3x3

+

tanh

+

*

*

*

P(2)

P(1)

H(t−1:t−3)

H(t−3:t−5)

*

*

*

*

*
K (3)

C(t−1)

X(t)
W

*

H (1)
~

H (2)
~

H (3)
~

H(t)

C(t)

 LSTM

Figure 1: Convolutional Tensor-Train LSTM. The preprocessing module first groups the previous
hidden states into overlapping sets with a sliding window, and reduces the number of channels in
each group using a convolutional layer. The convolutional tensor-train module takes the results,
aggregates their spatio-temporal information, and computes the gates for the LSTM update. The
diagram visualizes a Conv-TT-LSTM with one channel. When Conv-TT-LSTM has multiple channels,
the addition also accumulates the results from multiple channels.

where G(i) has size [K(1) × K(1) × C(i) × C(i − 1)]. The number of factors N is known as
the order of the decomposition, and the ranks of the decomposition {C(1), · · · , C(N − 1)} are the
channels of the convolutional kernels.

Notice that the same set of factors {G(1), · · · ,G(N)} is reused to construct all convolutional kernels
{K(1), · · · ,K(N)}, such that the number of total parameters grows linearly in N . In fact, the
convolutional kernel K(i + 1) can be recursively constructed as K(i) = G(i) ∗ K(i − 1) with
K(1) = G(1) and K(i):,:,ci,c0 =

∑
ci−1
G(i):,:,ci,ci−1 ∗ K(i− 1):,:,ci−1,c0 for i ≥ 2.

This results into in a convolutional tensor-train module that we use for function Φ in Eq.(7):

Φ = CTT(H(t− 1), · · · ,H(t−N); G(1), · · · ,G(N)) =
∑N

i=1
CTTD

(
{G(j)}ij=1

)
∗ H(t− i) (9)

In Appendix A, we show that the computation of Eq.(9) can be done in linear time O(N), thus the
construction of CTT satisfies all requirements (1)-(3).

Preprocessing module. In Eq.(9), we use the raw hidden states H(t) as inputs to CTT. This
design has two limitations: (a) The number of past steps in CTT (i.e., the order of the higher-order
ConvLSTM) is equal to the number of factors in CTTD (i.e., the order of the tensor decomposition),
which both equal to N . It is prohibitive to use a long history, as a large tensor order leads to gradient
vanishing/exploding problem in computing Eq.(9); (b) All the ranks C(i) are equal to the number of
channels inH(t), which prevents the use of lower-ranks to further reduce the model complexity.

To address both issues, we develop a preprocessing module to reduce the number of steps and
channels in previous hidden states before CTT. Suppose the number of steps M is no less than the
tensor order N (i.e., M ≥ N), the preprocessing collects the neighboring steps with a sliding window
and reduce it into an intermediate result with C(i) channels:

H̃(i) = P(i) ∗ [H(t− i); · · · ;H(t− i+N −M)] (10)

where P(i) represents a convolutional layer that maps the concatenation [·] into H̃(i).

Convolutional Tensor-Train LSTM. By combining all the above modules, we obtain our proposed
Conv-TT-LSTM, illustrated in Figure 1 and expressed as:[

I(t);F(t); C̃(t);O(t)
]

= σ
(
W ∗ X (t) + CTT

(
H̃(1), · · · , H̃(N); G(1), · · · ,G(N)

))
(11)

This final implementation has several advantages: it drastically reduces the number of parameters
and makes the higher-order ConvLSTM even more compact than the first-order ConvLSTM. The
low-rank constraint acts as an implicit regularizer, leading to more generalizable models. Finally, the
tensor-train structure inherently encodes the correlations resulting from the natural flow of time [9].
The full procedure can be found in Appendix A (algorithm 2).

4

4 Experiments

Here, we empirically evaluate our approach on several datasets for two different tasks — video
prediction and early activity recognition and find out it outperforms existing approaches.

Evaluation. For video prediction, the model predicts every pixel in the frame. We test our proposed
models on the KTH human action dataset [20] with resolution 128× 128 and the Moving-MNIST-2
dataset [2] with resolution 64 × 64. All models are trained to predict 10 future frames given 10
input frames and tested to predict 10 − 40 frames recursively. For early activity recognition, we
evaluate our approach on the Something-Something V2 dataset. Following [7], we used the subset
of 41 categories defined by Goyal et al. [21] (Table 7). The prediction model is trained to predict
the next 10 frames given 25%− 50% of frames, and jointly classify the activity using the learned
representations of the prediction model.

