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Early interactive rendering techniques were limited to simple point lighting environments, and had almost no transport complexity – global 
effects like shadows were ignored.

Algorithms to generate interactive shadows exist – most notably crows shadow volume technique and the shadow zbuffer technique by 
Williams – there is a nice extension to this work at this years siggraph.  However these techniques are restricted to point lights.  Such 
algorithms can be combined with multipass rendering such as with an accumulation buffer to generate soft shadows, but the number of 
passes gets impractically large as the light sources get bigger.

Heidrich et al. modeled soft shadows and inter reflections with bump maps – but the technique is limited to point lights and performance 
isn’t quite real-time.  Polynomial texture maps can handle shadows and inter-reflections in real-time, but they too are limited to point 
lights.  

Early work also extended lighting from point lights to general environment maps.
You have just seen two papers that generalize the early ideas to fairly general isotropic BRDFs.  But environment map methods ignore 
transport complexity – they can’t model shadows or inter-reflections.  

As we have seen, shadow volumes can be extended to deal with single spherical light sources which may achieve real time rates on the 
next generation of hardware.

Ashikhmin et al. have a TOG paper that just came out that allows you to steer a small light source over a diffuse object.

Precomputed Radiance Transfer handles arbitrary, low-frequency lighting environments and provides transport complexity – including 
shadows, inter reflections and caustics.
Note that it is precisely soft shadows from low-frequency lighting that current interactive techniques have the greatest difficulty with.

Some earlier work had interesting transport complexity with frozen lighting environments.  In particular the Irradiance volume paper 
allowed you to move a diffuse object through a precomputed lighting environment, dynamicaly lighting the object.  However the object 
didn’t shadow itself or the environment.  Surface lightfields can model complex transport complexity and deal with interesting lighting 
environments, but the lighting environments are frozen.  A recent example of that is Chens paper this year.

Matusik et al. have a nice paper here that captures both a surface light field and a reflectance field – allowing you to relight objects in novel 
lighting environments.  The reconstruction is not interactive however.
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Motivation Motivation ––
What we wantWhat we want
•• What we want:What we want:

–– Illuminate objects with Illuminate objects with 
environment mapsenvironment maps

–– Change lighting Change lighting 
onon--thethe--flyfly

–– Include selfInclude self--shadowing shadowing 
and and interreflectionsinterreflections

–– In realIn real--timetime
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Background Background ––
Spherical HarmonicsSpherical Harmonics
•• Spherical Harmonics        : Spherical Harmonics        : 

–– OrthonormalOrthonormal basis over the spherebasis over the sphere
–– Analogous to Fourier transform over 1D circleAnalogous to Fourier transform over 1D circle

•• Projection:Projection:

•• Reconstruction:Reconstruction:

–– Note, this is an approximation!Note, this is an approximation!
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The basis functions we used are the spherical harmonics – they are equivalent to the fourier
basis on the plane, but mapped to the sphere.
They have several nice properties:
Since the basis is orthonormal projection is simple, evaluation is also very simple.
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Background Background ––
Spherical HarmonicsSpherical Harmonics
•• Important properties:Important properties:

–– Rotational invariance Rotational invariance ⇒⇒ no aliasing artifacts no aliasing artifacts 
(no wobbling etc…)(no wobbling etc…)

•• Integration:Integration:

•• Rotation: linear transform on coefficients Rotation: linear transform on coefficients 
(matrix(matrix--vector multiplication, will not explain)vector multiplication, will not explain)
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The most important property for our application is that they are rotationally invariant.  This 
means that given some lighting environment on the sphere, you can project that lighting 
environment into SH, rotate the basis functions and integrate them against themselves (ie: 
rotating the projection and re-projecting) you get identical results to rotating the original 
lighting environment and projecting it into the SH basis.

Integration of a product of two functions, which are represented in SH becomes a simple 
dot-product! Something we will exploit later on.

Rotation is simple (efficient evaluation formulae, just a linear operator on the SH coefs). We 
won't explain it in this talk.
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Background Background ––
Spherical HarmonicsSpherical Harmonics
•• Basis functions (examples):Basis functions (examples):

i = 1i = 1 i = 2i = 2 i = 3i = 3 i = 4i = 4

i = 8i = 8 i = 12i = 12 i = 15i = 15 i = 19i = 19

Examples of a few basis functions. They are defined over the sphere. We show them here as 
sphere maps.

