Real-time Indirect Illumination with Clustered Visibility

Zhao Dong’ Thorsten Grosch!

'MPI Informatik, Germany

Tobias Ritschel®

Jan Kautz? Hans-Peter Seidel

2University College London, UK

Figure 1: One-bounce diffuse global illumination rendered at 800x 800 pixels for a scene with dynamic
geometry (17 k faces) and dynamic lighting at 19.7 fps. Our method uses soft shadows from 30 area lights to
efficiently compute the indirect visibility.

Abstract

Visibility computation is often the bottleneck when
rendering indirect illumination. However, recent
methods based on instant radiosity have demon-
strated that accurate visibility is not required for
indirect illumination. To exploit this insight, we
cluster a large number of virtual point lights — which
represent the indirect illumination when using in-
stant radiosity — into a small number of virtual area
lights. This allows us to compute visibility using
recent real-time soft shadow algorithms. Such ap-
proximate and fractional from-area visibility is faster
to compute and avoids banding when compared to
exact binary from-point visibility. Our results show,
that the perceptual error of this approximation is neg-
ligible and that we achieve real-time frame-rates for
large and dynamic scenes.

1 Introduction

Efficient computation of convincing global illumi-
nation is a demanding task. To achieve interactive
frame-rates most existing methods only consider a
substantially restricted sub-problem such as scenes
with low-frequency illumination, static geometry
or textures. However, there are numerous applica-
tions like games, visualization or computer aided
design that would benefit from removing such restric-
tions. Realizing that visibility is often the bottleneck

in global illumination methods, fast visibility has
raised considerable interest. Instant Radiosity [14]
is one option to speed up visibility without impos-
ing many restrictions on the scene. Here, indirect
light is approximated with a number of virtual point
lights (VPLs). Visibility between these VPLs and
the rest of the scene can be efficiently computed
using shadow maps and recent graphics hardware
(GPUs). However, currently it is not feasible to gen-
erate shadow maps for every VPL as required by non-
trivial scenes (e.g. in a computer game) at real-time
frame-rates. We propose a solution to tackle this
problem by introducing virtual area lights (VALS).
Instead of using a traditional VPL-based instant ra-
diosity algorithm, we cluster the VPLs into a small
number of VALSs. Visibility between these few VALs
and the scene is computed with a very fast soft shad-
owing technique instead of using hard shadows for a
large number of VPLs.

Our contributions include:

e A temporally coherent GPU-based method to
cluster a large number of VPLs into a small
number of virtual area lights.

e A fast method to render soft shadows from vir-
tual area lights.

e A method to combine illumination from VPLs
and visibility from virtual area lights that al-
lows one-bounce global illumination for mod-
erately complex and fully dynamic scenes at
interactive to real-time frame-rates.

VMV 2009

M. Magnor, B. Rosenhahn, H. Theisel (Editors)

After reviewing previous work in Section 2, we
describe our approach in Section 3. The Instant
Radiosity method and its extension to clustered vis-
ibility is described in Section 4. Details about the
clustering algorithm are given in Section 5, followed
by our GPU implementation in Section 6. We show
our results in Section 7 before we conclude in Sec-
tion 8.

2 Previous work

Real-time global illumination is possible with a num-
ber of different techniques. One of the early meth-
ods is precomputed radiance transfer (PRT) [23].
Most of the PRT variants require static geometry,
even though some recent extensions also allow the
movement of rigid objects [13]. Often, only low-
frequency illumination is supported for dynamic
scenes [17]. A different alternative are Instant Ra-
diosity (IR) methods [14]. Here, real-time global
illumination is possible for static scenes with a mov-
ing light [16] or for dynamic scenes if the visibility
is ignored, as shown by Dachsbacher et al. [7]. IR
can achieve interactive frame-rates for large scenes
by using a crude point-based representation of ge-
ometry when computing the shadow map for each
VPL [19]. Avoiding visibility tests by sending nega-
tive radiance to occluded regions [9] enables global
illumination for scenes with limited dynamics. In a
similar spirit, visibility can be computed implicitly
from a hierarchical radiosity tree [10], but only small
scenes yield interactive frame-rates.

