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Abstract—Exposure Fusion and other HDR techniques gen-
erate well-exposed images from a bracketed image sequence
while reproducing a large dynamic range that far exceeds
the dynamic range of a single exposure. Common to all these
techniques is the problem that the smallest movements in the
captured images generate artefacts (ghosting) that dramatically
affect the quality of the final images. This limits the use of
HDR and Exposure Fusion techniques because common scenes
of interest are usually dynamic. We present a method that
adapts Exposure Fusion, as well as standard HDR techniques,
to allow for dynamic scene without introducing artefacts. Our
method detects clusters of moving pixels within a bracketed
exposure sequence with simple binary operations. We show that
the proposed technique is able to deal with a large amount of
movement in the scene and different movement configurations.
The result is a ghost-free and highly detailed exposure fused
image at a low computational cost.
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I. INTRODUCTION

The real world spans a dynamic range that is larger than
the limited one spanned by modern digital cameras. This
poses a major problem when reproducing digital images:
not all the details in a scene can be represented with
conventional Low Dynamic Range (LDR) images. These
problems typically manifest themselves in the presence of
both overly dark and bright areas due to under- or over-
exposure. High Dynamic Range (HDR) photography solves
these problems by combining differently exposed pictures in
order to enlarge the dynamic range captured in an image [1],
[2]. In a similar fashion, Exposure Fusion [3] solves these
problems by directly fusing a set of LDR images into a
single LDR exposure, dramatically simplifying the image
generation process. However, for these techniques it is
essential that the scene is completely static in order to obtain
artefact-free results. In fact, any small change between
exposures produces a particular kind of image artefact called
ghosting. This limits the use of both HDR and Exposure
Fusion imagery, as many common scenes contain dynamic
elements.

Our goal is to adapt HDR techniques to dynamic scenes
such that ghosting artefacts are detected and corrected, while
maintaining Exposure Fusion’s computational efficiency. To
this end, we propose the Bitmap Movement Detection
(BMD) algorithm. It detects clusters of moving pixels, which
then guides the Exposure Fusion image generation. The best-
exposed exposure is used to recover each area affected by
movement. Hence, our technique produces fused images that
keep only the best exposed part of the scene, see Fig. 1.
We show that the proposed method performs well even
when the scene is affected by large and substantial changes.
Besides qualitative analysis, we also present a performance
analysis, which shows that BMD can deal efficiently with
large images. BMD is a simple, yet effective technique. The
core of the algorithm relies on simple binary operations,
and therefore its computation time is very fast. However,
its speed does not sacrifice quality: our results are identical
or superior to the ones obtained with other de-ghosting
algorithms. For these reasons we believe that BMD and
Exposure Fusion can be directly implemented on camera
hardware to directly capture and generate fused images of
dynamic scenes.

II. RELATED WORK

The BMD algorithm has been inspired by techniques
developed for motion detection and bitmap manipulation.
Therefore, in the following two subsections we discuss
related work from these areas that contributed to the BMD
development.

A. Motion detection

Different approaches have been suggested to detect move-
ment clusters in the LDR images and a large number
of these take the illumination variance at each pixel into
account. Unfortunately, since the exposures used in the
sequence are taken with different aperture configurations,
these methods are not directly applicable for the HDR or
Exposure fusion case. Specific techniques for HDR images
have been proposed as well and can be broadly divided into
three groups: algorithms that use a single exposure to correct
each affected area, ones that use more than one exposure



(a) Exposure stack. (b) Standard exposure fusion. (c) Our result.

Figure 1. An example of a dynamic scene. With standard techniques (Exposure Fusion), ghosting will occur. We propose a simple method to determine
dynamic regions that allows us to prevent artefacts.

per affected area, and techniques that prevent artefacts by
directly changing the HDR weighting scheme.

Regarding the first group, Ward et al. [1] proposed a
method to correct ghosting artefacts based on the variance of
the weighted pixel-intensities; due to its simple implemen-
tation, this technique has been largely used in the standard
HDR image generation framework as well as in Photosphere
[4] . Unfortunately, this method can easily fail in zones
where the dynamic range is big or the motion is not wide,
but it does work when the ghosts are easily segmentable.
Jacobs et al. [5] address the de-ghosting problem by using
movement detection algorithm based on local pixel entropy.
Entropy is used because this measure is not affected by
intensity values and does not require camera calibration, but
unfortunately it can easily fail in regions where the dynamic
range is quite big.

The second groups of algorithms adopts an approach
that takes into account a different number of exposures
when recovering an affected zone. Gallo et al. [6] propose
a technique that tries to determine the correct number of
exposures to use in affected areas for the HDR computation
by evaluating, for each patch of the scene, the ghosting
value, a measure of deviation of a certain exposure in a
patch from the model predicted from another patch. The
algorithm then builds the HDR image using different number
of exposures on each defined patch, obtaining in this way
ghost-free and consistent images. For the third group of
algorithms, Khan et al. [7] propose a technique that does not
need object detection and movement estimation as it changes
directly and iteratively the HDR weights to minimise the
number of visible artefacts. This is done by evaluating the
pixel membership probability to a non-parametric model
used for the static part of the scenes. The main idea of
the algorithm is that pixels that are part of the background,
i.e., the static part of the scene, are more commonly present
in an image than the ones that do not belong to it. This
approach produces very good results, but is prohibitively

(a) Original Exposures: 0 and -2 stops respectively.

(b) Bitmaps generated by MTB.

Figure 2. Bitmap similarity using MTB. MTBs for two different exposures
are shown. Note their similarity.

expensive to compute. Motion detection based on optical
flow has been proposed by Kang et al. [8]. They introduce a
technique that uses optical flow to register pixels in adjacent
video frames so that the images can be correctly combined.
Unfortunately this method is very dependent on the quality
of motion estimation, and thus it can easily fail. Also Bogoni
uses motion estimation to tackle ghosts [9]. After global
registration, the author uses optical flow to perform per-pixel
registration, allowing for locally correct exposure blending.
Mann et al. [10] register differently exposed frames through
homographies, which allows them to estimate the camera
response function and thus to produce an HDR image from
a panning video. Mitsunaga and Nayar [11] introduce a
technique that reduces the ghost artefacts by employing
spatially varying pixel exposures.



Figure 3. Motion map generated from Fig. 1(a). Left image shows M∗;
please note that non-black pixels are the ones marked for motion detection
refinement. Right image shows M after the application of the morphological
operations; each cluster is coded with a different index, which in the figure
is represented by a colour.

B. Median Threshold Bitmap (MTB)

The MTB algorithm, introduced by Ward [12] for the
purpose of image alignment, is a technique that helps the
comparison of images that are taken under different exposure
settings by effectively removing most of the illumination
differences between images. The algorithm computes a
binary bitmap image by applying a threshold to the image
based on its median pixels value (mpv). This bitmap,
containing a partitioning into pixels brighter and darker than
the mpv, has been shown to reveal image features while
removing intensity differences between different exposures
[12]. Fig. 2 shows two example bitmaps obtained with the
MTB technique.

III. MOTION DETECTION

With the help of the MTB image descriptor, we propose a
method to detect and isolate clusters of moving pixels within
an exposure sequence. For each image in our exposure stack,
we apply the MTB algorithm, yielding a stack of bitmaps
Bi. In a static scene, we expect each pixel to preserve its
bit value across all Bi. If the value changes in a pixel, we
know that there was movement underneath it. So in order
to detect movement pixels, we simply sum up all bitmaps
Bi yielding M∗. Any pixel in M∗ that is neither 0 or N
(assuming N exposures) is classified as a movement.

M∗ may contain a certain amount of noise that could lead
to incorrect movement detection (see Fig. 3, left image).
We refine M∗ using a sequence of morphological dilation
and erosion in order to generate the final motion map M .
The motion map M for the sequence shown in Fig. 1(a) is
reported in Fig. 3 (right image).

After the motion detection is done, M is converted into
a “cluster map” where each identified cluster has a differ-
ent label, which we compute using Connected Component
labelling [13]. This yields the labelled motion map LM

with labelled cluster areas Ωi that contain the moving pixels
which cause ghosting artefacts (see colour-coded labels in
Fig. 3 right).

A. HDR Integration
Now that we have found the regions where motion ap-

pears, we can easily integrate this into HDR imaging. We
will show how to incorporate into Exposure Fusion [3],
but a similar integration is possible into the HDR assembly
stage [1], [7].

Exposure Fusion [3] is a technique for directly fusing a
bracketed exposure sequence of LDR images, which can be
used as an alternative to the standard HDR image generation
procedure. This technique is computationally efficient and
does not require any tone mapping operator to compress
the dynamic range, as the resulting image can be directly
displayed on any common device. The technique does not
require the camera’s response curve, and instead relies on
three simple per-pixel quality measures, contrast, saturation,
and well-exposedness. A weighted average of these three
measures is computed for each pixel, yielding a per-pixel
weight map W for each exposure in the sequence (weight
maps are normalised to sum to one at each pixel). Concep-
tually, the exposures are then blended together using the
per-pixel weights from the weight map. However, direct
per-pixel blending produces artefacts, such as seams. The
authors therefore use multi-scale blending to effectively
prevent these.

To integrate Exposure Fusion with our motion detection
technique we use the labelled motion map LM as a guide
for the final blending. In fact, for each affected area Ωi

in LM , we fill in the corresponding pixels in the final
image with the best available exposure for that particular
area (using Exposure Fusion’s multi-scale blending). The
measure used to define the best available image is the well-
exposedness quality measure already employed by Exposure
Fusion. Given a cluster Ωi, we average all the well-exposed
weights for each exposure Ik of the stack associated to
the Ωi location. We then use the exposure Ik=maxi that
has the maximum average to fill in Ωi. As a result, each
moving cluster will contain values from a single exposure
only, which has to be self consistent and ghost-free since
the cluster is recovered from a single image rather than a
combination. In practice, we change the weight map W of
Exposure Fusion in order to select the appropriate exposure
for each affected area Ωi. I.e., we set the weights to 1 within
Ωi for the exposure k = maxi and to 0 for all other k’s.
After the weights are corrected, Exposure Fusion generates
the final image by collapsing the stack using its original
weighted blending.

B. Discussion
The choice of using only the best exposed exposure for

each affected area is motivated by the fact that the use
of exactly one exposure ensures consistency of the final
result with respect to the motion. However, this choice
may sometimes reduce the information available, especially
when more than one exposure should be used to enrich the



(a) Input
stack.

(b) Result of the per-exposure
XOR technique.

(c) Result obtained with the best
exposure selection.

Figure 4. Example of success of the per-exposure XOR method. Improve-
ments can be seen in the red rectangles.

dynamic range of a particular scene area (e.g., when a region
with motion contains a large dynamic range). For this reason
we developed an alternative solution that finds the subset of
exposures that are considered ghost free for each motion
blob in the scene. To this end, we compute a logical XOR
between all the pair-wise combinations of MTBs to isolate
the exact exposures where movement happens (separately
for each blob bi in the scene). Two exposures of a pair-
wise combination are considered motion free (for a particular
region), if less than P% of pixels change.

Even though this method can improve the information
recovered for each moving area, it is difficult to select the
right percentage P%. When the movement appears only in
a small subset of the input stack, and thus it is totally
absent from the rest of the image set, it is often possible
to choose the right parameter, and the per-exposure XOR
computation is able to effectively isolate the ghost free
exposures, improving the final results. Fig. 4 is an example
of this configuration (we found P = 15% to work in these
cases).

Commonly though, no single parameter P will work for
all affected regions. If P is too large, no region will be
classified as in motion (despite containing movement), which
creates obvious artifacts. If P is too small, every region will
be classified as containing motion, mostly due to noise in the
MTB, which consequently will not improve the results over
the basic algorithm from the previous section. This problem
is illustrated in Fig. 5, which shows a motion configuration
that let the per-exposure XOR technique fail (please refer
to Fig. 9(g) for the whole exposure stack employed for the
image generation). Any large enough P that improves some
area, fails in others. Unfortunately, this behavior is rather
common in many scenes, and thus we decided to adopt only
the best exposed selection in the recovery of the affected
zone to prevent potential artefacts in the final results.

(a) Result obtained by using the per-exposure XOR technique.

(b) Result obtained with the best exposure selection.

Figure 5. Example of failure of the per-exposure XOR technique. Red
rectangles show the artefacts in the final image.

IV. RESULTS

We have tested our algorithm on a variety of dynamic
scenes to evaluate its performance under different movement
configurations. Fig. 1 shows scene with a large number of
small movements that blend in with the background. Our
method generates a flawless image with no artefacts or
inconsistent areas: this is particularly important because it
shows that our method deals well with small and compact
movements, a class of motion notoriously hard to detect.
Moreover, the result also presents smooth transition between
fused zones. The preliminary motion map M∗, together with
the final motion map M , are reported in Fig. 3.

Fig. 7 presents the standard fused image and our re-
sult generated from a stack of 9 exposures of a highly
dynamic scene. This scene includes a large amount of
motion, introduced by the moving crowd, and thus this
movement configuration can be classified as “wide”. The
figure shows that our method considerably improves the
final result by erasing all the artefacts and selecting the
appropriate replacement for the corrected clusters.

Fig. 9(c) shows the result obtained from a scene with large
horizontal motions, while in Fig. 9(f) and 9(i) the objects
are moving towards the camera. Objects moving towards



(a) Best M . se = 3, sd =
17.

(b) se = 1, sd = 17. (c) se = 10, sd = 17. (d) se = 3, sd = 5. (e) se = 3, sd = 30.

Figure 6. Higher values of sd or lower values of se (Figure 6(e) and 6(b)) lead to an extreme movement detection; higher values of se or lower values
of sd (Figure 6(c) and 6(d)) lead to incomplete movement detection.

Figure 7. Example of standard fused image (top) and our result (bottom)
for a highly dynamic scene.

the camera are particularly hard to detect because the area
they span is very narrow. However our method is able to
handle with this configuration, as well as with the horizontal
motion, with very small errors.

Further, we have compared our results with the techniques
described in [1], [5], [6] and with the results obtained
with the commercial tool Photomatix [14]. Fig. 8 shows
results generated from a set of three, five and four exposures
respectively. The methods in [1], [5], [14] did not correctly
remove the ghosts present in the scene. Even the method by
Gallo et al. [6] yields small artefacts in one case (Fig. 8(f)),

Table I
COMPUTATIONAL TIMES OF THE ORIGINAL EXPOSURE FUSION (EF)

AND BMD.

w × h × N EF BMD
550 × 820 × 3 4.22 sec 0.627 sec

683 × 1024 × 3 5.97 sec 0.980 sec
1366 × 2048 × 3 23.08 sec 3.03 sec

550 × 820 × 6 7.15 sec 1.01 sec
550 × 820 × 9 7.15 sec 1.42 sec

683 × 1024 × 6 10.97 sec 1.63 sec
683 × 1024 × 9 10.97 sec 1.96 sec

probably introduced by the use of a gradient-domain tone-
mapping algorithm. Our method identifies and removes all
artefacts present in the scenes, while being more efficient
than other methods.

Finally, Table I lists the performance obtained by BMD
for different image resolutions (with and without Exposure
Fusion) to generate a fused image. BMD efficiently performs
motion detection and it yields very good performance even
when applied to large resolution images or to large se-
quences. Moreover, its integration in Exposure Fusion does
not substantially increase the total computational time.

A. Discussion and Limitations
The kernel sizes used for the dilation and erosion of the

motion mask affect the final results and a good balance
between the dilation kernel size, sd, and the erosion kernel
size, se, is required. For all our results, we have set se = 3
and sd = 17 and always yielded good results. The se sets
the sensibility of the algorithm to isolate and eliminate the
outliers from the moving pixels (noisy clusters) and sd is
directly responsible for the enlarging of the moving clusters
when moving pixels are missed. Fig. 6(d) shows the impact
of different values of sd and se on the motion map.

BMD produces very consistent results, but there are cases
where it fails to detect movement clusters. For instance,
when the input exposure sequence does not provide enough
information to distinguish between still and moving objects,
BMD cannot completely identify the motion. This can hap-
pen when the scene (or part of it) is over or under exposed
for the whole sequence, or when the intensity difference
between the moving object and the background is too small,



preventing BMD to segment the motion. This is the case of
Fig. 9(l), where BMD fails in the portion that is always
over-exposed (red area). Adding another correctly exposed
exposure would prevent the problem.

V. CONCLUSION

We have presented a technique that extends standard HDR
imaging techniques to handle dynamic scenes by detecting
and correcting ghosting artefacts introduced by moving
objects. We have shown that our algorithm works well on a
large variety of movement configurations and that it yields
fast computation times. The technique is successful even
when the motion affects a substantial part of the scene or
when the movements are located on the background and
are very compact. The results are similar or better than the
ones obtained by other techniques. Nonetheless, our motion
detection method is much faster, and the combination with
Exposure Fusion makes it a highly efficient technique. Our
motion detection relies only on simple binary operations,
and thus it can be easily implemented directly on camera
hardware. Moreover, we believe fused images could be
generated almost in real time when implemented on GPUs.
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(a) Our result. (b) Jacobs et al. [5].

(c) Ward et al. [1]. (d) Photomatix [14].

(e) Our result. (f) Gallo et al. [6]. (g) Ward et al. [5]. (h) Ward et al. [1]. (i) Photomatix [14].

(j) Our result. (k) Gallo et al. [6].

(l) Jacobs et al. [5]. (m) Ward et al. [1]. (n) Photomatix [14].

Figure 8. Variety of comparisons. The exposure stacks used to generate the images in the second and third example are courtesy of Gallo et al. [6]



(a) Exposure stack. (b) Standard fused image. (c) Result obtained with BMD algorithm.

(d) Exposure stack. (e) Standard fused image. (f) Our result.

(g) Exposure stack. (h) Original fused image. (i) Our result.

(j) Exposure stack. (k) Original fused image. (l) Our result. Please note the detection failure in the red
box and the correct detection in the blue box.

Figure 9. Variety of results. The images in Fig. 9(j) are courtesy of Gallo et al. [6].