Note, that the higher basis function have higher frequencies too (like Fourier).
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Background Background ––
Spherical HarmonicsSpherical Harmonics
•• Example: projection of environmentExample: projection of environment

n=4n=4 n=9n=9 n=25n=25

n=26n=2622 originaloriginal

Assumption:Assumption:

LowLow--Frequency Frequency 
LightingLighting

Here, we first convert a spherical function (environment map) into SH and then reconstruct 
the function (formula from before).

Again, the more basis functions are used, the higher frequencies can be represented…

For all examples in this talk, we've used 25 coefficients (assuming low-frequency lighting).
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Background Background ––
HaarHaar WaveletsWavelets
•• Example: projection of environmentExample: projection of environment

Courtesy Courtesy 
RenRen NgNg

Reference                       4096 Reference                       4096 coeffscoeffs.                        100 .                        100 coeffscoeffs..

Alternatively, the Haar wavelet basis functions can be used (instead of SH). We will talk 
briefly about this at the end of the talk.

It should be noted, that wavelets are good at representing all-frequency detail (e.g. with 100 
coeffs the bright windows are represented well, the not so important darker areas (floor) is 
represented with less accuracy).
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Global IlluminationGlobal Illumination
(Rendering Equation)(Rendering Equation)
•• Integrate incident light Integrate incident light ** V() V() ** diffuse BRDFdiffuse BRDF

Emitter 2Emitter 2
Emitter 1Emitter 1

ObjectObject

To compute exit radiance from a point p, we need to integrate all incident lighting against 
the visibility function and the diffuse BRDF (dot-product between the normal and the light 
direction).



10

•• Math:Math:

Rendering EquationRendering Equation

∫ ⋅= sdnssVsLvL pp
inout

p
rrrrrr )0,max()()()( ∫ ⋅= sdnssVsLvL pp

inout
p

rrrrrr )0,max()()()(

Incident LightIncident Light VisibilityVisibility CosineCosine

ReflectedReflected
LightLight

Same thing written down more accurately.
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Rendering Equation Rendering Equation ––
VisuallyVisually

Incident LightIncident Light

VisibilityVisibility

CosineCosine

IntegrandIntegrand

Visually, we integrate the product of three functions (light, visibility, and cosine).
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PrecomputedPrecomputed Radiance Radiance 
Transfer Transfer –– VisuallyVisually

Incident LightIncident Light

VisibilityVisibility

CosineCosine

IntegrandIntegrand∫∫

The main trick we are going to use for precomputed radiance transfer (PRT) is to combine 
the visibility and the cosine into one function (cosine-weighted visibility or transfer 
function), which we integrate against the lighting.
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ProblemsProblems

•• Problems remain:Problems remain:

–– How to encode the spherical functions?How to encode the spherical functions?

–– How to quickly integrate over the sphere?How to quickly integrate over the sphere?

This is not useful per se. We still need to encode the two spherical functions (lighting, 
cosine-weighted visibility/transfer function). Furthermore, we need to perform the 
integration of the product of the two functions quickly.
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•• Math:Math:

•• Rewrite with Rewrite with 
•• This is the This is the transfer functiontransfer function

–– Encodes:Encodes:
•• VisibilityVisibility
•• ShadingShading
•• Implicitly: normal as well (no need to store it)Implicitly: normal as well (no need to store it)

Rendering Equation Rendering Equation ––
RewriteRewrite

∫ ⋅= sdnssVsLvL p
inout

p
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inout
p

rrrrrr )0,max()()()(
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Using some more math again, we get the transfer function T(s).

Note, that this function is defined over the full sphere. It also implicitly encodes the normal 
at the point p! So, for rendering no explicit normal will be needed.
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•• Math:Math:

•• Plug new          into Equation:Plug new          into Equation:

∫= sdsTsLvL inout
p

rrrr )()()( ∫= sdsTsLvL inout
p

rrrr )()()(

Rendering Equation Rendering Equation ––
RewriteRewrite

∫ ⋅= sdnssVsLvL p
inout

p
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p
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light function:light function:

into SHinto SH

transfer:transfer:

into SHinto SH

TTin
iLin
iL

⇒⇒ project project lightinglighting and and transfertransfer into SHinto SH

Now, when we plug the new T(s) into the rendering equation, we see that we have an 
integral of a product of two functions. We remember, that this special case boils down to a 
dot-product of coefficient vectors, when the two functions are represented in SH.

