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Figure 1. Novel View Synthesis and Camera Pose Estimation Comparison. We propose COLMAP-Free 3D Gaussian Splatting (CF-
3DGS) for novel view synthesis without known camera parameters. Our method achieves more robustness in pose estimation and better
quality in novel view synthesis than previous state-of-the-art methods.

Abstract

While neural rendering has led to impressive advances
in scene reconstruction and novel view synthesis, it relies
heavily on accurately pre-computed camera poses. To re-
lax this constraint, multiple efforts have been made to train
Neural Radiance Fields (NeRFs) without pre-processed cam-
era poses. However, the implicit representations of NeRFs
provide extra challenges to optimize the 3D structure and
camera poses at the same time. On the other hand, the re-
cently proposed 3D Gaussian Splatting provides new oppor-
tunities given its explicit point cloud representations. This
paper leverages both the explicit geometric representation
and the continuity of the input video stream to perform
novel view synthesis without any SfM preprocessing. We
process the input frames in a sequential manner and pro-
gressively grow the 3D Gaussians set by taking one input
frame at a time, without the need to pre-compute the cam-
era poses. Our method significantly improves over previous

*This work was done while Yang Fu was a part-time intern at NVIDIA.

approaches in view synthesis and camera pose estimation
under large motion changes. Our project page is https:
//oasisyang.github.io/colmap-free-3dgs.

1. Introduction
The field of photo-realistic scene reconstruction and view
synthesis has been largely advanced with the rise of Neural
Radiance Fields (NeRFs [27]). An important initialization
step for training NeRF is to first prepare the camera poses
for each input image. This is usually achieved by running
the Structure-from-Motion (SfM) library COLMAP [39].
However, this pre-processing is not only time-consuming but
also can fail due to its sensitivity to feature extraction errors
and difficulties in handling textureless or repetitive regions.

Recent studies [6, 23, 49] have focused on reducing the
reliance on SfM by integrating pose estimation directly
within the NeRF framework. Simultaneously solving 3D
scene reconstruction and camera registration has been a
chicken-and-egg problem for a long time in computer vi-
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sion. This challenge is further amplified in the context of
NeRF and its implicit representation, where the optimiza-
tion process often involves additional constraints. For in-
stance, BARF [23] requires initial poses that are close to
their ground truth locations, and NeRFmm [49] is largely
limited to face-forwarding scenes. The recently proposed
Nope-NeRF [6] takes a long time to train (30 hours) and
does not work well when the camera pose changes a lot (e.g.,
360 degrees), as shown in the two top cases in Fig. 1. Funda-
mentally, NeRFs optimize camera parameters in an indirect
way, by updating the ray casting from camera positions,
which makes optimization challenging.

The arrival of 3D Gaussian Splatting [17] extends the
volumetric rendering in NeRFs to accommodate point clouds.
While it was originally proposed with pre-computed cameras,
we find it offers a new opportunity to perform view synthesis
without SfM pre-processing. We propose COLMAP-Free
3D Gaussian Splatting (CF-3DGS), which leverages two
key ingredients: the temporal continuity from video and
the explicit point cloud representation. We summarize out
approach below.

Instead of optimizing with all the frames at once, we pro-
pose to build the 3D Gaussians of the scene in a continuous
manner, “growing” one frame at a time as the camera moves.
In this process, we will extract a local 3D Gaussians set
for each frame, and also maintain a global 3D Gaussians
set of the whole scene. Assuming we are iterating through
t = {1, ..., T} frames in a sequential manner, we perform a
two-step procedure each time: (i) We construct a local 3D
Gaussians set given frame t − 1, and we sample the next
nearby frame t. Our goal is to learn an affine transforma-
tion that can transform the 3D Gaussians in frame t− 1 to
render the pixels in frame t. Neural rendering provides the
gradients for optimizing the affine transformation, which is
essentially the relative camera pose between frames t − 1
and t. This optimization is not difficult as the explicit point
cloud representation allows us to directly apply an affine
transformation on it which cannot be achieved with NeRFs,
and the two frames are close (temporal continuity) which
makes the transformation relatively small. (ii) Once we have
the relative camera pose between frames t− 1 and t, we can
infer the relative pose between the first frame and frame t.
This allows us to aggregate the current frame information
into the global 3D Gaussians set, where we will perform
optimization with the current and all the previous frames and
camera poses.

We experiment with two datasets: the Tanks and Tem-
ples dataset [19] and videos randomly selected from the
CO3D dataset [34]. We evaluate both view synthesis and
camera pose estimation tasks, and compare with previous ap-
proaches without pre-computed camera poses. Our method
performs significantly better than previous approaches on
view synthesis in both datasets. For camera pose estimation,

we find our method performs on par with the most recent
Nope-NeRF [6] when the camera motion is small, and out-
performs all approaches by a large margin when the camera
changes a lot, such as in the 360-degree videos in CO3D.

2. Related Work
Novel View Synthesis. To generate realistic images from
novel viewpoints, several different 3D scene represen-
tations have been employed, such as planes [12, 13],
meshes [14, 35, 36], point clouds [53, 59], and multi-plane
images [22, 45, 61]. Recently, NeRFs [27] have gained
prominence in this field due to its exceptional capability
of photorealistic rendering. Several efforts have been made
on top of the vanilla NeRF for advanced rendering qual-
ity. These improvements include enhancing anti-aliasing ef-
fects [2–4, 58], refining reflectance [1, 47], training with
sparse view [15, 18, 30, 52, 54], and reducing training
times [28, 33, 38] and rendering time [10, 24, 43, 57].