Several global illumination methods use the idea
of clustered visibility. The lightcuts method [25] im-
poses a hierarchy over groups of virtual point lights;
only a single visibility test is performed for each
group. Generating clusters of lights with only a sin-
gle shadow map for each cluster was used by Hasan
et al. [12] for GPU-friendly illumination from many
lights. This idea was further extended to visibility
cuts [1] and GPU implementations [18] [6]. Kris-
tensen et al. [15] group VPLs into light clouds for
real-time relighting of static scenes. In all these ap-
proaches, a single binary visibility test for a sender
cluster is used. We extend this idea by taking the
extent of the sender (cluster of VPLs) into account
through the use of a soft shadowing method.

Our algorithm is inspired by the idea of clustering
an environment map into a set of area lights for
real-time natural illumination [2]. We extend this

idea to deal with indirect lighting using a real-time
GPU-based clustering technique.

3 Overview

Our goal is to efficiently compute illumination from
a large number of virtual points lights (VPLs). Such
VPLs are used to simulate global illumination [14]
and can be efficiently generated using reflective
shadow maps [7]. To compute visibility for every
VPL, shadow mapping [26] is popular but has two
limitations: the entire scene geometry has to be pro-
cessed (transformed, clipped, etc.) for every VPL
and the total number of depth map pixels is limited.
In recent work, visibility was therefore ignored [7,8],
approximated [19] or sped up by exploiting temporal
coherence [16].

To enable real-time global illumination, we pro-
pose to approximate visibility by clustering the
VPLs. Although this significantly reduces the num-
ber of required shadow maps, simply drawing a hard
shadow for each cluster would result in banding ar-
tifacts in penumbra regions. We therefore exploit
recent advantages in the computation of real-time
soft shadows, i.e. each group of VPLs is treated as
a virtual area light (VAL) which produces a soft
shadow. For the final rendering, we still use all
VPLs to illuminate the receiver point, however, vis-
ibility is computed from a few VALs only. Fig. 2
shows an overview of our algorithm. Note that we
use the VPLs only for indirect illumination in this
work. Other possible uses of VPLs, such as for envi-
ronment map lighting, are not considered here.

4 Instant Radiosity with Clustered
Visibility

To compute the global illumination at a point x,
instant radiosity approximates the reflected radiance
L(x, w,) in direction w, with a set of N VPLs, each
carrying a radiant flux ®; as

L(x,wo) = Z Li(x,wo)V (pi, X),

where

2i cos(6;) cos(Hx)

Ly a) = iy, w0) F =

VPL Generation

VAL Clustering

Soft Shadow Maps

Rendering

Figure 2: Overview of our algorithm: First, a set of N VPLs is generated to represent the indirect light. In
the second step, VALs are generated by grouping the VPLs into M clusters. Next, one (soft) shadow map
is rendered for each VAL. The final step is the rendering: The receiver point x is illuminated by all VPLs.
Instead of computing a visibility value for each VPL, only M (fractional) visibility values are computed and
shared within each cluster. To avoid banding, each cluster generates a soft shadow, so the penumbra region is

composed of soft shadows.

d;(x) is the distance between VPL ¢ and receiver, 6;
and 6 are the angles between VPL ¢ and receiver
normal and the transmission direction. V is the bi-
nary visibility term between x and the VPL position
Pi- fr(X,w;,ws) is the BRDF at position x from di-
rection w; to VPL 4 in direction wp. % is the radiant
intensity of VPL ¢, assuming a Lambertian sender.

Next, the general visibility V' (which is more suit-
able for raytracing [24]) is replaced with visibility V;
from VPLs only (which is more suitable for GPUs
using shadow maps):

N

L(x,wo) = Y Li(x,wo)Vi(x).

i=1
To accelerate the visibility computation we group
the NV VPLs into a much lower number of M clusters

(VALs) and compute the (now fractional) visibility
only for individual VALs:

N

~ Z L;(x, wo)ffc(i) (x).

i=1

L(x,wo)

Here we use a mapping functionC : [1... N] —
[1...M] which maps the VPL 4 to the correspond-
ing virtual area light C (7). Details on the creation of
C are found in Sec. 5. Instead of computing the visi-
bility V;(x) between VPL 7 and x, an approximation
Ve(iy(x) between the VAL C(4) and x is used. This
clustering of visibility is based on the insight that
indirect light typically contains few high frequencies
and estimates can be used without much perceptual
difference [19]. Please note that each receiver point

is still illuminated from all N VPLs, only the num-
ber of visibility computations is reduced to M.