This is exactly, what we will do. We project the incident lighting and the transfer function 
into SH.
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•• The integralThe integral

becomesbecomes

A A simplesimple dotdot--product!!!!product!!!!

Evaluating the IntegralEvaluating the Integral
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"light vector""light vector"

"transfer vector""transfer vector"

(All examples use n=25 coefficients)(All examples use n=25 coefficients)

Then the expensive integral becomes a simple product between two coefficient vectors.
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What does this mean?What does this mean?

•• Positive:Positive:
–– Shadow computation is Shadow computation is independentindependent of of 

numbernumber or or sizesize of light sources!of light sources!

–– Soft shadows are Soft shadows are cheapercheaper than hard shadowsthan hard shadows

–– Transfer vectors need to be computed (can be Transfer vectors need to be computed (can be 
done offline)done offline)

–– Lighting coefficients computed at runLighting coefficients computed at run--time (3ms)time (3ms)

This has a number of implications:
Shadow computation/shading is independent of the number or the size of the light sources! 
All the lighting is encoded in the lighting vector, which is independent of that.

Rendering this kind of shadows is extremely cheap. It is in fact cheaper than rendering hard 
shadows!

The transfer vectors can be computed off-line, thus incurring no performance penalty at run-
time. 

The lighting vector for the incident light can be computed at run-time (fast enough, takes a 
few milliseconds).
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What does this mean?What does this mean?

•• Negative:Negative:

–– Models are assumed to be Models are assumed to be staticstatic

–– Assumes all points on surface have Assumes all points on surface have same same 
incident illuminationincident illumination (no shadows over half (no shadows over half 
the object)the object)

The precomputation of transfer coefficients means that the models have to be static!

Also, there is an implicit assumption, that all points on the surface receive the same incident 
illumination (environment map assumption). This implies that no half-shadow can be cast 
over the object (unless, it's part of the object preprocess).
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PrecomputedPrecomputed Radiance Radiance 
TransferTransfer

•• = = 

Project lightingProject lighting

LookupLookup pTpT

Rotate lightRotate light

Compute integralCompute integral

∫ ⋅= sdsnsVsLvL p
inout

p
rrrrrr )0,max()()()( ∫ ⋅= sdsnsVsLvL p

inout
p

rrrrrr )0,max()()()(

per per 
objectobject

per per 
pixel/vertexpixel/vertex= = * * 

This shows the rendering process.

We project the lighting into SH (integral against basis functions). If the object is rotated wrt. 
to the lighting, we need to apply the inverse rotation to the lighting vector (using the SH 
rotation matrix). 

At run-time, we need to lookup the transfer vector at every pixel (or vertex, depending on 
implementation). A (vertex/pixel)-shader then computes the dot-product between the 
coefficient vectors. The result of this computation is the exitant radiance at that point.
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PRT ResultsPRT Results

UnshadowedUnshadowed ShadowedShadowed
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PRT ResultsPRT Results

UnshadowedUnshadowed ShadowedShadowed
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PRT ResultsPRT Results

UnshadowedUnshadowed ShadowedShadowed
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PRT ResultsPRT Results
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PRT ResultsPRT Results

•• Diffuse volume: 32x32x32 gridDiffuse volume: 32x32x32 grid
•• Runs 40fps on 2.2Ghz P4, ATI 8500Runs 40fps on 2.2Ghz P4, ATI 8500
•• Here: dynamic illuminationHere: dynamic illumination

The same technique can be applied to diffuse volumes. Here we have a transfer vector at 
each voxel, instead of each pixel/vertex.
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PRT ResultsPRT Results

•• Bump Map: 128x128 Bump Map: 128x128 texeltexel
•• 50fps on 1.0Ghz 50fps on 1.0Ghz AthlonAthlon, ATI 8500, ATI 8500

Since, the normal is implicitly encoded in the transfer function, we can easily do bump 
mapping as well…



26

More DetailsMore Details

•• How is How is precomputationprecomputation done (for transfer done (for transfer 
vectors)?vectors)?

•• How is rendering done exactly?How is rendering done exactly?

•• How can we reduce storage How can we reduce storage 
requirements?requirements?