More recently, point-cloud-based representation [17, 20,
25, 53, 56, 59] has been widely used for its efficiency during
rendering. For instance, Zhang et al. [59] propose to learn
the per-point position and view-dependent appearance, us-
ing a differentiable splat-based renderer, from point clouds
initialized from object masks. Additionally, 3DGS [17] en-
ables real-time rendering of novel views by its pure explicit
representation and the novel differential point-based splat-
ting method. However, most of these approaches still rely
on pre-computed camera parameters obtained from SfM
algorithms [11, 29, 39, 44].
NeRF without SfM Preprocessing. Recently, there has been
growing interest in trying to eliminate the required prepro-
cessing step of camera estimation in NeRFs. The initial effort
in this direction was i-NeRF [55], which predicts camera
poses by matching keypoints using a pre-trained NeRF. Fol-
lowing this, NeRFmm [49] introduced a method to jointly
optimize the NeRF network and camera pose embeddings.
However, despite its successor, SiNeRF [51], employing
SIREN-MLP [41] and a mixed region sampling strategy to
address NeRFmm’s sub-optimal issues, it remains limited
to forward-facing scenes. BARF [23] and GARF [8] pro-
pose to alleviate the gradient inconsistency issue caused
by high-frequency parts of positional embedding. For in-
stance, BARF proposes a coarse-to-fine positional encod-
ing strategy for camera poses and NeRF joint optimization.
Though they could handle more complex camera motions,
they require a good initialization from the ground-truth cam-
eras.(e.g., within 15◦ of the ground-truth). More advanced
works [6, 7, 26] seek help from some pre-trained networks,
i.e., monocular depth estimation and optical flow estima-
tion, to obtain prior knowledge of geometry or correspon-
dence. For example, Nope-NeRF [6] trains a NeRF by in-
corporating undistorted depth priors which are correct from
the monocular depth estimation during training. Addition-
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Figure 2. Overview of proposed CF-3DGS. Our method takes a sequence of images as input to learn a set of 3D Gaussian that presents the
input scene and jointly estimates the camera poses of the frames. We first introduce a local 3DGS to estimate the relative pose of two nearby
frames by approximating the Gaussian transformation. Then, a global 3DGS is utilized to model the scene by progressively growing the set
of 3D Gaussian as the camera moves.

ally, VideoAE [21], RUST [37], MonoNeRF [9] and Flow-
Cam [42] learn a generalizable scene representation from
unposed videos, but their view synthesis performance is
unsatisfactory without per-scene optimization.

In summary, although showing some promising results,
prior works on NeRFs with unknown poses assume either
small perturbations [8, 23], a narrow range of camera mo-
tion [49, 51], or prior knowledges [6, 26]. These approaches
face difficulties when handling challenging camera trajec-
tories with large camera motion, e.g., 360◦ scenes in the
CO3D [34] dataset. Furthermore, most existing works re-
quire quite a long training time, typically exceeding 10 hours.
To overcome these limitations, our work proposes a joint op-
timization of camera parameters and 3D Gaussians, utilizing
both local and global 3DGS strategies.

3. Method

Given a sequence of unposed images along with camera
intrinsics, our goal is to recover the camera poses and recon-
struct the photo-realistic scene. To this end, we propose CF-
3DGS to optimize the 3D Gaussian Splatting (3DGS [17])
and camera poses simultaneously. We detail our method in
the following sections, starting from a brief review of the rep-
resentation and rendering process of 3DGS in Sec. 3.1. Then,
we propose a local 3DGS, a simple yet effective method to
estimate the relative camera pose from each pair of nearby

frames, in Sec. 3.2. Finally, we introduce a global 3DGS,
featuring a progressive expansion of the 3D Gaussians from
unobserved views in sequential order, in Sec. 3.3.

3.1. Preliminary: 3D Gaussian Splatting

3DGS [17] models the scene as a set of 3D Gaussians, which
is an explicit form of representation, in contrast to the im-
plicit representation used in NeRFs. Each Gaussian is charac-
terized by a covariance matrix Σ and a center (mean) point µ,

G(x) = e−
1
2 (x−µ)⊤Σ−1(x−µ) (1)

The means of 3D Gaussians are initialized by a set of sparse
point clouds(e.g., always obtained from SfM). Each Gaus-
sian is parameterized as the following parameters: (a) a cen-
ter position µ ∈ R3; (b) spherical harmonics (SH) coef-
ficients c ∈ Rk (k represents the degrees of freedom) that
represents the color; (c) rotation factor r ∈ R4 (in quaternion
rotation); (d) scale factor s ∈ R3; (e) opacity α ∈ R. Then,
the covariance matrix Σ describes an ellipsoid configured by
a scaling matrix S = diag([sx, sy, sz]) and rotation matrix
R = q2R([rw, rx, ry, rz]), where q2R() is the formula for
constructing a rotation matrix from a quaternion. Then, the
covariance matrix can be computed as follows,

Σ = RSS⊤R⊤ (2)

In order to optimize the parameters of 3D Gaussians to
represent the scene, we need to render them into images in a
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differentiable manner. As introduced in [17], the rendering
from a given camera view W involves the process of splat-
ting the Gaussian onto the image plane, which is achieved
by approximating the projection of a 3D Gaussian along
the depth dimension into pixel coordinates. Given a viewing
transform W (also known as the camera pose), the covari-
ance matrix Σ2D in camera coordinates can be expressed by

Σ2D = JWΣW⊤J⊤ (3)

where J is the Jacobian of the affine approximation of the
projective transformation. For each pixel, the color and opac-
ity of all the Gaussians are computed using Eq. 1, and the
final rendered color can be formulated as the alpha-blending
of N ordered points that overlap the pixel,

Cpix =

N∑
i

ciαi

i−1∏
j

(1− αj) (4)

where ci, αi represents the density and color of this point
computed from the learnable per-point opacity and SH color
coefficients weighted by the Gaussian covariance Σ, which
we ignore in Eq. 4 for simplicity.