Model architecture. In all video prediction experiments, we use 12 recurrent layers. For early
activity recognition, we follow the framework in [7]. The prediction model consists of two-layers
2D-convolutional encoder and decoder with eight recurrent layers in between. The classifier, which
contains two 2D-convolutional layers and one fully-connected layer, takes the last recurrent layer’s
output and returns a label output. We explain the detailed architecture in Appendix B.

Loss function. For video prediction, we optimize an `1+`2 loss Lprediction = ‖X −X̂‖2F +‖X −X̂‖1,
where X and X̂ are the ground-truth and predicted frames. For early activity recognition, we
combine the prediction loss above with an additional cross entropy for classification Lrecognition =
λ · Lprediction + Lce(y, ŷ), where y and ŷ are the ground-truth and predicted labels. The weighting
factor λ balances the learning representation and exploiting the representation for activity recognition.

Hyper-parameter selection. We validate the hyper-parameters of our Conv-TT-LSTM on though
a wide grid search on the validation set. Specifically, we consider a base filter size S = 3, 5, order
of the decomposition N = 1, 2, 3, 5, tensor ranks C(i) = 4, 8, 16, and number of hidden states
M = 1, 3, 5. Appendix B contains the details of our hyper-parameter search.

Efficient Implementation. Two versions of the implementation are available: the original and the
optimized version. In the optimized version, we use multi-threading to accelerate our implementation
using the NVIDIA apex library [22]. Furthermore, we adopt fused kernels to speed up the ADAM
optimizer [23] and TorchScript to fuse multiplications and additions. Lastly, we use affinity binding to
reduce the communication cost between GPUs and CPUs. These modifications speed up training up
to four times. Both versions are available online: https://github.com/NVlabs/conv-tt-lstm.

4.1 Experimental Results

Multi-frame Video prediction: KTH action dataset. First, we test our model with human action
videos. In Table 2, we report the evaluation on both 20 and 40 frames prediction. Figure 2 (right)
shows the model comparisons with SSIM v.s. LPIPS and the model size. (1) Our model is consistently
better than the ConvLSTM baseline for both 20 and 40 frames prediction. (2) While our proposed

 ConvLSTM

Conv-TT-LSTM [Ours]

PredRNN++ [18]

E3D-LSTM [19] 3.97M

2.69M

15.05M

41.94M

2M 10M 20M 30M

80 70 60 50 40 30

0.79

0.8

0.81

0.82

0.83

0.84

0.85

LPIPS (lower is better)

S
S
IM

 (
hi

gh
er

 is
 b

et
te

r)

Best

 ConvLSTM

Conv-TT-LSTM [Ours]

PredRNN++ [18]

E3D-LSTM [19]

3.97M

2.69M

15.05M

41.94M

2M 10M 20M 30M

350 300 250 200 150
0.86

0.865

0.87

0.875

0.88

0.885

LPIPS (lower is better)

S
S
IM

 (
hi

gh
er

 is
 b

et
te

r)

Best

Figure 2: SSIM v.s. LPIPS scores on Moving MNIST-s2 (left) and KTH action datasets (right).
The bubble size is the model size. The higher SSIM scores and lower LPIPS scores, the better
quality of predictions. On both datasets and for both metrics, our approach reaches a significantly
better performance than other methods while having only a fraction of the parameters.

5

https://github.com/NVlabs/conv-tt-lstm

input ground truth (top) / predictions input ground truth (top) / predictions
t = 1 6 11 17 23 29 35 t = 1 6 11 15 19 23 27

PredRNN++ PredRNN++

E3D-LSTM E3D-LSTM

ConvLSTM ConvLSTM

Conv-TT-LSTM Conv-TT-LSTM

Figure 3: 30 frames prediction on Moving-MNIST (left), and 20 frame prediction on KTH
action datasets (right) given 10 input frames. The first frames (t = 1, 11) are animations. Adobe
reader is required to view the animation. Our method generates both semantically plausible and
visually crisp images, compared to other approaches.