Some detail has been lacking so far, which we will explain in the following.
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PrecomputationPrecomputation

•• We need to We need to projectproject the transfer function the transfer function 
____ into SH (at every point   ):into SH (at every point   ):

•• Boils down to: Integral against basis Boils down to: Integral against basis 
functionsfunctions

)(sTp
r)(sTp
r
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albedoalbedo visibilityvisibility cosinecosine

pp

As we've seen before, both the lighting and the transfer function need to be projected into 
SH. Here we will talk about the projection of the transfer function.

As introduced in the Background-Section, projecting a function into SH boils down to 
integrating that function against the SH basis functions. This results in a vector of 
coefficients.

As a reminder: the transfer function is the visibility times the dot-product between the 
normal n and the sample direction s (multiplied by the albedo, which says how reflective the 
surface is).\
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PrecomputationPrecomputation

•• IntegralIntegral

evaluated numerically with rayevaluated numerically with ray--tracing:tracing:

•• Directions      need to be uniformly Directions      need to be uniformly 
distributed (e.g. random)distributed (e.g. random)

•• Visibility     is determined with rayVisibility     is determined with ray--tracingtracing
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The main question is how to evaluate the integral. We will evaluate it numerically using 
Monte-Carlo integration. This basically means, that we generate a random (and uniform) set 
of directions s_j, which we use to sample the integrand. All the contributions are then 
summed up and weighted by 4*pi/(#samples).

The visibility V_p() needs to be computed at every point. The easiest way to do this, is to 
use ray-tracing.

-------------------------------------------------
Aisde: uniform random directions can be generated the following way.
1) Generate random points in the 2D unit square (x,y)
2) These are mapped onto the sphere with:

theta = 2 arccos(sqrt(1-x))
phi = 2y*pi
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PrecomputationPrecomputation ––
VisuallyVisually
•• IntegrateIntegrate

SH BasisSH Basis

ObjectObject

)()0,max()( sysnsV ipp
rrrr
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rrrr

⋅⋅⋅

Visual explanation 1).



30

Basis 16Basis 16

Basis 17Basis 17

Basis 18Basis 18

illuminateilluminate resultresult

......

......

PrecomputationPrecomputation ––
VisuallyVisually

Visual explanation 2):

This slide illustrates the precomputation for direct lighting.  Each image on the right is 
generated by placing the head model into a lighting environment that simply consists of the 
corresponding basis function (SH basis in this case illustrated on the left.)  This just requires 
rendering software that can deal with negative lights.

The result is a spatially varying set of transfer coefficients shown on the right.

To reconstruct reflected radiance just compute a linear combination of the transfer 
coefficient images scaled by the corresponding coefficient for the lighting environment.
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PrecomputationPrecomputation –– CodeCode

// p: current vertex/pixel position
// normal: normal at current position
// sample[j]: sample direction #j (uniformly distributed)
// sample[j].dir: direction
// sample[j].SHcoeff[i]: SH coefficient for basis #i and dir #j

for(j=0; j<numberSamples; ++j) {
double csn = dotProduct(sample[j].dir, normal);
if(csn > 0.0f) {
if(!selfShadow(p, sample[j].dir)) {     // are we self-shadowing?
for(i=0; i<numberCoeff; ++i) {
value = csn * sample[j].SHcoeff[i]; // multiply with SH coeff.
result[i] += albedo * value;        //          and albedo

}
}

}
}
const double factor = 4.0*PI / numberSamples; // ds (for uniform dirs)
for(i=0; i<numberCoeff; ++i) 

Tcoeff[i] = result[i] * factor;          // resulting transfer vec.

Pseudo-code for the precomputation.

The function selfShadow( p, sample[j].dir ) traces a ray from position p in direction 
sample[j].dir. It returns true if there it hits the object, and false otherwise.



32

PrecomputationPrecomputation ––
Bump MapBump Map
•• Basically: no difference! Basically: no difference! 
•• We use perWe use per--pixel normal instead of pixel normal instead of 

interpolated normal…interpolated normal…
•• SelfSelf--shadowed bump maps are possible:shadowed bump maps are possible:

–– selfShadowselfShadow() needs to account for that() needs to account for that
•• Again: runAgain: run--time does time does notnot changechange

Bump mapping is really easy to incorporate (if transfer vectors are stored in a texture).

The precomputation algorithm from the previous slide remains the same. Only the normal 
needs to be looked up from a bump map in the precomputation phase!