To perform scene reconstruction, given the ground truth
poses that determine the projections, we fit a set of initialized
Gaussian points to the desired objects or scenes by learning
their parameters, i.e., µ and Σ. With the differentiable ren-
derer as in Eq. 4, all those parameters, along with the SH
and opacity, can be easily optimized through a photometric
loss. In our approach, we reconstruct scenes following the
same process, but replacing the ground truth poses with the
estimated ones, as detailed in the following sections.

3.2. Local 3DGS for Relative Pose Estimation

Previous studies [6, 16, 23] have demonstrated the feasi-
bility of simultaneously estimating camera parameters and
optimizing a Neural Radiance Field (NeRF). This typically
involves the integration of various regularization terms and
geometric priors. However, rather than directly optimizing
camera poses, most existing methods prioritize optimizing
the ray casting process from varying camera positions. This
is dictated by the nature of implicit representation and the im-
plementation of ray tracing in NeRFs. This indirect approach
often results in a complex and challenging optimization un-
der large camera movement scenarios.

On the other hand, 3DGS [17] utilizes an explicit scene
representation in the form of point clouds enabling straight-
forward deformation and movement, as demonstrated in its
recent application to dynamic scenes [25, 50]. To take ad-
vantage of 3DGS, we introduce a local 3DGS to estimate
the relative camera pose.

We reveal the relationship between the camera pose and
the 3D rigid transformation of Gaussian points, in the follow-
ing. Given a set of 3D Gaussians with centers µ, projecting

them with the camera pose W yields:

µ2D = K(Wµ)/(Wµ)z (5)

where K is the intrinsic projection matrix. Alternatively, the
2D projection µ2D can be obtained from the orthogonal direc-
tion I of a set of rigidly transformed points, i.e., µ′ = Wµ,
which yields µ2D := K(Iµ′)/(Iµ′)z . As such, estimating the
camera poses W is equivalent to estimating the transforma-
tion of a set of 3D Gaussian points. Based on this finding,
we designed the following algorithm to estimate the relative
camera pose.
Initialization from a single view. As demonstrated in Fig. 2
(bottom part), given a frame It at timestep t, we first utilize
an off-the-shelf monocular depth network, i.e., DPT [32],
to generate the monocular depth, denoted as Dt. Given that
monocular depth Dt offers strong geometric cues without
needing camera parameters, we initialize 3DGS with points
lifted from monocular depth, leveraging camera intrinsic
and identity camera pose, instead of the original SfM points.
After initialization, we learn a set of 3D Gaussian Gt with
all attributes to minimize the photometric loss between the
rendered image and the current frame It,

Gt
∗ = arg min

ct,rt,st,αt

Lrgb(R(Gt), It), (6)

where R is the 3DGS rendering process. The photometric
loss Lrgb is L1 combined with a D-SSIM:

Lrgb = (1− λ)L1 + λLD-SSIM (7)

We use λ = 0.2 for all experiments. This step is quite
lightweight to run and only takes around 5s to fit the in-
put frame It.
Pose Estimation by 3D Gaussian Transformation. To esti-
mate the relative camera pose, we transform the pre-trained
3D Gaussian Gt

∗ by a learnable SE-3 affine transformation
Tt into frame t+ 1, denoted as Gt+1 = Tt ⊙Gt. The trans-
formation Tt is optimized by minimizing the photometric
loss between the rendered image and the next frame It+1

Tt
∗ = argmin

Tt

Lrgb(R(Tt ⊙Gt), It+1), (8)

Note that during the aforementioned optimization process,
we freeze all attributes of the pre-trained 3D Gaussian Gt

∗ to
separate the camera movement from the deformation, densi-
fication, pruning, and self-rotation of the 3D Gaussian points.
The transformation T is represented in form of quaternion
rotation q ∈ so(3) and translation vector t ∈ R3. As two ad-
junct frames are close, the transformation is relatively small
and easier to optimize. Similar to the initialization phase,
the pose optimization step is also quite efficient, typically
requiring only 5-10 seconds.
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scenes Ours Nope-NeRF BARF NeRFmm SC-NeRF
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Church 30.23 0.93 0.11 25.17 0.73 0.39 23.17 0.62 0.52 21.64 0.58 0.54 21.96 0.60 0.53
Barn 31.23 0.90 0.10 26.35 0.69 0.44 25.28 0.64 0.48 23.21 0.61 0.53 23.26 0.62 0.51

Museum 29.91 0.91 0.11 26.77 0.76 0.35 23.58 0.61 0.55 22.37 0.61 0.53 24.94 0.69 0.45
Family 31.27 0.94 0.07 26.01 0.74 0.41 23.04 0.61 0.56 23.04 0.58 0.56 22.60 0.63 0.51
Horse 33.94 0.96 0.05 27.64 0.84 0.26 24.09 0.72 0.41 23.12 0.70 0.43 25.23 0.76 0.37

Ballroom 32.47 0.96 0.07 25.33 0.72 0.38 20.66 0.50 0.60 20.03 0.48 0.57 22.64 0.61 0.48
Francis 32.72 0.91 0.14 29.48 0.80 0.38 25.85 0.69 0.57 25.40 00.69 0.52 26.46 0.73 0.49
Ignatius 28.43 0.90 0.09 23.96 0.61 0.47 21.78 0.47 0.60 21.16 0.45 0.60 23.00 0.55 0.53

mean 31.28 0.93 0.09 26.34 0.74 0.39 23.42 0.61 0.54 22.50 0.59 0.54 23.76 0.65 0.48

Table 1. Novel view synthesis results on Tanks and Temples. Each baseline method is trained with its public code under the original
settings and evaluated with the same evaluation protocol. The best results are highlighted in bold.