Conv-TT-LSTMs achieve lower SSIM value compared to the state-of-the-art models in 20 frames
prediction, they outperform all previous models in LPIPS for both 20 and 40 frames prediction.
Figure 3 (right) shows a visual comparison of our model, ConvLSTM baseline, PredRNN++ [6], and
E3D-LSTM [7]. Appendix C includes more examples of visual results. Overall, our model produces
sharper frames and better preserves the human silhouettes’ details, although there exist slight artifacts
over time (shifting). We believe this artifact can be resolved by using a different loss or an additional
technique that helps per-pixel motion prediction.

Front 25% Front 50% 100% Front 25% Front 50% 100%

...
3D-CNN Wrong (100%) Wrong (100%)

Pushing [something]
from right to left

Wrong (67%) Wrong (100%)
Pulling [something]

from right to left
ConvLSTM Wrong (84%) Wrong (46%) Wrong (84%) Correct (61%)
Conv-TT-LSTM Wrong (18%) Correct (100%) Wrong (18%) Correct (98%)

Figure 4: Examples of Early Activity Recognition Results given 25% and 50% of frames on the
Something-Something V2 dataset, and (·) is the confidence for Correct/Wrong prediction.

Model Input Dropping Holding MovingLR MovingRL Picking Poking Pouring Putting Showing Tearing

3D-CNN
25%

8.5 4.7 25.8 32.6 7.5 2.9 1.9 10.3 14.0 14.5
ConvLSTM 8.5 7.0 27.4 38.8 16.8 5.9 1.9 12.0 7.0 21.2
Conv-TT-LSTM 11.5 4.7 33.9 40.8 16.8 5.9 5.7 13.6 20.9 26.0
3D-CNN

50%
14.6 11.6 45.2 57.1 16.8 8.8 11.3 17.4 16.3 26.0

ConvLSTM 21.5 7.0 43.5 47.0 15.9 14.7 5.7 20.7 16.3 30.8
Conv-TT-LSTM 24.6 11.6 56.5 57.1 27.6 5.9 13.2 25.5 37.2 46.2

Table 1: Per-activity accuracy of early activity recognition on the Something-Something V2
dataset. We used 41 categories for training. For per-activity evaluation, the 41 categories are grouped
into 10 similar activities. The activity mapping are described in [21]. Our model substantially
outperforms 3D-CNN and ConvLSTM on long-term dynamics such as Moving or Tearing, while
achieves marginal improvement on static activities such as Holding or Pouring.

Early activity recognition: Something-Something V2 dataset. To demonstrate that our Conv-
TT-LSTM-based prediction model can learn efficient representations from videos, we evaluate the
models on early activity recognition on the Something-Something V2 dataset. In this task, a model
only observes a small fraction (25% − 50%) of frames and learns to predict future frames. Based
on the learned representations of the beginning frames, the model predicts the full video’s overall
activity. Intuitively, the learned representation encodes the future information for frame prediction,
and the better the quality of the representations, the higher the classification accuracy. As shown in

6

Table 1 and Table 3 our Conv-TT-LSTM model consistently outperforms the baseline ConvLSTM and
3D-CNN models as well as E3D-LSTM [7] under different ratio of input frames. Our experimental
setup and architecture follow [7].

Method (10 -> 20) (10 -> 40) Complexities
PSNR SSIM LPIPS PSNR SSIM LPIPS # Params. # FLOPS Time(m)

K
T

H
ac

tio
n

ConvLSTM [4] 23.58 0.712 - 22.85 0.639 - 7.58M 106.6G -
MCNET [24] 25.95 0.804 - - - - - - -
PredRNN++ [6] (retrained [25]) 28.62 0.888 228.9 26.94 0.865 279.0 15.05M - -
E3D-LSTM [7] (retrained [26]) 27.92 0.893 298.4 26.55 0.878 328.8 41.94M - -

ConvLSTM (baseline) 28.21 0.903 137.1 26.01 0.876 201.3 3.97M 55.83G 28.9
ConvLSTM (classic TTD [27, 28]) 27.70 0.897 141.5 25.89 0.872 191.7 2.21M - -

Conv-TT-LSTM (Ours) 28.36 0.907 133.4 26.11 0.882 191.2 2.69M 37.83G 74.8

Method (10 -> 10) (10 -> 30) Complexities
MSE SSIM LPIPS MSE SSIM LPIPS # Params. # FLOPS Time(m)

