
MAHASSENI, YANG, MOLCHANOV, KAUTZ: BUDGET-AWARE ACTIVITY DETECTION 1

Budget-Aware Activity Detection with A
Recurrent Policy Network
SUPPLEMENTARY MATERIAL

Behrooz Mahasseni†1

https://mahasseb.github.io

Xiaodong Yang2

http://xiaodongyang.org

Pavlo Molchanov2

pmolchanov@nvidia.com

Jan Kautz2

http://jankautz.com

1 Oregon State University
2 NVIDIA Research

1 Estimation of Detection Time
It is challenging to decide the precise computation time of the different methods due to (1)
lack of computational information in the literature, and (2) multiple complex stages involved.
We adopt the following strategies to estimate the approximate computation time for them:
(1) directly use the speed or time if it is reported in the related papers; (2) use the speed
or time of our components (e.g., CNN and LSTM) to infer others; (3) use the processing
bottleneck that dominates the computational costs (e.g., extraction of hand-crafted features)
to approximate the overall time.

1.1 THUMOS14
There are 20 action classes and 1574 videos in the testing set of THUMOS14 [9]. Each video
has 5507 frames on average.

• Ours is provided in the analysis of computational costs of Figure 3(b) in the main
paper. The detailed computation time of each component is: forward pass of VGG16
is 3.0ms for each frame on the GPU; execution time of 2-layer LSTM at each step is
5.4ms on the GPU; pixel-level frame difference is 0.1ms per frame on the CPU; linear
regression is 5.5ms on the CPU. We use 6 steps to run our policy for each video, 15
frames as the neighborhood of each selected frame, and 10 uniformly sampled frames
for regression. So the overall computation time for each video is: (0.1× 15× 6)+
(3.0×15×6)+(5.4×6)+(0.1×10)+(3.0×10)+5.5 ≈ 348ms ≈ 0.35s.

• Glimpses [29] downsamples videos by 5 (i.e., to 5fps) for this dataset, and observes
2% (or less) of video frames for inference. Since it is a binary model, we need to

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
†Work done during an internship at NVIDIA Research.



2 MAHASSENI, YANG, MOLCHANOV, KAUTZ: BUDGET-AWARE ACTIVITY DETECTION

train and run 20 models to detect all classes of this dataset. Based on the time of our
approach, we can infer the computation time of each component in [29]: forward time
of VGG16 is 3.0ms for each frame on the GPU; execution time of 3-layer LSTM at
each observation is 8.2ms on the GPU. So the average computation time to detect the
whole classes for each videos is: 5507÷5×0.02×(3.0+8.2)×20 ≈ 4932ms ≈ 4.9s.

• R-C3D [26] runs at 569fps on an NVIDIA Titan X Maxwell GPU and 1030fps on an
NVIDIA Titan X Pascal GPU. So the average computation time to predict each video
is: 5507÷569 ≈ 9.7s on Titan X Maxwell, and 5507÷1030 ≈ 5.3s on Titan X Pascal.

• Language Model [13] takes 7.5h on the CPU with eight 1.2GHz cores for inference on
this dataset. So the average computation time for each video is: 7.5×60×60÷1574≈
17s.

• DAPs [4] integrates C3D and LSTM, and runs at 134.1fps on the GPU. So the average
computation time to predict each video is: 5507÷134.1 ≈ 41s.

• S-CNN [14] employs the proposal and localization networks for inference, and runs at
60fps on the GPU. So the average computation time for each videos is: 5507÷60 ≈
92s.

• CDC [15] alone runs at 500fps on the GPU to refine predicted temporal boundaries.
However, on this dataset, it relies on the proposals generated by S-CNN [14], which
dominates the computational costs. So the overall computation time including segment
proposal and prediction refinement for each video can be approximated by that of S-
CNN: 92s.

• Fast Temporal Proposal [8] downsamples videos by 5 and runs at 10.2fps on the
CPU. So the average computation time for each video is: 5507÷5÷10.2 ≈ 108s.

• Pyramid of Scores [30] employs a sliding window strategy, and requires time-consuming
feature extraction, e.g., 21d to extract the iDT features on the CPU, 20h for feature en-
coding on the CPU, etc. So the average computation time to predict each video is
much longer than the proposal based method in [8]: > 108s.

• CUHK14 [22] is also a sliding window based approach. It extracts deep features by
AlexNet, and iDT features running at 3.5fps on the CPU. Additional computations
include FV encoding of iDT features and SVM classification. So the average compu-
tation time to process each video is also much longer than the proposal based method
in [8]: > 108s.

• LEAR14 [12] is also based on sliding windows with computationally expensive fea-
ture extractions: SIFT, iDT, color features, FV encoding, deep features by AlexNet, as
well as acoustic features such as MFCC and ASR. So the average computation time to
predict each video is also much longer than the proposal based method in [8]: > 108s.

1.2 ActivityNet
There are 200 activity classes and 4926 videos in the validation set of ActivityNet [7]. Each
video has 3254 frames on average.



MAHASSENI, YANG, MOLCHANOV, KAUTZ: BUDGET-AWARE ACTIVITY DETECTION 3

• Ours is independent of video length, but is determined by the number of steps to
run our policy. We take the same processing as for THUMOS14 to perform activity
detection on this dataset. So the overall computation time to predict each video is the
same: (0.1× 15× 6)+ (3.0× 15× 6)+ (5.4× 6)+ (0.1× 10)+ (3.0× 10)+ 5.5 ≈
348ms ≈ 0.35s.