3.3. Global 3DGS with Progressively Growing

By employing the local 3DGS on every pair of images, we
can infer the relative pose between the first frame and any
frame at timestep t. However, these relative poses could be
noisy resulting in a dramatic impact on optimizating a 3DGS
for the whole scene (see Table 5). To tackle this issue, we
propose to learn a global 3DGS progressively in a sequential
manner.

As described in the top part of Fig. 2, starting from the
tth frame It, we first initialize a set of 3D Gaussian points
with the camera pose set as orthogonal, as aforementioned.
Then, utilizing the local 3DGS, we estimate the relative
camera pose between frames It and It+1. Following this, the
global 3DGS updates the set of 3D Gaussian points, along
with all attributes, over N iterations, using the estimated
relative pose and the two observed frames as inputs. As the
next frame It+2 becomes available, this process is repeated:
we estimate the relative pose between It+1 and It+2, and
subsequently infer the relative pose between It and It+2.

To update the global 3DGS to cover the new view, we
densify the Gassians that are ”under-reconstruction” as new
frames arrive. As suggested in [17], we determine the can-
didates for densification by the average magnitude of view-
space position gradients. Intuitively, the unobserved frames
always contain regions that are not yet well reconstructed,
and the optimization tries to move the Gaussians to correct
with a large gradient step. Therefore, to make the densifi-
cation concentrate on the unobserved content/regions, we
densify the global 3DGS every N steps that aligns with the
pace of adding new frames. In addition, instead of stopping
the densification in the middle of the training stage, we keep
growing the 3D Gaussian points until the end of the input se-
quence. By iteratively applying both local and global 3DGS,
the global 3DGS will grow progressively from the initial par-
tial point cloud to the completed point cloud that covers the
whole scene throughout the entire sequence, and simultane-
ously accomplish photo-realistic reconstruction and accurate
camera pose estimation.

4. Experiments

4.1. Experimental Setup

Datasets. We conduct extensive experiments on different
real-world datasets, including Tanks and Temples [19] and
CO3D-V2 [34]. Tanks and Temples: Similar to [6], we
evaluate novel view synthesis quality and pose estimation ac-
curacy on 8 scenes covering both indoor and outdoor scenes.
For each scene, we sample 7 images from every 8-frame clip
as training samples and test the novel view synthesis quality
on the remaining 1/8 images. The camera poses are esti-
mated and evaluated on all training samples after Umeyama
alignment [46]. CO3D-V2: It consists of thousands of object-
centric videos where the whole object is kept in view while
moving a full circle around it. Compared with Tanks and
Temples, recovering camera poses from CO3D videos is
much harder as it involves large and complicated camera mo-
tions. We randomly select 5 scenes1 of different categories
objects and follow the same protocol to split the train/test
set.
Metrics. We evaluate the tasks of novel view synthesis and
camera pose estimation. For novel view synthesis, we For
camera pose estimation, we report the camera rotation and
translation error, including the Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE) as in [6, 23]. For novel
view synthesis, we report the standard evaluation metrics
including PSNR, SSIM [48], and LPIPS [60].
Implementation Details. Our implementation is primarily
based on the PyTorch [31] framework and we follow the
optimization parameters by the configuration outlined in the
3DGS [17] unless otherwise specified. Notably, we set the
number of steps of adding new frames equal to the inter-
vals of point densification, in order to achieve progressive
growth of the whole scene. Further, we keep resetting the
opacity until the end of the training process, which enables
us to integrate the new frames into the Gaussian model es-
tablished from observed frames. Moreover, the camera poses
are optimized in the representation of quaternion rotation

1We specify all selected scenes in the supplementary material.

5



scenes Ours Nope-NeRF BARF NeRFmm SC-NeRF
RPEt ↓ RPEr ↓ ATE↓ RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE

Church 0.008 0.018 0.002 0.034 0.008 0.008 0.114 0.038 0.052 0.626 0.127 0.065 0.836 0.187 0.108
Barn 0.034 0.034 0.003 0.046 0.032 0.004 0.314 0.265 0.050 1.629 0.494 0.159 1.317 0.429 0.157

Museum 0.052 0.215 0.005 0.207 0.202 0.020 3.442 1.128 0.263 4.134 1.051 0.346 8.339 1.491 0.316
Family 0.022 0.024 0.002 0.047 0.015 0.001 1.371 0.591 0.115 2.743 0.537 0.120 1.171 0.499 0.142
Horse 0.112 0.057 0.003 0.179 0.017 0.003 1.333 0.394 0.014 1.349 0.434 0.018 1.366 0.438 0.019

Ballroom 0.037 0.024 0.003 0.041 0.018 0.002 0.531 0.228 0.018 0.449 0.177 0.031 0.328 0.146 0.012
Francis 0.029 0.154 0.006 0.057 0.009 0.005 1.321 0.558 0.082 1.647 0.618 0.207 1.233 0.483 0.192
Ignatius 0.033 0.032 0.005 0.026 0.005 0.002 0.736 0.324 0.029 1.302 0.379 0.041 0.533 0.240 0.085

mean 0.041 0.069 0.004 0.080 0.038 0.006 1.046 0.441 0.078 1.735 0.477 0.123 1.890 0.489 0.129

Table 2. Pose accuracy on Tanks and Temples. Note that we use COLMAP poses in Tanks and Temples as the “ground truth”. The unit of
RPEr is in degrees, ATE is in the ground truth scale and RPEt is scaled by 100. The best results are highlighted in bold.