M
ov

in
g-

M
N

IS
T ConvLSTM [4] 25.22 0.713 - 38.13 0.595 - 7.58M 30.32G -

VPN [29] 15.65 0.870 - 31.64 0.620 - - - -
PredRNN++ [6] (retrained [25]) 10.29 0.913 59.51 20.53 0.834 139.9 15.05M - -
E3D-LSTM [7] (pretrained [26]) 20.23 0.869 76.12 32.37 0.803 150.3 41.94M - -

ConvLSTM (baseline) 18.17 0.882 67.13 33.08 0.806 140.1 3.97M 15.88G 14.8
ConvLSTM (classic TTD [27, 28]) 16.78 0.890 57.90 29.07 0.815 126.4 2.20M - -

Conv-TT-LSTM (Ours) 12.96 0.915 40.54 25.81 0.840 90.38 2.69M 10.76G 29.6

Table 2: Evaluation of multi-steps prediction on the KTH action (top) and Moving-MNIST-2
(bottom) datasets. Higher PSNR/SSIM and lower MSE/LPIPS values indicate better predictive
results. # of FLOPs denotes the multiplications for one-step prediction per sample, and Time(m)
represents the clock time (in minutes) required by training the model for one epoch (10,000 samples)

Multi-frame video prediction: Moving-MNIST-2 dataset. We also evaluate our model on the
Moving-MNIST-2 dataset and show that our model predicts the digits almost correctly in terms of
structure and motion (See Figure 3). Table 2 reports the average statistics for 10 and 30 frames
prediction, and Figure 2 (left) shows the comparisons of SSIM v.s. LPIPS and the model size. Our
Conv-TT-LSTM models (1) consistently outperform the ConvLSTM baseline for both 10 and 30
frames prediction with fewer parameters; (2) outperform previous approaches in terms of SSIM and
LPIPS (especially on 30 frames prediction), with less than one fifth of the model parameters.

We reproduce the PredRNN++ [6] and E3D-LSTM [7] from the source code [25, 26]. We find that
(1) PredRNN++ and E3D-LSTM output vague and blurry digits in long-term prediction (especially
after 20 steps); (2) our Conv-TT-LSTM produces sharp and realistic digits over all steps. An example
of visual comparison is shown in Figure 3, and more visualizations can be found in Appendix C.

Model Input Ratio

Front 25% Front 50%

3D-CNN* 9.11 10.30
E3D-LSTM* [7] 14.59 22.73

3D-CNN 13.26 20.72
ConvLSTM 15.46 21.97
Conv-TT-LSTM (ours) 19.53 30.05

Table 3: Early activity recognition on the
Something-Something V2 dataset using 41
categories as [7]. (*) indicates the result by [7].

MSE(×10−3) SSIM LPIPS

CTTD with 1× 1 filters (similar to standard TTD)

single order 31.52 0.810 148.7
order 3 34.84 0.800 151.2

CTTD with 5× 5 filters

single order 33.08 0.806 140.1
order 3 28.88 0.831 104.1

Table 4: Ablation studies of higher-order Conv-
TT-LSTM on Moving-MNIST-2 dataset. The
models are tested for 10 to 30 frames prediction.

7

5 Discussion

In this section, we further justify the importance of the proposed modules, convolutional tensor-train
decomposition (CTTD) and the preprocessing module. We also explain the computational complexity
of our model and the difficulties of spatio-temporal learning with Transformer [30].

Importance of encoding higher-order correlations in a convolutional manner. Two key differ-
ences between CTTD and existing low-rank decompositions are higher-order decomposition and
convolutional operations. To verify their impact, we compare the performance of two ablated models
against our CTTD-base model in Table 4. The single order means that the higher-order model is
replaced with a first-order model (tensor order = 1). By replacing 5× 5 filters to 1× 1, the convolu-
tions are removed, and the CTTD reduces to a standard tensor-train decomposition. The results show
a decrease in performance: the ablated models achieve similar performances of ConvLSTM baseline
at best, demonstrating that both higher-order models and convolutional operations are necessary.

Importance of the preprocessing module. There could be other ways to incorporate previous
hidden states into the CTT module. One is to reduce the number of channels while keeping the
number of steps; the other is to reuse all previous states’ concatenation for each input to CTT. The
former fails due to the gradient vanishing/exploding problem, while the latter has a tube-shaped
receptive field that fails to distinguish more recent steps and the ones from the remote history.