If the bump map is too incorporate shadows from the bumps, then the selfShadow() function 
needs to be augmented to test for intersections with the bump map (e.g. convert to a 
heightfield for intersection tests).
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PrecomputationPrecomputation ––
InterreflectionsInterreflections
•• Light can Light can interreflectinterreflect from positions    ontofrom positions    ontoqq

ObjectObject

qq pp

pp

qsrqsr

psrpsr
directdirect

indirectindirect

qsrqsr

Note: Light is arriving Note: Light is arriving 
from infinity. from infinity. 

Not only shadows can be included into PRT, but also interreflections.

Light arriving at a point q can be subsequently scattered onto a point p. I.e. light arriving 
from s_q can arrive at p, although there is may be no direct path (along s_q) to p (as in this 
example).

Note, that light is arriving from infinity, so both shown direction s_q originate from the 
same point in infinity.
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PrecomputationPrecomputation ––
InterreflectionsInterreflections
•• Light can Light can interreflectinterreflect from positions   , from positions   , 

where there is selfwhere there is self--shadowing (no direct shadowing (no direct 
visibility of sphere!):visibility of sphere!):

∫ ⋅−+= sdnssVsLLvL pp
out
q

DSout
p

rrrrrr )0,max())(1)(()( ∫ ⋅−+= sdnssVsLLvL pp
out
q

DSout
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rrrrrr )0,max())(1)(()(

qq

direct illuminationdirect illumination
light leaving from light leaving from 
towards towards inverse visibilityinverse visibility cosinecosine

qq
pp

More formally, we do not only have direct illumination L^DS (Direct Shadowed), but also 
light arriving from directions s, where there is self-shadowing (i.e. 1-V_p(s)). The light 
arrives from positions q, which are the first hit along s.
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PrecomputationPrecomputation ––
InterreflectionsInterreflections
•• PrecomputationPrecomputation of transfer vector has to of transfer vector has to 

be changedbe changed
•• An additional bounce An additional bounce bb is computed withis computed with

where       is from the pure shadow passwhere       is from the pure shadow pass

•• Final transfer vector:Final transfer vector:

RunRun--time remains the same!time remains the same!
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To account for interreflections, the precomputation has to be changed again.

Each additional bounce b generates a vector T^b_{p,i}, which is computed as shown on the 
slide. Each of these additional transfer vectors is for a certain bounce.

To get the final transfer vector, they have to be added. Again, the run-time remains the 
same!
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InterreflectionsInterreflections –– ResultsResults

No Shadows/Inter              Shadows                No Shadows/Inter              Shadows                Shadows+InterShadows+Inter

This set of images shows the buddha model lit in the same lighting environment, without 
shadows, with shadows and with shadows and inter reflections.
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RenderingRendering

•• Reminder:Reminder:

•• Need lighting coefficient vector:Need lighting coefficient vector:

•• Compute every frame (if lighting changes)Compute every frame (if lighting changes)
•• Projection can e.g. be done using MonteProjection can e.g. be done using Monte--

Carlo integration (see before)Carlo integration (see before)

∫= sdsysLL i
in

i
rrr )()(∫= sdsysLL i

in
i

rrr )()(

∑=
n

i
i

in
i

out
p TLvL )(r ∑=

n

i
i

in
i

out
p TLvL )(r

Rendering is just the dot-product between the coefficient vectors of the light and the 
transfer.

The lighting coefficient vector is computed as the integral of the lighting against the basis 
functions (see slides about transfer coefficient computation).
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RenderingRendering

•• Work that has to be done perWork that has to be done per--vertex is vertex is 
very simple:very simple:

•• Only shadows: independent of color Only shadows: independent of color 
channels channels ⇒⇒ single transfer vectorsingle transfer vector

•• InterreflectionsInterreflections: color bleeding : color bleeding ⇒⇒ 3 vectors3 vectors

// No color bleeding, i.e. transfer vector is valid for all 3 channels

for(j=0; j<numberVertices; ++j) {   // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += Tcoeff[i] * lightingR[i];  // multiply transfer
vertex[j].green += Tcoeff[i] * lightingG[i];  //   coefficients with
vertex[j].blue += Tcoeff[i] * lightingB[i];  //   lighting coeffs.

}
}

Sofar, the transfer coefficient could be single-channel only (given that the 3-channel albedo
is multiplied onto the result later on). If there are interreflections, color bleeding will happen 
and the albedo cannot be factored outside the precomputation. This makes 3-channel 
transfer vectors necessary, see next slide.
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RenderingRendering

•• In case of In case of interreflectionsinterreflections (and color (and color 
bleeding):bleeding):

// Color bleeding, need 3 transfer vectors

for(j=0; j<numberVertices; ++j) {   // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += TcoeffR[i] * lightingR[i];  // multiply transfer
vertex[j].green += TcoeffG[i] * lightingG[i];  //   coefficients with
vertex[j].blue += TcoeffB[i] * lightingB[i];  //   lighting coeffs.

}
}
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ExtensionsExtensions

•• Reducing Storage CostReducing Storage Cost

•• Animated ObjectsAnimated Objects

•• Other MaterialsOther Materials

•• Other Basis Functions (not SH)Other Basis Functions (not SH)

In the following we talk about 4 extensions.

1) How to reduce the storage cost
2) How to incorporate animated objects
3) Other materials (other than diffuse)
4) Use of other basis functions
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Reducing Storage CostReducing Storage Cost

•• Original method:Original method:
–– Store transfer vector at each pixel/vertexStore transfer vector at each pixel/vertex
–– Each transfer vector has 25 coefficients (can Each transfer vector has 25 coefficients (can 

be 8bit if scaled/biased appropriately)be 8bit if scaled/biased appropriately)
–– Original paper suggest to just store 24 Original paper suggest to just store 24 coeffscoeffs. . 

Pack into 6 texturesPack into 6 textures
–– For a 256x256 texture, that's 1.5MBFor a 256x256 texture, that's 1.5MB

•• Reduce storage somehowReduce storage somehow

The original storage cost is fairly high (25 coefficients per texel).
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Reducing Storage CostReducing Storage Cost

•• Reduction:Reduction:
–– Don't need highDon't need high--resolution texture resolution texture –– shadows shadows 

are very smooth (comparable to light maps)are very smooth (comparable to light maps)
–– Use standard texture compressionUse standard texture compression

•• Better Reduction:Better Reduction:
–– Use Principle Component Analysis (PCA)Use Principle Component Analysis (PCA)
–– Use Vector Quantization (VQ)Use Vector Quantization (VQ)
–– Use combination (Clustered PCA)Use combination (Clustered PCA)

Standard texture compression can work, but there are better techniques.
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Reducing Storage Cost Reducing Storage Cost ––
PCAPCA
•• PCA:PCA:

–– Take all       and run PCA on itTake all       and run PCA on it

–– Result:Result:

–– Where:       are weights that change per pixelWhere:       are weights that change per pixel
–– And:        are basis vectorsAnd:        are basis vectors

–– Since original transfer vectors       can be very Since original transfer vectors       can be very 
different, a high different, a high KK is needed for good qualityis needed for good quality

∑
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PCA (Principle Component Analysis):
Plug all the vectors T_p (for all p) into PCA, and you will get above result/approximation.

The quality of the approximation depends on the number of basis vectors. If the variation in 
the T_p is high, a high number of basis vectors is needed.
The beauty of this is, that now we only need to store weights per pixel (hopefully far less 
than there are original coefficients). Unfortunately, this might not be the case, rendering 
pure PCA not very usuful (or only limited to certain objects, where T_p is well-
approximated with less than 25 basis vectors).
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Reducing Storage Cost Reducing Storage Cost ––
VQVQ
•• VQ:VQ:

–– Take all       and run VQ on itTake all       and run VQ on it
–– Result:Result:

•• Each       gets a unique        associatedEach       gets a unique        associated
•• Store Store kk at each pixel, instead of actual vectorat each pixel, instead of actual vector

–– Number of        is much smaller than the Number of        is much smaller than the 
number of  number of  

•• Problem:Problem:
–– Indices are stored in texturesIndices are stored in textures

•• Cannot do Cannot do mipmip--mapping on them!mapping on them!

–– Visible quantization artifactsVisible quantization artifacts

pTpT

kT kT
pTpT

pTpT kT kT

VQ:

We plug all T_p into VQ and get a set of representative T^k back. Each T_p is uniquely 
associated with a T^k, but different T_p may map to the same T^k (quantization).
Now we only need to store the index at teach pixel, instead of the actual vector.
Storage is hereby reduced, as the codebook (containing the T^k) is usually much smaller 
than the number of original vectors T^p.
Unfortunately, quantization artifacts may be visible and mip-mapping is not possible 
anymore.
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Reducing Storage Cost Reducing Storage Cost ––
VQ+PCAVQ+PCA
•• VQ+PCA:VQ+PCA:

–– Take all       and run VQ on itTake all       and run VQ on it
–– For each VQ transfer vectorFor each VQ transfer vector

•• Find all        that map to it (cluster)Find all        that map to it (cluster)
•• Do PCA only on thoseDo PCA only on those

–– Works much better than before, since the vectors Works much better than before, since the vectors 
in a cluster are very similar (because of VQ) in a cluster are very similar (because of VQ) 

–– Works well, but complicates rendering a bitWorks well, but complicates rendering a bit
–– But also makes it faster (few needed dotBut also makes it faster (few needed dot--

products can be computed on CPU, GPU only products can be computed on CPU, GPU only 
does weighted sum for PCA)does weighted sum for PCA)

pTpT
kT kT

pTpT

The best compression technique combines both algorithms.
First run VQ. All the T_p that map to the same T^k are considered a cluster. Within that 
cluster PCA is used, which now works much better, because all T_p of a cluster are similar 
(due to VQ).

Rendering is slightly different now. The dot-products between T_p and lighting vector L is 
now: T_p dot L = SUM( w_k T_k ) dot L = SUM(w_k (T^k dot L) ) = SUM(w_k R^k)
R^k can be computed on the CPU, since the T^k don't change per-pixel, but only the 
weights. Only the SUM(w_k ^ R^k) is then done on the GPU.

Attention has to be paid to the different areas of an object, that belong to different clusters 
(they have different basis vectors).
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Compression Compression ––
ComparisonComparison

SH Order 10, VQ+PCASH Order 10, VQ+PCA
(2 PCA Vectors, 64 (2 PCA Vectors, 64 clusclus.).)

SH Order 10, VQ+PCASH Order 10, VQ+PCA
(3 PCA vectors, 64 (3 PCA vectors, 64 clusclus.).)

SH Order 10, VQ+PCASH Order 10, VQ+PCA
(4 PCA vectors, 64 (4 PCA vectors, 64 clusclus.).)

Courtesy Courtesy 
P.P.--P. SloanP. Sloan

Left: VQ producing 64 clusters. 2 PCA Vectors (mean + first)   - Quantization artifacts are 
still visible (varies only linearly within a cluster)
Middle: VQ producing 64 clusters. 3 PCA Vectors (mean + first, second)  - Artifacts almost 
gone (variation is now bilineaer)
Right: VQ producing 64 clusters. 4 PCA Vectors (mean + first, second, third)  - Visually as 
good as original (variation is trilinear within cluster)
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Animated ObjectsAnimated Objects

•• So far, objects were assumed So far, objects were assumed staticstatic
•• This is ok for e.g. architectural This is ok for e.g. architectural 

walkthroughs, but not for gameswalkthroughs, but not for games

•• Need to extend PRT to animated modelsNeed to extend PRT to animated models
•• Two kinds of models:Two kinds of models:

–– KeyKey--framedframed
–– Fully dynamicFully dynamic

Assumption so far was: static models (because of precomputation).
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Animated ObjectsAnimated Objects

•• KeyKey--framed animations:framed animations:
–– Compute PRT solution for (subCompute PRT solution for (sub--set) of keyset) of key--

framesframes
–– Interpolate inInterpolate in--between (coefficients can be between (coefficients can be 

interpolated)interpolated)
•• Problems:Problems:

–– Very high storage costsVery high storage costs
•• Solution: Do VQ+PCA on all Solution: Do VQ+PCA on all precomputedprecomputed framesframes

–– High computation cost (PRT for each frame)High computation cost (PRT for each frame)
•• Solution: None reallySolution: None really

Key-framed objects can be easily used with PRT. Just precompute transfer coefficient for 
every key-frame and interpolate coefficients within key-frames (as the rest is interpolated as 
well).

Storage cost can be decrease by using the same compression technique as before.

The precomputation becomes a lot more expensive… (Nothing really to prevent this).
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Animated ObjectsAnimated Objects

•• Fully dynamic models:Fully dynamic models:
–– No individual frames, for which PRT could be No individual frames, for which PRT could be 

precomputedprecomputed
–– Would need to do everything onWould need to do everything on--thethe--flyfly
–– No solution yet!No solution yet!

Fully dynamic models:
No solution in sight. Visibility changes radically (and in unknown ways). Computation of 
transfer vectors would need to be done on-the-fly.
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Example: Example: 
Animation with PRTAnimation with PRT

Courtesy Courtesy 
Doug JamesDoug James

Example of a key-framed animation.
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Other Effects / MaterialsOther Effects / Materials

•• The following effects can be incorporated The following effects can be incorporated 
easily:easily:
–– Caustics:Caustics:

–– SubsurfaceSubsurface--Scattering:Scattering:

•• ViewView--dependent effects require transfer dependent effects require transfer 
matrices (see original paper)matrices (see original paper)
–– E.g., glossy materialsE.g., glossy materials

Courtesy Courtesy 
P.P.--P. SloanP. Sloan

Other effects that can be incorporated with an enhance pre-process: caustics and subsurface-
scattering.

View-dependent effects require transfer matrices and not vectors (see original PRT paper).
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PRT with glossy PRT with glossy BRDFsBRDFs

PhongPhong Measured VinylMeasured Vinyl
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PRT Quality PRT Quality ––
Is SH basis wellIs SH basis well--suited?suited?

20°20°

40°40°

0°0°

n=2n=2
linearlinear

n=3n=3
quadraticquadratic

n=4n=4
cubiccubic

n=5n=5
quarticquartic

n=6n=6
quinticquintic

n=26n=26 n=26n=26
windowedwindowed

RTRT

Quality of SH solution. 
0 degree (point light) source, 20 degree light source, 40 degree light-source.
Light is blocked by a blocker casting a shadow onto the receiver plane. Different order of 
SH is shown (order^2 = number of basis functions). Very right: exact solution.
As stated before, lighting is assumed low-frequency, i.e. point light doesn't work well, but 
large area lights do!
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Other Basis FunctionsOther Basis Functions

•• SH produce very SH produce very 
soft shadowssoft shadows

•• Alternative: Alternative: 
HaarHaar Wavelets Wavelets 
[Ng et al. 02][Ng et al. 02]

•• Quality improvesQuality improves
quite a bitquite a bit

•• Idea remains theIdea remains the
same: same: 
–– PerPer--pixel dotpixel dot--productproduct

to compute shadingto compute shading
SH (100 SH (100 coeffscoeffs)) Wavelets (100 Wavelets (100 coeffscoeffs))

Courtesy Courtesy 
RenRen NgNg

As we've noticed SH make shadows smooth (few coefficients are used, hence the low-
frequency lighting assumption). Even if more are used (say 100), still low-frequency.

Alternative: Use Haar Wavelets. Quality improves quite a bit. Basic algorithm remains the 
same.
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PRT with PRT with HaarHaar WaveletsWavelets

•• Main difference to SH:Main difference to SH:
–– HaarHaar needs to needs to 

precomputeprecompute allall
lighting/transfer lighting/transfer 
coefficients!coefficients!

–– Decide depending on Decide depending on 
lighting, which ones to lighting, which ones to 
use! (see right)use! (see right)

–– Implies (compressed) Implies (compressed) 
storage of all transport storage of all transport 
coefficients (64*64*6)coefficients (64*64*6)

–– Not wellNot well--suited to suited to 
hardware renderinghardware rendering

Courtesy Courtesy 
RenRen NgNg

As shown in the comparison on the right, with more coefficients, wavelets do much better 
represent the lighting than the SH (which show a lot of ringing artifacts).

There are a few differences when using Haar instead of SH:
1) All transfer coefficients need to be computed!
2) Because the actual N coefficients used, is decided at run-time based on the lighting's 

most important N coefficients (N=100 seems sufficient).
3) This requires all transfer coefficients to be stored as well (can be compressed well, like 

lossy wavelet compressed images).
4) Since the coefficients to be used change at run-time, this is not well-suited to a GPU 

implementation (but works fine on CPU)
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ConclusionsConclusions

Pros:Pros:
•• Fast, arbitrary dynamic lightingFast, arbitrary dynamic lighting
•• PRT: includes shadows and PRT: includes shadows and 

interreflectionsinterreflections
Cons:Cons:
•• Works only well for lowWorks only well for low--frequency lightingfrequency lighting
•• Animated models are difficult to handleAnimated models are difficult to handle

I
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•• Thanks to: Thanks to: 
–– ATI & NVIDIA for hardware donationsATI & NVIDIA for hardware donations
–– Paul Paul DebevecDebevec for HDR environmentsfor HDR environments

Thank you!Thank you!