Figure 3. Qualitative comparison for novel view synthesis on Tanks and Temples. Our approach produces more realistic rendering results
than other baselines. Better viewed when zoomed in.

q ∈ so(3) and translation vector t ∈ R3. The initial learning
rate is set to 10−5 and gradually decay to 10−6 until conver-
gence. All experiments are conducted on a single single RTX
3090 GPU. More details are provided in the supplementary
material.

4.2. Comparing with Pose-Unknown Methods

In this subsection, we compare our method with several base-
lines including, Nope-NeRF [6], BARF [23], NeRFmm [49]
and SC-NeRF [16] on both novel view synthesis and camera
pose estimation.

Novel View Synthesis. Different from the standard set-

ting where the camera poses of testing views are given, we
need to first obtain the camera poses of test views for ren-
dering. Inspired by NeRFmm [49], we freeze the pre-trained
3DGS model that trained on the training views, while op-
timizing testing views’ camera poses via minimizing the
photometric error between the synthesised images and the
test views. To speed up convergence, the camera pose of
each test view is initialised by the closest camera position
from the learnt camera poses of all training frames, which
are then fine-tuned with the photometric error to obtain the
testing camera pose. The same procedure is performed on
all baselines for a fair comparison.
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Method Times ↓ 110 13051 23361 415 57112 110099 106 12648 23157 245 26182 52130 34 1403 4393
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Nope-NeRF [6] ∼30 h 26.86 0.73 0.47 24.78 0.64 0.55 20.41 0.46 0.58 25.05 0.80 0.49 28.62 0.80 0.35
Ours ∼2 h 29.69 0.89 0.29 26.21 0.73 0.32 22.14 0.64 0.34 27.24 0.85 0.30 27.75 0.86 0.20

Table 3. Novel view synthesis results on CO3D V2. Each baseline method is trained with its public code under the original settings and
evaluated with the same evaluation protocol. The best results are highlighted in bold.

Method Times ↓ 110 13051 23361 415 57112 110099 106 12648 23157 245 26182 52130 34 1403 4393
RPEt ↓ RPEr ↓ ATE↓ RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE

Nope-NeRF [6] ∼30 h 0.400 1.966 0.046 0.326 1.919 0.054 0.387 1.312 0.049 0.587 1.867 0.038 0.591 1.313 0.053
Ours ∼2 h 0.140 0.401 0.021 0.110 0.424 0.014 0.094 0.360 0.008 0.239 0.472 0.017 0.505 0.211 0.009

Table 4. Pose accuracy on CO3D V2. Note that the camera poses provided by CO3D as the “ground truth”. The unit of RPEr is in degrees,
ATE is in the ground truth scale and RPEt is scaled by 100. The best results are highlighted in bold.

scenes w.o. growing Ours
PSNR SSIM RPEt RPEr PSNR SSIM RPEt RPEr

Church 22.01 0.72 0.044 0.122 30.23 0.93 0.008 0.018
Barn 25.20 0.85 0.152 0.232 31.23 0.90 0.034 0.034

Museum 20.95 0.70 0.079 0.212 29.91 0.91 0.052 0.215
Family 22.30 0.77 0.065 0.028 31.27 0.94 0.022 0.024
Horse 23.47 0.81 0.147 0.066 33.94 0.96 0.112 0.057

Ballroom 23.36 0.79 0.056 0.073 32.47 0.96 0.037 0.024
Francis 22.20 0.69 0.147 0.161 32.72 0.91 0.029 0.154
Ignatius 21.05 0.67 0.24 0.058 28.43 0.90 0.033 0.032

mean 22.57 0.75 0.116 0.119 31.28 0.93 0.041 0.069

Table 5. Ablation for Progressively Growing on Tanks and Tem-
ples. Performance on both novel view synthesis and camera pose
estimation. The best results are highlighted in bold.

We report the comparison results on Tanks and Temples
in Table 1. Our method consistently consistently outper-
forms the others across all metrics. Notably, compared to
Nope-NeRF [6] which takes a significantly longer training
time, our approach achieves superior results within a shorter
training duration (e.g., 25 hrs vs. 1.5 hrs). We also show
the qualitative results in Fig. 3. As illustrated in Fig. 3, The
images synthesized through our approach are significantly
sharper and clearer than those produced by the other meth-
ods, as evidenced by the notably higher scores in terms of
SSIM and LPIPS, as shown in Table 1.

Camera Pose Estimation. The learnt camera poses are
post-processed by Procrustes analysis as in [6, 23] and com-
pared with the ground-truth poses of training views. The
quantitative results of camera pose estimation are summa-
rized in Table 2. Our approach achieves comparable perfor-
mance with the current state-of-the-art results. We hypothe-
size that the relatively poorer performance in terms of RPEr

and RPEt may be attributed to relying solely on photometric
loss for relative pose estimation in a local region. In contrast,
Nope-NeRF incorporates additional constraints on relative
poses beyond photometric loss, including the chamfer dis-
tance between two point clouds. As indicated in [6], omitting
the point cloud loss leads to a significant decrease in pose
accuracy.

scenes w. depth Ours
PSNR SSIM RPEt RPEr PSNR SSIM RPEt RPEr

Church 28.93 0.91 0.008 0.017 30.23 0.93 0.008 0.018
Barn 28.70 0.87 0.029 0.033 31.23 0.90 0.034 0.034

Museum 26.92 0.83 0.049 0.216 29.91 0.91 0.052 0.215
Family 29.05 0.94 0.021 0.024 31.27 0.94 0.022 0.024
Horse 30.86 0.94 0.108 0.054 33.94 0.96 0.112 0.057

Ballroom 30.38 0.94 0.038 0.018 32.47 0.96 0.037 0.024
Francis 29.97 0.88 0.029 0.154 32.72 0.91 0.029 0.154
Ignatius 26.69 0.87 0.032 0.033 28.43 0.90 0.033 0.032

mean 28.94 0.90 0.039 0.069 31.28 0.93 0.041 0.069

Table 6. Ablation study of depth loss on Tanks and Temples. We
report the performance on both novel view synthesis and camera
pose estimation. The best results are highlighted in bold.

4.3. Results on Scenes with Large Camera Motions

Given that the camera motion in scenes from the Tanks and
Temples dataset is relatively small, we further demonstrate
the robustness of our approach by validating it on the CO3D
videos, which present more complex and challenging camera
movements. We first evaluate the quality of synthesised im-
ages following the same evaluation procedure used in Tanks
and Temples data. As demonstrated in Table 3, for novel
view synthesis, our approach also significantly outperforms
Nope-NeRF which corroborates the conclusions drawn from
experiments conducted on the Tanks and Temples dataset.
More qualitative results are shown in Fig. 4.

In addition, we evaluated camera pose estimation on the
CO3D V2 dataset with the provided ground-truth poses for
reference. As detailed in Table 4, different from the on-par
results on Tanks and Temples, our approach consistently
surpasses Nope-NeRFe across all metrics by a large mar-
gin when testing on CO3D V2. This enhanced performance
demonstrates the robustness and accuracy of our proposed
method in estimating camera poses, especially in scenarios
with complex camera movements.

4.4. Ablation Study

In this section, we analyse the effectiveness of different
pipeline designs and components that have been added to
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Figure 4. Qualitative comparison for novel view synthesis and camera pose estimation on CO3D V2. Our approach estimates camera
pose much more robust than Nope-NeRF, and thus generates higher quality rendering images. Better viewed when zoomed in.

our approach.
Effectiveness of Progressively Growing. We first vali-

date the effectiveness of progressively growing by removing
it from the optimization of the global 3DGS. In other words,
we change the current one-stage pipeline to a two-stage pro-
cess, where the camera pose estimation and 3D Gaussian
splatting are learnt in two separate steps. We report the perfor-
mance on novel view synthesis and camera poses estimation
w./w.o progressively growing in Table 5. We observe that
the progressively growing is essential for enhancing both
novel view synthesis and pose estimation. Without progres-
sive growth, 3DGS is unable to utilize the continuity present
in videos, which results in the unstable optimization of the
global 3DGS model.

RGB Loss vs Depth Loss. Depth-related losses play a
crucial role in some advanced pose-unknown approaches,
such as Nope-NeRF [6]. To evaluate the significance of
depth-related loss, we employed both RGB and depth loss
as the objective function during the optimization. As listed
in Table 6, we observe that the depth loss is not as effective
as used in NeRFs. The performance on novel view synthesis
is even better when merely using the photometric loss.

Comparison with 3DGS with COLMAP poses. We
also compare the novel view synthesis quality of our pro-
posed framework against the original 3DGS [17], which was
trained using COLMAP-derived poses on the Tanks and Tem-
ples dataset. As indicated in Table 7, our joint optimization
framework achieves performance comparable to the 3DGS
model trained with COLMAP-assisted poses.

5. Conclusion
In this work, we present CF-3DGS, an end-to-end framework
for joint camera pose estimation and novel view synthesis
from a sequence of images. We demonstrate that previous
works either have difficulty handling large camera motions
or require extremely long training durations. Diverging from

scenes
Ours COLMAP + 3DGS

PSNR SSIM LPIPS PSNR SSIM LPIPS
Church 30.23 0.93 0.11 29.93 0.93 0.09

Barn 31.23 0.90 0.10 31.08 0.95 0.07
Museum 29.91 0.91 0.11 34.47 0.96 0.05
Family 31.27 0.94 0.07 27.93 0.92 0.11
Horse 33.94 0.96 0.05 20.91 0.77 0.23

Ballroom 32.47 0.96 0.07 34.48 0.96 0.04
Francis 32.72 0.91 0.14 32.64 0.92 0.15
Ignatius 28.43 0.90 0.09 30.20 0.93 0.08

mean 31.28 0.93 0.09 30.20 0.92 0.10

Table 7. Comparison to 3DGS trained with COLMAP poses.
We report the performance of novel view synthesis using ours and
vanilla 3DGS. The best results are highlighted in bold

the implicit representation of NeRFs, our approach utilizes
explicit point clouds to represent scenes. Leveraging the
capabilities of 3DGS and the continuity inherent in video
streams, our method sequentially processes input frames,
progressively expanding the 3D Gaussians to reconstruct the
entire scene. We show the effectiveness and robustness of our
approach on challenging scenes like 360◦ videos. Thanks to
the advantages of Gaussian splatting, our approach achieves
rapid training and inference speeds.