Computational complexity. Table 2 provides the number of FLOPS for all models. Our Conv-TT-
LSTM model has lower computational complexity and fewer parameters than other models under
comparison. This efficiency is made possible by a linear algorithm for the convolutional tensor-train
module in Eq.(9), which is derived in Appendix A.

Trade-off between FLOPs and latency. Notice that a lower FLOPS does not necessarily lead to
faster computation since the convolutional tensor-train module is naturally sequential. In Appendix A,
we introduce two algorithms. While algorithm 2 significantly decreases the complexity in FLOPs, it
also lowers the degree of parallelism. However, algorithm 1 shows how our model can be parallelized.
Ideally, these two algorithms can be combined using CUDA multi-streams (execute multiple kernels
in parallel): use algorithm 1 for the beginning iterations of i and algorithm 2 for the later ones
(the beginning ones have smaller kernel sizes). In our current implementation, we use algorithm 2
to reduce the GPU memory requirement. As stated in Table 2, the run-time is 74.8 minutes for
Conv-TT-LSTM (37.83 GFLOPs) vs. 28.9 mins for ConvLSTM (55.83 GFLOPs) per epoch on KTH
without any GPU optimization. With an efficient implementation as mentioned in section 4, we
manage to decrease them to 27.3 mins (37.83 GFLOPs) for Conv-TT-LSTM vs. 26.2 mins (55.83
GFLOPs) for ConvLSTM. Finally, Conv-TT-LSTM is only slightly slower than ConvLSTM despite
the lack of parallelism.

Classic Tensor-Train Decomposition for RNN compression. Classic tensor-train decomposition
(TTD) [19] is traditionally used to compress fully-connected and convolutional layer in a feed-forward
network [31, 28], where the parameters in each layer are reshaped into a higher-order tensor and
stored in a factorized form. Yang et al. [27] applies this idea to RNNs and compress the input-hidden
transition matrix [31]. There are three major differences between our work and Yang et al. [27]:

• Single-order LSTM v.s. Higher-order ConvLSTM. Yang et al. [27] consider a first-order fully-
connected LSTM [17] for compression, while our method aims to compress a higher-order
convolutional LSTM model.

• Classic decomposition v.s. Convolutional decomposition. Yang et al. [27] relies on the classic
TTD, while our proposed convolutional tensor-train decomposition (CTTD) factorizes the tensor
with convolutions in addition to inner products; our decomposition is designed to preserve spatial
structures in spatio-temporal data.

• Compression of input-hidden matrix v.s. hidden-to-hidden convolutional kernels. Yang et al. [27]
only compresses input-hidden transition W in LSTM, but our CTTD compresses a sequence of
convolutional kernels {K(1), · · · ,K(N)} for different time steps simultaneously (see Eq.(7)).

To understand the necessity of our design for long-term spatio-temporal dynamics, we develop a
compressed ConvLSTM following the same idea in [31, 28, 27], which stores the parameters for
input-hidden transitionW in a tensor-train formatW = TT({G(i)}N−1i=0) (where N denotes the order
of the decomposition, i.e., the number of factors):

[I(t);F(t); C̃(t);O(t)] = σ(TT({G(i)}N−1
i=0) ∗ X (t) +K ∗ H(t− 1)) (12)

8

Since the transition in ConvLSTM is characterized as a convolutional layer, we follow the approach by
Garipov et al. [28] and representW with size [K×K×Cout×Cin] usingN factors: (1) The 4-th order
tensorW is reshaped to an 2M -th order tensor W̃ with size [K×K×T1 · · ·×TN−1×S1 · · ·×SN−1]

and Cout =
∏N−1

i=1 Ti, Cin =
∏N−1

i=1 Si; (2) The tensor W̃ is factorized using TTD as

W̃i,j,t1,··· ,tN−1,s1,··· ,sN−1 ,
∑

r0,··· ,rN−1

G(0)i,j,r0G(1)t1,s1,r0,r1 · · · G(N − 1)i,j,rN−1 (13)

where G(0) has size [K × K × R0], G(i) has [Ti × Si × Ri−1 × Ri] for 0 < i < N − 1, and
G(N − 1) has [TN−1 × SN−1 ×RN−1]. A comparison against the uncompressed ConvLSTM and
our Conv-TT-LSTM is presented in Table 2. We observe that our model outperforms this method on
MNIST and KTH (except LPIPS on KTH) with similar number of parameters.