• Glimpses [29] downsamples videos by 25 (i.e., to 1fps) for this dataset, and observes
2% (or less) of video frames for inference. Similarly, we need to train and run 200
models to detect the whole classes of this dataset. So the average computation time
to detect the entire classes for each video is: 3254÷25×0.02× (3.0+8.2)×200 ≈
5824ms ≈ 5.8s.

• R-C3D [26] runs at the same speed: 569fps on an NVIDIA Titan X Maxwell GPU
and 1030fps on an NVIDIA Titan X Pascal GPU. So the average computation time to
predict each video is: 3254÷569 ≈ 5.7s on Titan X Maxwell, and 3254÷1030 ≈ 3.2s
on Titan X Pascal.

• OBU16 [18] uses C3D for feature extraction running at 313.9fps on the GPU, a binary
random forest, and a dynamic programming process for generating proposals. So only
considering the feature extraction, the average computation time to process each video
is: 3254÷313.9 ≈ 10s.

• UPC16 [11] consists of C3D running at 313.9fps on the GPU, and a single layer
LSTM predicting with 2.7ms on the GPU. C3D uses a short video clip of 16 frames
as input. So the average computation time to predict each video is: (3254÷313.9)s +
(3254÷16×2.7)ms ≈ 11s

• UTS16 [23] extracts a variety of features such as iDT features, C3D features, deep
features by ResNet152 (pre-trained on ImageNet), deep features by ResNet152 (pre-
trained on Places2), and deep features by InceptionV3. Additional costs involve
VLAD encoding of multiple features and SVM classification. So only considering
the feature extraction by iDT which runs at 3.5fps on the CPU, the average computa-
tion time to process each video is: 3254÷3.5 ≈ 930s.

• CDC [15] relies on the detection outputs of UTS16 [23], i.e., it is used to refine the
predicted results of UTS16. While CDC runs at 500fps in the refining process, the
computation bottleneck comes from generating the temporal segments by UTS16. So
the overall computation time is determined by UTS16: 930s.

2 Illustration of Policy Execution

Figure 5 illustrates the frame selection and prediction process of the learned policy. Each
colored box above the frame sequence shows the predicted action class (with associated
probability score), and detected temporal segment (from start to end). We can directly dis-
card the segments that are predicted as background. At steps 2 and 3, the policy makes
the true positive predictions that match to the two ground truth segments. Frames of the
observing sequence present the selected frames for the corresponding steps.



4 MAHASSENI, YANG, MOLCHANOV, KAUTZ: BUDGET-AWARE ACTIVITY DETECTION

Step	1 Step	2 Step	3 Step	4 Step	5 Step	6

Step	1
Background:	0.76

Segment:	2454	to	3052

Step	2
Javelin	Throw:	0.51

Segment:	3329	to	4418

Step	3
Javelin	Throw:	0.58

Segment:	4027	to	4163

Step	4
Background:	0.35

Segment:	4264	to	4994

Step	5
Background:	0.42

Segment:	741	to	1017

Step	6
Background:	0.66

Segment:	769	to	983

Frame	Sequence

Observing	Sequence

GT:	3762	to	3936

GT:	3975	to	4188

Figure 5: Illustration of the learned policy running for frame selection on THUMOS14.

3 More Results on ActivityNet
Since the glimpses method [29] is a binary model and their detection results on the entire
200 classes of ActivityNet are not provided (otherwise they have to train 200 models for
each class), we train our policy on the same two subsets (i.e., sports and work) as [29] for
fair comparisons. As shown in Tables 3 and 4 (IoU = 0.5), our approach perform better than
[29] in 15 out of 21 classes on the sports subset, and 9 out of 15 classes on the work subset.
Overall, we outperform [29] by 2.0% and 1.8% in mAP on the sprots and the work subsets,
respectively. More importantly, we need only a single training phase to handle the entire
activity classes of each subset, while [29] requires to train multiple models for every class.

Class Glimpses [29] Ours Class Glimpses [29] Ours

Archery 5.2 13.7 Long Jump 56.8 48.7
Bowling 52.2 52.4 Mountain Climb. 53.0 52.4
Bungee 48.9 46.3 Paintball 12.5 24.9
Cricket 38.4 39.1 Playing Kickball 60.8 61.2
Curling 30.1 32.3 Playing Volleyball 40.2 39.2
Discus Throw 17.6 21.8 Pole Vault 35.5 40.2
Dodgeball 61.3 60.2 Shot Put 50.9 51.4
Doing Moto. 46.2 47.3 Skateboard. 34.4 32.7
Ham. Throw 13.7 18.8 Start Fire 38.4 40.1
High Jump 21.9 27.4 Triple Jump 16.1 22.7
Javelin Throw 35.7 40.1

mAP 36.7 38.7

Table 3: Comparison of the per-class breakdown AP on the sports subset of ActivityNet.

Class Glimpses [29] Ours Class Glimpses [29] Ours

Attend Conf. 56.5 53.8 Phoning 52.1 46.7
Search Security 33.9 36.1 Pumping Gas 34.0 49.3
Buy Fast Food 45.8 48.2 Setup Comp. 30.3 35.1
Clean Laptop 35.8 38.3 Sharp. Knife 35.2 38.3
Making Copies 41.7 39.5 Sort Books 16.7 33.7
Organizing Boxes 19.1 24.5 Using Comp. 50.2 47.3
Organizing Cabin. 43.7 46.2 Using ATM 64.9 50.6
Packing 39.1 38.3

mAP 39.9 41.7

Table 4: Comparison of the per-class breakdown AP on the work subset of ActivityNet.