Limitations. Our proposed method optimizes camera pose
and 3DGS jointly in a sequential manner, thereby restricting
its application primarily to video streams or ordered image
collections. Exploring extensions of our work to accommo-
date unordered image collections represents an intriguing
direction for future research.
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COLMAP-Free 3D Gaussian Splatting

Supplementary Material

A. Implementation Details
A.1. Dataset

We select sequences containing dramatic camera motions
Tanks and Tamples [19] and CO3D-V2 [34] for training
and evaluation. The details of each sequence are listed in
Table 8, where Max rotation denotes the maximum relative
rotation angle between any two frames in a sequence. The
sampled images are further split into training and test sets.
Starting from the 5th image, we sample every 8th image in
a sequence as a test image. However, this leads to a change
in the sampling rate in the temporal domain among training
images. In order to study the effect of the sampling rate
changes, we follow the experiment setting proposed by [6].
Specifically, for scene Family in Tanks and Temples [19],
we sample every other image as test images, i.e., training
on images with odd frame ids and testing on images with
even frame ids. For CO3D-V2 [34], we randomly select 10
scenes from 6 categories, e.g., apple, bench, hydrant, plant,
skateboard, and teddybear. The selected sequence IDs are
also shown in Table 8 (bottom part). Compared to Tanks
and Temples, most scenes achieve the Max rotation of 180◦

indicating more dramatic and larger camera motions than
Tanks and Temples.

Scenes Type Seq. length Frame rate Max. rotation (deg)

Ta
nk

s
an

d
Te

m
pl

es

Church indoor 400 30 37.3
Barn outdoor 150 10 47.5

Museum indoor 100 10 76.2
Family outdoor 200 30 35.4
Horse outdoor 120 20 39.0

Ballroom indoor 150 20 30.3
Francis outdoor 150 10 47.5
Ignatius outdoor 120 20 26.0

C
O

3D
-V

2

34 1403 4393 indoor 202 30 180.0
106 12648 23157 outdoor 202 30 180.0
110 13051 23361 indoor 202 30 71.6
219 23121 48537 indoor 202 30 180.0
245 26182 52130 indoor 202 30 180.0
247 26441 50907 indoor 202 30 180.0

407 54965 106262 indoor 202 30 180.0
415 57112 110099 outdoor 202 30 180.0
415 57121 110109 outdoor 202 30 180.0
429 60388 117059 outdoor 202 30 180.0

Table 8. Details of selected sequences. We downsample several
videos to a lower frame rate. FPS denotes frame per second. Max
rotation denotes the maximum relative rotation angle between any
two frames in a sequence. Our method can handle dramatic camera
motion (large maximum rotation angle).

A.2. Training Details.

Local 3DGS. During the training of local 3DGS, we
first obtain the monocular depth map of the input image
by pre-trained monocular depth estimator, i.e., DPT [32],

Algorithm 1 Local 3DGS Optimization

{It, It+1} ← Two nearby images
DPT←Monocular Depth Estimation Model
Dt ← DPT(It)
Gt ← InitGauss(It, Dt) ▷ Init Local 3DGS
Tt ← Identity I ▷ Init Pose
while not converged do

Ît ← Rasterize(Gt)
L← Loss(It, Ît)
Gt ← Adam(∇L) ▷ Update Local 3DGS

end while
while not converged do

Ît+1 ← Rasterize(Tt ⊙Gt)
L← Loss(It+1, Ît+1)
Tt

∗ ← Adam(∇L) ▷ Update Pose
end while
Tt ←

∏t
i=1 Ti ▷ Output Pose

ZeoDepth [5]. Then, the depth map is lifted up with the
given camera intrinsic. As the high-resolution input images
could lead to a huge amount of point clouds, we downsam-
ple the point cloud first before fitting it by 3DGS. Then, the
downsampled point cloud is used to initialize the local 3DGS
and is further optimized on the input view via photometric
loss for 500 iterations. To obtain the transformation of the 3D
Gaussian between two views, we freeze the pre-trained local
3DGS including all attributes (i.e., position, SH coefficient,
opacity, scale, and rotation), and learn the pose parameter of
a quaternion vector a translation vector by the photometric
loss between the target view and the rendering image. In
detail, the freeze local 3D Gaussian is first transformed into
the target view coordinate by the learnable pose parameter
and then rendered into the target view by the gaussian splat-
ting. The optimization of the camera pose learning process
takes 300 steps. The optimization algorithm of local 3DGS
is summarized in Algorithm 1

Global 3DGS. The optimization process of the global 3DGS
starts and initializes from the first frame and its monocular
depth estimation. Subsequently, camera poses are estimated
in a sequential manner using the local 3DGS, as described in
Algorithm 1. Concurrently, the global 3DGS is updated with
all the observed images to date (i.e., from the first to the cur-
rent image), in tandem with the camera pose estimation. As
each new frame is introduced, the global 3DGS progressively
grows and expands through a densification process.
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scenes Nope-NeRF Ours
RPEt RPEr ATE RPEt RPEr ATE

189 20393 38136 0.444 2.84 0.034 0.064 0.225 0.007
247 26441 50907 0.34 1.395 0.032 0.395 0.477 0.007

407 54965 106262 0.553 4.685 0.057 0.31 0.243 0.008
429 60388 117059 0.398 2.914 0.055 0.134 0.542 0.018

46 2587 7531 0.426 4.226 0.023 0.095 0.447 0.009
mean 0.432 3.212 0.040 0.200 0.387 0.010

Table 9. Camera Pose Estimation on CO3D V2. The best results
are highlighted in bold.

A.3. Evaluation Metrics

Novel View Synthesis. We use Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [48],
and Learned Perceptual Image Patch Similarity (LPIPS) [60]
to measure the novel view synthesis quality. For LPIPS, we
use a VGG architecture [40].
Pose Accuracy. To evaluate pose accuracy, we employ stan-
dard visual odometry metrics, including Absolute Trajectory
Error (ATE) and Relative Pose Error (RPE). ATE quanti-
fies the discrepancy between estimated camera positions
and their ground truth counterparts. RPE, on the other hand,
assesses the errors in relative poses between image pairs.
This includes both relative rotation error (RPEr) and relative
translation error (RPEt).

B. Additional Experiments
The subsequent sections present further quantitative and
qualitative results of novel view synthesis and camera pose
estimation, conducted on both the Tanks and Temples and
CO3D-V2 datasets.

B.1. Camera Pose Estimation

Additional results on CO3D-V2. We conduct experiments
on 5 additional scenes of the CO3D-V2 dataset for the task of
camera pose estimation. The results are reported in Table 9.
We show better performances than Nope-NeRF [6] in both
pose accuracy and synthesis quality.
Additional Visualization. Additional qualitative results for
camera pose estimation on CO3D-V2 are presented in Fig. 5,
following the evaluation procedure outlined in the main pa-
per. In scenarios involving large camera motions, our ap-
proach significantly outperforms Nope-NeRF.

B.2. Novel View Synthesis.

Render Novel Views. As mentioned in the main paper, we
minimize the photometric error of the synthesized images
while freezing the 3DGS model to obtain the testing camera
poses. Because the test views are sampled from videos that
are close to the training views, these good results may be
obtained due to overfitting to the training images. Therefore,
we conduct an additional qualitative evaluation on more
novel views. Specifically, we fit a bezier curve from the

scenes Nope-NeRF Ours
PSNR SSIM LPIPS PSNR SSIM LPIPS

189 20393 38136 29.37 0.85 0.54 32.41 0.92 0.26
247 26441 50907 23.49 0.73 0.54 23.88 0.75 0.36
407 54965 106262 25.53 0.83 0.58 27.80 0.84 0.35
429 60388 117059 22.19 0.62 0.56 24.44 0.68 0.36

46 2587 7531 25.3 0.73 0.46 25.44 0.80 0.21
mean 25.18 0.75 0.54 26.79 0.80 0.31

Table 10. Novel view synthesis results on CO3D V2. The best
results are highlighted in bold.

estimated training poses and sample interpolated poses for
each method to render novel view videos. The rendered
images are shown in Fig. 6 and Fig. 7. Compared to Nope-
NeRF [6], our approach renders photo-realistic images with
more details (please check the highlighted regions).
Unknown camera intrinsic. We also conduct experiments
with heuristic camera intrinsic, where we set the FoV of all
scenes to 79◦ and make the principle points to the image
center. The quantitative results are listed in the following
table. We find that by setting the camera intrinsic heuristi-
cally, the performance on novel view synthesis (NVS) and
camera pose estimation slightly degenerates which is rea-
sonable as the intrinsic parameters are also important and
could be further optimized along with the camera extrinsic
parameters.

Method PSNR SSIM LPIPS RPEt RPEr ATE
Heuristic Intrinsic 30.90 0.92 0.09 0.044 0.072 0.004

G.T. Intrinsic 31.28 0.93 0.09 0.041 0.069 0.004

Table 11. Ablation study of camera intrinsic on Tanks and Temples.

Different monocular depth estimator. We conduct ablation
studies on different monocular depth estimation algorithms
in the following table. We notice that more accurate monoc-
ular depth estimation results could always lead to better
performance.

scenes ZeoDepth DepthAnything
PSNR SSIM RPEt RPEr PSNR SSIM RPEt RPEr

Church 30.49 0.93 0.012 0.033 30.66 0.93 0.012 0.029
Barn 28.34 0.86 0.039 0.057 30.54 0.88 0.034 0.113

Museum 30.40 0.91 0.052 0.158 30.92 0.92 0.043 0.130
Family 28.79 0.91 0.093 0.037 32.54 0.95 0.037 0.069
Horse 33.32 0.95 0.101 0.035 33.96 0.96 0.108 0.075

Ballroom 32.86 0.96 0.021 0.032 32.54 0.96 0.022 0.030
Francis 31.05 0.89 0.057 0.086 32.73 0.91 0.027 0.126
Ignatius 22.75 0.75 0.172 0.083 28.89 0.89 0.043 0.075

mean 29.75 0.90 0.068 0.065 31.60 0.93 0.041 0.081

Table 12. Ablation study of different depth estimators on Tanks and
Temples.

Additional results on CO3D-V2. We conduct experiments
on 5 additional scenes of the CO3D-V2 dataset and the novel
view synthesis results are summarized in Table 10.
Additional Visualization. We present additional qualitative
results for novel view synthesis on Tanks and Temples and
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Figure 5. Qualitative comparison for Camera Pose Estimation on CO3D-V2. The ground-truth trajectory and the estimated one are
shown in blue and red, respectively.

CO3D-V2 in Fig. 8 and Fig. 9 following the same evaluation
procedure described in the main paper.
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Figure 6. Qualitative comparison for novel view synthesis on Tanks and Temples. For each method, we fit the learned trajectory with a
bezier curve and uniformly sample new viewpoints for rendering. Better viewed when zoomed in.
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Figure 7. Qualitative comparison for novel view synthesis on Tanks and Temples. For each method, we fit the learned trajectory with a
bezier curve and uniformly sample new viewpoints for rendering. Better viewed when zoomed in.16



Figure 8. Qualitative comparison for novel view synthesis on Tanks and Temples. Our approach produces more realistic rendering results
than other baselines. Better viewed when zoomed in.

Figure 9. Qualitative comparison for novel view synthesis on CO3D-V2.Our approach produces more realistic rendering results than
other baselines. Better viewed when zoomed in.
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