Transformer for spatio-temporal learning. Transformer [30] is a popular predictive model based
on the attention mechanism, which is very successful in natural language processing [32]. However,
the Transformer has prohibitive limitations on video understanding, due to excessive needs for
both memory and computation. While language modeling only involves temporal attention, video
understanding requires attention to spatial dimensions as well [33]. Moreover, since the attention
mechanism does not preserve the spatial structures by design, Transformer additionally requires
auxiliary components including an autoregressive module and multi-resolution upscaling when
applied on spatial data [34, 35, 33]. Our Conv-TT-LSTM incorporates a broad spatio-temporal context,
but with a compact, efficient and structure-preserving operator without additional components.

6 Related Work

Tensor decompositions. Tensor decompositions such as CP, Tucker or Tensor-Train [36, 19], are
widely used for dimensionality reduction [37] and learning probabilistic models [10]. These tensor
factorization techniques have also been widely used in deep learning to improve performance,
speed-up computation, and compress the deep neural networks [13, 14, 31, 38–41, 16], recurrent
networks [42, 27] and Transformers [43]. Yang et al. [27] has proposed tensor-train RNNs to
compress both inputs-states and states-states matrices within each cell with TTD by reshaping the
matrices into tensors, and showed improvement for video classification.

Departing from prior works that rely on existing, well-established tensor decompositions, here
we propose a novel convolutional tensor-train decomposition (CTTD) designed to enable efficient
and compact higher-order convolutional recurrent networks. Unlike Yang et al. [27], we aim to
compress higher-order ConvLSTM, rather than first-order fully-connected LSTM. We further propose
Convolutional Tensor-Train decomposition to preserve spatial structure after compression.

Spatio-temporal prediction models. Prior prediction models have focused on predicting short-term
video [44, 45] or decomposing motion and contents [46, 24, 47, 48]. Many of these works use
ConvLSTM as a base module, which deploys 2D convolutional operations in LSTM to efficiently
exploit spatio-temporal information. Some works modified the standard ConvLSTM to better capture
spatio-temporal correlations [5, 6]. Byeon et al. [45] demonstrated strong performance using a deep
ConvLSTM network as a baseline, and we adopt this base architecture in the present paper.

7 Conclusion

In this paper, we proposed a fully-convolutional higher-order LSTM model for spatio-temporal data.
To make the approach computationally and memory feasible, we proposed a novel convolutional
tensor-train decomposition that jointly parameterizes the convolutions and naturally encodes temporal
dependencies. The result is a compact model that outperforms prior work on video prediction,
including something-something V2, moving-MNIST-2, and KTH action datasets. Going forward, we
plan to investigate our CTT module in a framework that spans not only higher-order RNNs but also
Transformer-like architectures for efficient spatio-temporal learning.

9

Funding Disclosure

This work was done while the author, Jiahao Su, was an intern at NVIDIA. Su was also partially
supported by the startup fund from Department of Computer Science of University of Maryland and
National Science Foundation IIS-1850220 CRII Award 030742- 00001. The author, Furong Huang,
was supported by Adobe, Capital One, and JP Morgan faculty fellowships.

Impact Statement

In this paper, the authors introduce Convolutional Tensor-Train LSTM model for spatio-temporal
learning. Our model can be applied to any spatio-temporal data, e.g., physical system simulation and
video understanding.

For physical system simulation, our model could be used in weather or turbulence prediction, where
no simple physics rule can be used to anticipate the future. The potential in these applications could
reduce loss by extreme weathers, and the chance of aircraft encountering violent turbulence. For
video understanding, our model can be applied to a wide range of applications including autonomous
driving, robot control, human behavior analysis and object tracking.

While these applications greatly relieve humans from tedious and repeat laboring, they have raised
questions in the society. For example, (1) faulty predictions in autonomous driving systems - do we
have safeguards in place? (2) human tracking and behavior analysis - are we protecting privacy?
(3) finally, object tracking - how are we regulating? Therefore, it is crucial to consider whether the
technology could be misused before they are deployed, and what needs to be in place to avoid an
undesired consequence.

We suggest the researcher in physical sciences and social sciences to investigate questions such as:

• Can a machine learning approach simulate a physical system given sufficient data? If not, to what
extent the physical system can be learned?