4.1 Convolution Soft Shadow Maps

To approximate the visibility of one of the M vir-
tual area lights, any soft shadow algorithm can be
used (see [11] for a recent survey). Due to its high
rendering speed, we selected the Convolution Soft
Shadows Maps (CSSM) [2] in our implementation.
To keep our description self-contained, we briefly
review the CSSM method here.

The basic idea is to compute a soft shadow with
percentage closer filtering (PCF), where the filter
kernel adapts to the shape of the light source. To
avoid a large number of depth comparisons inside
a possibly large kernel, pre-filtering is applied to
the depth map which allows to express the depth
comparison over a large region as a Fourier series.
So a convolution with a kernel w can be used to
compute the clustered visibility:

Ve (x) = [w* f(de (%), 2))](p)
K
Z (de(i)(x))[w = B;](p)

Here, a step function f is used, which returns O or
1, depending on the depth comparison between the
distance to the VAL dc(;)(x) and the depth value
z stored in the shadow map at pixel p. B; are the
basis images [3] and a; are the corresponding coeffi-
cients. As shown in [3], a low number of coefficients

K is sufficient for good quality, significantly reduc-
ing the number of filter operations. To compute
the appropriate filter size for a given area light and
a receiver point x, the average blocker depth zavg
between the area light and x must be determined.
To this end, an initial search region is estimated by
projecting the area light into the near plane of the
shadow map. Inside this region, the medium blocker
distance is computed by averaging all depth values
inside the kernel which are smaller than the current
depth value in the center. Again, determining zavg
can be efficiently implemented by pre-convolving
the depth maps. Now, the penumbra size is back-
projected into the shadow map which results in the
filter kernel w for PCF. See [2] for details.

4.2 CSSM with parabolic projection

Annen et al. [2] demonstrate that environment map
lighting can be efficiently rendered by approximat-
ing the map with a number of area lights and then
using CSSMs to render each of the area lights. We
generalize this approach to dynamic local area lights
for indirect illumination. Given the M clusters of N
VPLs, we place an area light at each cluster center.

Since a diffuse surface reflects towards the whole
upper hemisphere, both the perspective and the ortho-
graphic projection are not sufficient to compute visi-
bility of an area light representing a cluster of VPLs.
Instead, we use a shadow map with a parabolic pro-
jection, where the sender is oriented around the sur-
face normal [4]. Parabolic convolution soft shadow
maps can be realized as follows. First, an initial filter
size is estimated from the solid angle of the current
sender VAL. While a VPL does not define an area,
a VAL allows for such a computation. Then, the
average z value z,vg is determined in the same way
as for a perspective CSSM. The penumbra size p is
then estimated from z,ve as shown in Fig. 3:

p-cos(B) = (d — zavg)

Zave
where d is the distance between sender midpoint and
receiver point x, A is the size of the sender and (3
is the slope of the receiver surface, viewed from the
sender midpoint. Given the penumbra size, the size
of the filter kernel in the shadow map is adjusted to
the angle « of the penumbra, viewed from the center
of the area light:

p-cos(d)

a = arctan(7

p-cosf

+—> d

B

Figure 3: Determining the filter size for a

paraboloid map.

Figure 4: Soft shadows generated with the parabolic
CSSM method, rendered with more than 200 fps.
The left image shows a small area light, a larger
emitter is used in the right image.

Since texture coordinates range from O to 1, the size
of the filter kernel w can be estimated as ¢/, the
fraction between « and the semi-circle 7. Fig. 4
shows examples of different soft shadows computed
with this approach.

4.2.1 Discussion

Since parabolic maps use a non-linear projection,
it is not correct to approximate the projection of
the sender with a squared filter region, which is ef-
fectively what CSSMs do. We found the resulting
visible error to be small, even for difficult cases as
shown in Fig. 5. For indirect illumination these er-
rors are acceptable, since many indirect shadows
overlap, hiding these artifacts in most cases.

5 Clustering

To accelerate the visibility computation for indirect
illumination, we group VPLs with similar normals
and similar positions into clusters (VALs), i.e., we

Contact

Figure 5: Parabolic CSSM limitations: For very
large senders, ringing artifacts can appear (left).
Penumbra regions are curved when viewed from
a grazing angle of a large sender (right). We also
inherit problems at contact shadows (left) and MIP
discretization (right) from CSMs. Since the indirect
illumination consists of many soft shadows, these
artifacts are hidden.

compute the mapping C. We use a variant of the
k-means clustering [5] because it is fast and yields
good results. After clustering, the position and nor-
mal of each VAL are computed by averaging the
positions and normals of the contained VPLs. For
rendering soft shadows, we additionally compute the
area for each VAL (details are described in Sec. 6).

5.1 Clustering criterion

Clustering a set of points with k-means consists of
two steps. In a first step, starting from arbitrary
cluster centers, each point is assigned to the cluster
with the minimum distance to its center . In a second
step, each cluster center is recomputed as the average
of all point positions assigned to this cluster. These
two steps are repeated until convergence.

In our case VPLs must be assigned to VAL clus-
ters. For grouping VPLs into appropriate clusters,
position and normal of the VPL are taken into ac-
count. The distance d between a VPL and a cluster
center is therefore computed as:

d = wxAzx + waAa.

where Az is the euclidean distance between a
VPL and the cluster center and A is the angle be-
tween the VPL normal and the cluster normal. Each
term gets a user-defined weight wy and we. In this
way, we create clusters which group nearby VPLs
with similar normals. Fig. 6 shows how the different
weights affect the clustering. In our examples we
use the weights wyx = 0.7, wo = 0.3.

Normal clustering

No normal clustering
° °

Figure 6: Using k-means clustering simply based
on the euclidean distance between the points results
in clusters with varying VPL normals, often located
at edges (left). When including the angle between
the normals in the distance function, planar groups
of VPLs can be formed (right).

Including the normals in clustering is important
because artifacts in the VAL plane can appear for
clusters with different normals. Since the illumina-
tion is computed from all VPLs inside the cluster,
the illumination may be non-zero at 90 degrees from
the cluster normal (see Fig. 7). Because there is no
visibility information in the negative halfspace of the
VAL, full visibility must be assumed here. If there
is a blocker crossing the VAL halfspace, a disconti-
nuity appears, because the blocker is ignored in the
negative halfspace of the VAL.

Moreover, the cluster center can be located in-
side the geometry (see Fig. 7). To avoid completely
occluded VALs, geometry located near the cluster
center has to be ignored, which can result in the loss
of some existing shadows. Due to all these prob-
lems, groups of VPLs with similar normals should
be preferred which is achieved by giving them a high
weight in the clustering.

5.2 Temporal coherence

To avoid flickering, the clustering between two suc-
cessive frames should be similar. To achieve this, a
simple strategy would be to use the clustering from
the previous frame as a starting value for the k-means
clustering of the current frame. In most cases, there
are only small changes in light and geometry, so
most VPL positions are similar and this quickly con-
verges to a temporally coherent solution.

However, we observed that clusters can be lost,
because their center position is in a bad location and
all VPLs are assigned to a different cluster center.
Fig. 8 (left) shows such a case, here a spot light
moves from the wall to the ceiling: Because normals

Figure 7: Using VALs with varying VPL normals in-
troduces two problems (in this example, three VPLs
are grouped into one VAL cluster): First, the clus-
ter center is located inside the geometry, so nearby
geometry must be ignored to avoid incorrect self-
shadowing. When introducing such a bias, real oc-
cluders like the teapot may be clipped away and
the shadow at point x; disappears. Secondly, dis-
continuities in the shadow can appear because the
illumination is computed from all VPLs: In the ex-
ample, point x2 is in the positive half-space of the
blue VPLs and the VAL shadow map correctly de-
tects a shadow above z2. But there is no occlusion
information in the negative half-space of the VAL,
so everything below z2 is assumed to be visible.
Consequently, the region below x2 is incorrectly
illuminated by the two blue VPLs.

are taken into account, all VPLs on the ceiling tend
to be grouped into only a few clusters on the ceiling.
Several other cluster centers are still located on the
wall. Due to the different normals, the distance of
any VPL to these centers is bigger than the distance
to one of the few clusters on the ceiling. This means
that several clusters remain empty. When moving
the light source, more and more cluster centers stay
at an old position, without any VPL assigned to it,
and the total number of used clusters decreases over
time. If the light moves back to and old position, an
empty cluster might be reactivated, otherwise it will
never be used again.

To overcome this problem, we do not reuse the
clusters from the last frame, but restart k-means from
an identical, initial cluster assignment at each frame.
Since our VPLs are generated from a sequence of
Quasi-Monte-Carlo random numbers (see Sec. 6), all
VPLs are placed to similar positions in each frame in
case of small movements of light source or geometry.
This means that if we use initial clusters based on the
the same VPLs every frame, the k-means algorithm

Re-use previous clusters Restart k-means

Figure 8: A spotlight is moving (arrow) from the
wall (frame ¢, lower half) to the ceiling (frame ¢ +
N, upper half). Using k-means clustering with the
information from frame ¢, the number of clusters
decreases when moving the spot towards the ceiling,
as shown on the left. Since normals are taken into
account, the distance of any VPL to such a center
is too big, so all VPLs are grouped into a few large
clusters on the ceiling. To overcome this problem,
k-means is restarted using the same initial VPL to
cluster assignments each frame. As shown on the
right, the number of clusters stays constant.

will converge to a similar result, as shown in Fig. 8
(right). Although this increases the total number of
k-means iterations, the total rendering time is nearly
unaffected (see Sec. 7). The accompanying video
shows that our clustering strategy leads to virtual
area lights that smoothly float over the surface. The
clustering always stays temporally coherent, even in
case of animated scenes.

6 GPU-Based Rendering from Clus-
tered Visibility

We use a deferred shading renderer, in order to en-
sure that the expensive indirect illumination is only
computed once for every pixel. Geometry is ren-
dered into screen-sized textures for storing position,
normal, material and direct illumination, which are
then used during the computation of indirect illumi-
nation.

VPL Generation We render a reflective shadow
map (RSM) from the light’s point of view [7] (a
cube map is used for point lights and a single tex-
ture for projective lights) and sample it using a low-
discrepancy sampling pattern (Halton sequence) to

convert it into N VPLs (Sec. 4). To this end the
RSM is fetched at N Halton-distributed locations
using point sampling and the resulting position, nor-
mal and color is stored into three N-texel output
textures.

Clustering Cluster information is stored in four
M -texel textures for position, normal, irradiance
and a count of how many VPLs map to a cluster.
For each frame, information from the VPL at index
k-N/n is used as the initial guess for VAL k (i.e.,
as cluster k’s center). As mentioned earlier, this
ensures temporal coherence.

In every k-means iteration, we use scattering [21]
and blending to update clusters. To this end, for
each of the NV VPLs a point is drawn using the VPL
textures (position, normal, radiance) as input and
the four VAL information textures (position, normal,
irradiance, count) as output. In a vertex shader, every
such point traverses all M clusters, computes the
distance, finds the one with the minimum distance
and scatters its information to the pixel position of
that cluster. We use additive blending and write
Is to the count texture. After every iteration, we
draw another full-screen quad, that divides position,
normal and radiance by the count resulting in the
proper average cluster information.

Note, that in this process, we do not store which
VPL maps to which VAL. We create this mapping
C in a final pass and store it as a [N-texel texture
of pointers into the VAL texture. To this end, we
loop over all VPLs, compare them to every VAL and
output the pointer to the VAL with minimal distance.

For soft shadow computation we need to know the
area of each VAL. We define it as the 2D bounding
rectangle of the two-dimensional projection s, ¢ of
the VPL position onto the plane perpendicular to the
average normal of the cluster it maps to.

In summary, we compute an M -texel texture that
stores cluster position, normal and area comple-
mented by an [N -texel texture that stores the mapping
from each VPL to a VAL, i.e., representing C.

Paraboloid CSSM Instancing is used to draw the
scene into a texture array of depth maps with a single
pass (the resolution of one paraboloid map is set to
256 x 256). From this depth map texture array we
generate an array of Fourier basis textures (4 term, 8
bit) and Fourier basis-z textures (4 term, 16 bit half

float) (cf. Sec. 4.1). Finally, a MIP map is built for
both the basis and the basis-z texture array.

Indirect Lighting Indirect lighting is computed
using interleaved sampling [22]. We use blocks of
8 x 8 = 64 pixels with 1024 VPLs that result in
1024/64 = 16 VPLs per pixel. While we use VALs
for visibility, we still use the full number of VPLs
for lighting. So when shading from VPL ¢ we use
the VAL at index C(z) for visibility, looking up C in
the mapping texture.

We use a geometry aware blur to remove the re-
maining Monte Carlo noise without blurring over
edges. As noted by Laine et al. [16], using & = 10%
of the scene’s extend and 8 = 0.8 seems to work
reasonably well for our results.

7 Results and discussion

In the following, we present results rendered at real-
time rates with our technique on a 3 GHz CPU with
an NVIDIA GeForce 8800 GTX. All scene compo-
nents can be fully dynamic (geometry, materials, and
lights), as no precomputation is required.

Fig. 9 shows a global illumination solution com-
puted with clustered visibility. To illustrate our ap-
proach, we included some individual soft shadow im-
ages, generated from selected VAL. To verify the cor-
rectness of our approach, we successively increase
the number of VALs and compare our result with the
ground truth solution from instant radiosity and path
tracing. As shown in Fig. 10, the resulting images
are similar, even if visibility is computed from a very
small number of VALs.

The performance for our test scenes is summa-
rized in Tbl. 1. The rendering time of each individual
part of our algorithm is described in Tbl. 2.

Scene Faces VPLs VALs fps

Cornell Box 18 1024 30 20.4
Cornell Horse 17k 1024 30 19.7
Sponza 98k 1024 30 134
Metaballs 5k 1024 30 20.7

Table 1: Frame-rates (800x 800 pixels).

As shown in Fig. 11, we can display global illumi-
nation in an animated game scenario at interactive
fame-rates. Our approach allows for extremely dy-
namic geometry, such as the iso-surface in Fig. 12.

Indirect

Direct + Indirect

Figure 9: Soft shadows generated for indirect illumination. In this scene a spotlight illuminates the corner
of the box, so most of the light is indirect. The images on the left show individual soft shadows from some
selected VALs. The complete clustering (M = 30 VALs) is shown in the center image. The full global

illumination solution is shown on the right.

Step Time (ms) Percentage
Deferred rendering 0.4 0.8%
VPL generation 0.1 0.2%
VAL clustering 0.5 1.0%
CSSM 4.2 8.1%
Indirect illumination 35.0 69.0%
Geometry-aware blur 10.7 21.0%

Table 2: Performance breakdown for Cornell Horse.

Note, that all pre-computed visibility methods, and
even imperfect shadow maps [19], which are re-
stricted to area-preserving deformations, would fail
for this scene. We support soft and crisp indirect
visibility at the same time, as shown in Fig. 13.

7.1 Discussion

While the use of VALSs provides an efficient means
to compute indirect illumination, there are some lim-
itations. We currently use reflective shadow maps
to generate VPLs [7], restricting us to point and
spot lights. The efficiency of the VALs hinges on
using rather low-resolution CSSMs, which in turn
means that we cannot resolve very thin indirect shad-
ows. Furthermore, we inherit other CSSM limita-
tions, such as difficulties to resolve contact shadows
(see [2]). Extending image space shadow bias re-
moval [20] to soft shadows is future work. If an
insufficient number of VALSs is used, individual shad-
ows from each VAL might be visible, as can be seen

Figure 12: Our method rendering global illumina-
tion (20.7 fps) for a scene with dynamic topology
(5.1k faces).

in Fig. 10. Using a sufficient number of VALS pre-
vents any artifacts. Our method also depends on the
geometric complexity of the scene, since the scene
needs to be rendered once for each VAL. However,
it might be possible to reduce this dependency with
imperfect shadow maps [19].

In contrast to normal instant radiosity, we are less
prone to temporal aliasing, since we can start the
clustering process with a sufficient number of VPLs
yielding good VAL approximations. Furthermore,
there is only one major parameter: the number of
VALSs, which makes our technique more applicable.

5 VALs 10 VALs 20 VALs
31.0 fps 28.5 fps 25.1 fps

30 VALs 1024 VPLs Path Tracing 4x Error

20.4 fps 1.1 fps

Figure 10: When increasing the number of VALS, the indirect illumination converges to the correct result.
The images show (in reading order) 2 to 30 VALSs that are used for the indirect visibility. The next two
images show an IR solution with a hard shadow for each VPL and a path tracing solution. The difference
between our solution (//=30) and the standard IR solution is shown on the bottom right. Note that already a
very small number of VALSs creates a convincing indirect illumination. An 8 x8 G-Buffer was used to reduce
the number of VPLs per pixel.

Figure 11: A complex dynamic scene (100k faces) with multiple animated dragons in Sponza (14 fps). Note,
how the light bouncing from the back wall dominates (arrow). Please also see the supplemental video.

8 Conclusion and future work number of VAL clusters to the illumination complex-
ity, in order to keep the number of clusters at the
minimum required number for good visual quality.
The extension from one bounce to multiple bounces
of light would be an interesting avenue of further
research as well as the inclusion of highly glossy

We demonstrated that indirect visibility can be ap-
proximated with a small number of area lights in
combination with a soft shadowing method. Due to
the fast computation time of the soft shadow algo-
rithm we can display approximated indirect illumi- materials. Finally, the combination between natural

nation at interactive to real time speed without large ~ 1llumination from an environment map and indirect
differences in image quality. bounces of light should be investigated.

As future work, we will investigate if geometric
simplifications can be included on top of the visibil-
ity approximations, e.g. if a combination of imper-
fect shadow maps [19] and coherent soft shadows is [1] Oskar Akerlund, Mattias Unger, and Rui Wang. Pre-
possible. Furthermore, we would like to adapt the computed Visibility Cuts for Interactive Relighting

References

[10]

[11]

[12]

Figure 13: A wide spot casting a soft shadow.

with Dynamic BRDFs. In Proc. Pacific Graphics,
161-170, 2007.

[2] Thomas Annen, Zhao Dong, Tom Mertens, Philippe
Bekaert, Hans-Peter Seidel, and Jan Kautz. Real-
Time, All-Frequency Shadows in Dynamic Scenes.
ACM Trans. Graph. (Proc. SIGGRAPH), 27(3), 2008.

[3] Thomas Annen, Tom Mertens, Philippe Bekaert,
Hans-Peter Seidel, and Jan Kautz. Convolution
Shadow Maps. In Jan Kautz and Sumanta Pattanaik,
editors, Proc. EGSR, 51-60, 2007.

Stefan Brabec, Thomas Annen, and Hans-Peter Sei-
del. Shadow Mapping for Hemispherical and Omnidi-
rectional Light Sources. In Proc. Computer Graphics
International, 397-408, 2002.

[5] Nathan Carr, Jesse Hall, and John Hart. GPU Algo-
rithms for Radiosity and Subsurface Scattering. In
Proc. Graphics Hardware, 51-59, 2003.

[6] Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund,
and Fabio Pellacini. Fast, Realistic Lighting and
Material Design using Nonlinear Cut Approximation.
ACM Trans. Graph. (Proc. SIGGRAPH ASIA 2008),
27(5), 2008.

[7] Carsten Dachsbacher and Marc Stamminger. Reflec-
tive Shadow Maps. In Proc. 13D, 203-213, 2005.

Carsten Dachsbacher and Marc Stamminger. Splat-
ting Indirect Illumination. In Proc. 13D, 93-100,
2006.

[9] Carsten Dachsbacher, Marc Stamminger, George
Drettakis, and Fredo Durand. Implicit Visibility
and Antiradiance for Interactive Global Illumination.
ACM Trans. Graph. (Proc. SIGGRAPH), 26(3), 2007.

Zhao Dong, Jan Kautz, Christian Theobalt, and Hans-
Peter Seidel. Interactive Global Illumination Using
Implicit Visibility. In Proc. Pacific Graphics, 77-86,
2007.

Jean-Marc Hasenfratz, Marc Lapierre, Nicolas
Holzschuch, and Frangois Sillion. A Survey of Real-
Time Soft Shadows Algorithms. Computer Graphics
Forum, 22(4):753-774, 2003.

Milo§ HaSan, Fabio Pellacini, and Kavita Bala. Ma-
trix Row-Column Sampling for the Many-Light
Problem. ACM Trans. Graph. (Proc. SSIGGRAPH),
26(3):26, 2007.

[4

=

[8

—

[13]

(14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Kei Iwasaki, Yoshinori Dobashi, Fujiichi Yoshimoto,
and Tomoyuki Nishita. Precomputed Radiance Trans-
fer for Dynamic Scenes Taking into Account Light
Interreflection. In Proc. EGSR, 35-44, 2007.

Alexander Keller. Instant Radiosity. In SIGGRAPH
'97, 49-56, 1997.

Anders Wang Kristensen, Tomas Akenine-Moller,
and Henrik Wann Jensen. Precomputed Local Ra-
diance Transfer for Real-time Lighting Design. In
ACM trans. Graph. (Proc. SSIGGRAPH), 1208-1215.
ACM, 2005.

Samuli Laine, Hannu Saransaari, Janne Kontkanen,
Jaakko Lehtinen, and Timo Aila. Incremental Instant
Radiosity for Real-Time Indirect Illumination. In
Proc. EGSR, 277-286, 2007.

Zhong Ren, Rui Wang, John Snyder, Kun Zhou,
Xinguo Liu, Bo Sun, Peter-Pike Sloan, Hujun Bao,
Qunsheng Peng, and Baining Guo. Real-Time Soft
Shadows in Dynamic Scenes using Spherical Har-
monic Exponentiation. ACM Trans. Graph. (Proc.
SIGGRAPH), 25(3):977-986, 2006.

Tobias Ritschel, Thorsten Grosch, Jan Kautz, and
Hans-Peter Seidel. Interactive Global Illumination
Based on Coherent Surface Shadow Maps. In Proc.
Graphics Interface, 185-192, 2008.

Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-
Peter Seidel, Carsten Dachsbacher, and Jan Kautz.
Imperfect Shadow Maps for Efficient Computation
of Indirect Illumination. ACM Trans. Graph. (Proc.
SIGGRAPH ASIA 2008), 27(5), 2008.

Tobias Ritschel, Thorsten Grosch, and Hans-Peter
Seidel. Approximating dynamic global illumination
in image space. In Proc. 13D, 75-82, 2009.

Thorsten Scheuermann and Justin Hensley. Efficient
histogram generation using scattering on GPUs. In
Proc. I3D, 33-37, 2007.

Benjamin Segovia, Jean-Claude Iehl, Richard Mi-
tanchey, and Bernard Péroche. Non-interleaved De-
ferred Shading of Interleaved Sample Patterns. In
Proc. Graphics Hardware, 53—60, 2006.

Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed Radiance Transfer for Real-Time Render-
ing in Dynamic, Low-Frequency Lighting Environ-
ments. ACM Trans. Graph. (Proc. SIGGRAPH),
21(3):527-536, 2002.

Ingo Wald, Carsten Benthin, and Philipp Slusallek.
Interactive Global Illumination in Complex and
Highly Occluded Environments. In Proc. EGSR, 74—
81, 2003.

Bruce Walter, Sebastian Fernandez, Adam Arbree,
Kavita Bala, Michael Donikian, and Donald P. Green-
berg. Lightcuts: A Scalable Approach to Illumination.
ACM Trans. Graph. (Proc. SSIGGRAPH), 24(3):1098—
1107, 2005.

Lance Williams. Casting Curved Shadows on Curved
Surfaces. In Computer Graphics (Proc. SIGGRAPH),
270-274, 1978.