• How to systematically verify the capacity of a machine learning model, such that certain behavior
can be prohibited before deployment?

• How to define the responsibility if an autonomous system produces an undesired outcome (for
example, car crash and personal information leakage)?

References
[1] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017

IEEE International Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE,
2017.

[2] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using lstms. In International conference on machine learning, pages 843–852,
2015.

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and
Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 961–971, 2016.

[4] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun
Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting.
In Advances in neural information processing systems, pages 802–810, 2015.

[5] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and S Yu Philip. Predrnn:
Recurrent neural networks for predictive learning using spatiotemporal lstms. In Advances in
Neural Information Processing Systems, pages 879–888, 2017.

[6] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Predrnn++:
Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. arXiv
preprint arXiv:1804.06300, 2018.

[7] Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, and Li Fei-Fei. Eidetic
3d lstm: A model for video prediction and beyond. preprint, 2018.

10

[8] Rohollah Soltani and Hui Jiang. Higher order recurrent neural networks. arXiv preprint
arXiv:1605.00064, 2016.

[9] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using
tensor-train rnns. arXiv preprint arXiv:1711.00073, 2017.

[10] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. The Journal of Machine Learning Research,
15(1):2773–2832, 2014.

[11] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE, 2015.

[12] Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep
representations. The Journal of Machine Learning Research, 19(1):1947–1980, 2018.

[13] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

[14] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin.
Compression of deep convolutional neural networks for fast and low power mobile applications.
arXiv preprint arXiv:1511.06530, 2015.

[15] Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. T-net: Parametrizing
fully convolutional nets with a single high-order tensor. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7822–7831, 2019.

[16] Jean Kossaifi, Antoine Toisoul, Adrian Bulat, Yannis Panagakis, Timothy Hospedales, and Maja
Pantic. Factorized higher-order cnns with an application to spatio-temporal emotion estimation.
In IEEE CVPR, 2020.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[18] Marijn F Stollenga, Wonmin Byeon, Marcus Liwicki, and Juergen Schmidhuber. Parallel
multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In
Advances in neural information processing systems, pages 2998–3006, 2015.

[19] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

[20] Ivan Laptev, Barbara Caputo, et al. Recognizing human actions: a local svm approach. In null,
pages 32–36. IEEE, 2004.

[21] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The" something something" video database for learning and evaluating visual common
sense. In ICCV, volume 1, page 5, 2017.

[22] Github Repo. Github repo. https://github.com/NVIDIA/apex, 2018. [Online; accessed
20-October-2020].

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing
motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033,
2017.

[25] Github Repo. Github repo. https://github.com/Yunbo426/predrnn-pp, 2019. [Online;
accessed 20-October-2020].

[26] Github Repo. Github repo. https://github.com/google/e3d_lstm, 2019. [Online;
accessed 20-October-2020].

11

https://github.com/NVIDIA/apex
https://github.com/Yunbo426/predrnn-pp
https://github.com/google/e3d_lstm

[27] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks
for video classification. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3891–3900. JMLR. org, 2017.

[28] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ultimate ten-
sorization: compressing convolutional and fc layers alike. arXiv preprint arXiv:1611.03214,
2016.

[29] Nal Kalchbrenner, Aäron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1771–1779. JMLR. org, 2017.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[31] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. In Advances in neural information processing systems, pages 442–450, 2015.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[33] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive video models.
arXiv preprint arXiv:1906.02634, 2019.

[34] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In International Conference on Machine Learning, pages
4055–4064, 2018.

[35] Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale pixel
networks and multidimensional upscaling. arXiv preprint arXiv:1812.01608, 2018.

[36] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51
(3):455–500, 2009.

[37] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P Mandic,
et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank
tensor decompositions. Foundations and Trends R© in Machine Learning, 9(4-5):249–429, 2016.

[38] Jean Kossaifi, Zachary Lipton, Aran Khanna, Tommaso Furlanello, and Anima Anandkumar.
Tensor regression networks. arXiv, 2017.

[39] Yongxin Yang and Timothy Hospedales. Deep multi-task representation learning: A tensor
factorisation approach. arXiv preprint arXiv:1605.06391, 2016.

[40] Jiahao Su, Jingling Li, Bobby Bhattacharjee, and Furong Huang. Tensorized spectrum preserv-
ing compression for neural networks. arXiv preprint arXiv:1805.10352, 2018.

[41] Arinbjörn Kolbeinsson, Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Ioanna Tzoulaki,
and Paul Matthews. Stochastically rank-regularized tensor regression networks. arXiv preprint
arXiv:1902.10758, 2019.

[42] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Compressing recurrent neural network
with tensor train. In 2017 International Joint Conference on Neural Networks (IJCNN), pages
4451–4458. IEEE, 2017.

[43] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Dawei Song, and Ming Zhou.
A tensorized transformer for language modeling. arXiv preprint arXiv:1906.09777, 2019.

[44] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video
prediction and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016.

12

[45] Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and Petros Koumoutsakos. Contextvp:
Fully context-aware video prediction. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 753–769, 2018.

[46] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interac-
tion through video prediction. In Advances in neural information processing systems, pages
64–72, 2016.

[47] Emily L Denton et al. Unsupervised learning of disentangled representations from video. In
Advances in neural information processing systems, pages 4414–4423, 2017.

[48] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. Learning
to decompose and disentangle representations for video prediction. In Advances in Neural
Information Processing Systems, pages 517–526, 2018.

[49] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[50] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Advances in Neural Information
Processing Systems, pages 1171–1179, 2015.

[51] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):
600–612, 2004.

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

13

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	anm3:
	4.0:
	4.1:
	4.2:
	4.3:
	4.4:
	4.5:
	4.6:
	4.7:
	4.8:
	4.9:
	4.10:
	4.11:
	4.12:
	4.13:
	4.14:
	4.15:
	4.16:
	4.17:
	4.18:
	4.19:
	4.20:
	4.21:
	4.22:
	4.23:
	4.24:
	4.25:
	4.26:
	4.27:
	4.28:
	4.29:
	anm4:
	5.0:
	5.1:
	5.2:
	5.3:
	5.4:
	5.5:
	5.6:
	5.7:
	5.8:
	5.9:
	5.10:
	5.11:
	5.12:
	5.13:
	5.14:
	5.15:
	5.16:
	5.17:
	5.18:
	5.19:
	anm5:
	6.0:
	6.1:
	6.2:
	6.3:
	6.4:
	6.5:
	6.6:
	6.7:
	6.8:
	6.9:
	6.10:
	6.11:
	6.12:
	6.13:
	6.14:
	6.15:
	6.16:
	6.17:
	6.18:
	6.19:
	6.20:
	6.21:
	6.22:
	6.23:
	6.24:
	6.25:
	6.26:
	6.27:
	6.28:
	6.29:
	anm6:
	7.0:
	7.1:
	7.2:
	7.3:
	7.4:
	7.5:
	7.6:
	7.7:
	7.8:
	7.9:
	7.10:
	7.11:
	7.12:
	7.13:
	7.14:
	7.15:
	7.16:
	7.17:
	7.18:
	7.19:
	anm7:
	8.0:
	8.1:
	8.2:
	8.3:
	8.4:
	8.5:
	8.6:
	8.7:
	8.8:
	8.9:
	8.10:
	8.11:
	8.12:
	8.13:
	8.14:
	8.15:
	8.16:
	8.17:
	8.18:
	8.19:
	8.20:
	8.21:
	8.22:
	8.23:
	8.24:
	8.25:
	8.26:
	8.27:
	8.28:
	8.29:
	anm8:
	9.0:
	9.1:
	9.2:
	9.3:
	9.4:
	9.5:
	9.6:
	9.7:
	9.8:
	9.9:
	9.10:
	9.11:
	9.12:
	9.13:
	9.14:
	9.15:
	9.16:
	9.17:
	9.18:
	9.19:
	anm9:
	10.0:
	10.1:
	10.2:
	10.3:
	10.4:
	10.5:
	10.6:
	10.7:
	10.8:
	10.9:
	10.10:
	10.11:
	10.12:
	10.13:
	10.14:
	10.15:
	10.16:
	10.17:
	10.18:
	10.19:
	anm10:
	11.0:
	11.1:
	11.2:
	11.3:
	11.4:
	11.5:
	11.6:
	11.7:
	11.8:
	11.9:
	11.10:
	11.11:
	11.12:
	11.13:
	11.14:
	11.15:
	11.16:
	11.17:
	11.18:
	11.19:
	anm11:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:

