Precomputed Radiance Transier

JaniKautz, Massachusetts Institute off Technology

Motivation —
Transport vs. Light Complexity

Lighting

inn Lt J mmj@ﬂ@ ! ‘ﬁ-
-[-B-'pm] | Precomputed ' L 2i§i2Ing

Radiance ~ @~ [MEEIEEEEPLInes
Transfer e [%53%@%@%% eroz]
[Sﬁga?f inhtfields
MIller9s;,

[Moeller02]

Wooed0oo]
[4=1E[E4010)]|
[Latta02]
e S AR
[Matusik02]

[Crow77]

[Heidrich00] Transport

shadows inter- Complexity
reflections

Early interactive rendering techniques were limited to simple point lighting environments, and had almost no transport complexity — global
effects like shadows were ignored.

Algorithms to generate interactive shadows exist — most notably crows shadow volume technique and the shadow zbuffer technique by
Williams — there is a nice extension to this work at this years siggraph. However these techniques are restricted to point lights. Such
algorithms can be combined with multipass rendering such as with an accumulation buffer to generate soft shadows, but the number of
passes gets impractically large as the light sources get bigger.

Heidrich et al. modeled soft shadows and inter reflections with bump maps — but the technique is limited to point lights and performance
isn’t quite real-time. Polynomial texture maps can handle shadows and inter-reflections in real-time, but they too are limited to point
lights.

Early work also extended lighting from point lights to general environment maps.

You have just seen two papers that generalize the early ideas to fairly general isotropic BRDFs. But environment map methods ignore
transport complexity — they can’t model shadows or inter-reflections.

As we have seen, shadow volumes can be extended to deal with single spherical light sources which may achieve real time rates on the
next generation of hardware.

Ashikhmin et al. have a TOG paper that just came out that allows you to steer a small light source over a diffuse object.

Precomputed Radiance Transfer handles arbitrary, low-frequency lighting environments and provides transport complexity — including
shadows, inter reflections and caustics.

Note that it is precisely soft shadows from low-frequency lighting that current interactive techniques have the greatest difficulty with.

Some earlier work had interesting transport complexity with frozen lighting environments. In particular the Irradiance volume paper
allowed you to move a diffuse object through a precomputed lighting environment, dynamicaly lighting the object. However the object
didn’t shadow itself or the environment. Surface lightfields can model complex transport complexity and deal with interesting lighting
environments, but the lighting environments are frozen. A recent example of that is Chens paper this year.

Matusik et al. have a nice paper here that captures both a surface light field and a reflectance field — allowing you to relight objects in novel
lighting environments. The reconstruction is not interactive however.

Motivation —
What we want

» \What we want:

— llluminate objects with
environment maps

— Change lighting
on-the-fly

— Include self-shadowing
and interreflections

— In real-time

SMOopeYS ON

smopeys

Background —
Spherical Harmoenics

» Spherical Harmonics Y; (S):
— Orthenormal basis over the sphere
— Analogous to Fourier transform over 1D circle

» Projection: f; =_[Q fi(S)y: (s)ds

3 N
» Reconstruction: f(§):z f.y. ()

— Note, this Is an approximation!

The basis functions we used are the spherical harmonics — they are equivalent to the fourier
basis on the plane, but mapped to the sphere.

They have several nice properties:
Since the basis is orthonormal projection is simple, evaluation is also very simple.

Background —
Spherical Harmoenics

* Important properties:

— Rotational invariance = no aliasing artifacts
(no woebbling etc...)

 |ntegration:

jga(§)6)ds =) ab

i
i=1

o Rotation: linear transform on coefficients
(matrix-vector multiplication, will not explain)

The most important property for our application is that they are rotationally invariant. This
means that given some lighting environment on the sphere, you can project that lighting
environment into SH, rotate the basis functions and integrate them against themselves (ie:
rotating the projection and re-projecting) you get identical results to rotating the original
lighting environment and projecting it into the SH basis.

Integration of a product of two functions, which are represented in SH becomes a simple
dot-product! Something we will exploit later on.

Rotation is simple (efficient evaluation formulae, just a linear operator on the SH coefs). We
won't explain it in this talk.

Background —
Spherical Harmoenics

» Basis functions (examples):

Examples of a few basis functions. They are defined over the sphere. We show them here as
sphere maps.

Note, that the higher basis function have higher frequencies too (like Fourier).

Background —
Spherical Harmoenics

» Example: projection of environment

Here, we first convert a spherical function (environment map) into SH and then reconstruct
the function (formula from before).

Again, the more basis functions are used, the higher frequencies can be represented...

For all examples in this talk, we've used 25 coefficients (assuming low-frequency lighting).

Background —
Haar \Wavelets

» Example: projection of environment

Courtesy
Ren Ng

Reference 4096/ COeffs. 100 coeffs.

Alternatively, the Haar wavelet basis functions can be used (instead of SH). We will talk
briefly about this at the end of the talk.

It should be noted, that wavelets are good at representing all-frequency detail (e.g. with 100
coeffs the bright windows are represented well, the not so important darker areas (floor) is
represented with less accuracy).

Global lllumination
(Rendering Equation)

» |ntegrate mudentﬂ*‘ |ffuse BRDF

Emitter 1

Emitter 2

To compute exit radiance from a point p, we need to integrate all incident lighting against
the visibility function and the diffuse BRDF (dot-product between the normal and the light
direction).

Rendering Equation

o Math:

Reflected
Light

Visibility

Same thing written down more accurately.

Cosine

10

Rendering Equation —
Visually

N, e
Incident Light

o

Visibility

’ Integrand

Cosine

Visually, we integrate the product of three functions (light, visibility, and cosine).

11

Precomputed Radiance
Transfer — Visually

Incident Light

o

Integrand
Visibility:

~

Cosine

The main trick we are going to use for precomputed radiance transfer (PRT) is to combine
the visibility and the cosine into one function (cosine-weighted visibility or transfer
function), which we integrate against the lighting.

12

Problems

* Problems remain:

— How to encode the spherical functions?

— How to quickly integrate over the sphere?

This is not useful per se. We still need to encode the two spherical functions (lighting,
cosine-weighted visibility/transfer function). Furthermore, we need to perform the
integration of the product of the two functions quickly.

13

Rendering Equation —
Rewrite

o Math:
L2 (W)= j L™ (S)V/(S) max(S - 1i,,0)ds

e Rewrite with T1(S)=V(s) max(si-m,,0)
o This is the transfer function
— Encodes:
» Visibility
» Shading
» Implicitly: normal as well (ne need to store It)

Using some more math again, we get the transfer function T(s).

Note, that this function is defined over the full sphere. It also implicitly encodes the normal
at the point p! So, for rendering no explicit normal will be needed.

14

Rendering Equation —
Rewrite

o Math:
L2 (W)= j L™ (S)V/(S) max(S - 1i,,0)ds

» Pluginew: T (S) inte Equation:
L2 (V) = j L" ()T (5)ds

into 8/ wto SH

‘."' light function: Liin transfer: T

— project lightingl and transfer into. SH

Now, when we plug the new T(s) into the rendering equation, we see that we have an
integral of a product of two functions. We remember, that this special case boils down to a
dot-product of coefficient vectors, when the two functions are represented in SH.

This is exactly, what we will do. We project the incident lighting and the transfer function
into SH.

15

Evaluating the Integral

* The integral
L5() = [L"(5)T (5)ds

“light vector"

"transfer vector”

out /e - in
becomes| L (v):ZLi T,

A simple dot-preduct!!!!

(AllFexamples use' n=25 ceefficients)

Then the expensive integral becomes a simple product between two coefficient vectors.

16

What does this mean?

— Shadow computation Is independent of
number or size of light sources!

— Soft shadoews are cheaper than hard shadows

— Transfer vectors need to be computed (can be
done ofifline)

— Lighting coefficients computed at run-time (3ms)

This has a number of implications:

Shadow computation/shading is independent of the number or the size of the light sources!
All the lighting is encoded in the lighting vector, which is independent of that.

Rendering this kind of shadows is extremely cheap. It is in fact cheaper than rendering hard
shadows!

The transfer vectors can be computed off-line, thus incurring no performance penalty at run-
time.

The lighting vector for the incident light can be computed at run-time (fast enough, takes a
few milliseconds).

17

What does this mean?

— Models are assumed to be static

— Assumes all points on surface have same
incident Mumination (no shadews over half
the object)

The precomputation of transfer coefficients means that the models have to be static!

Also, there is an implicit assumption, that all points on the surface receive the same incident
illumination (environment map assumption). This implies that no half-shadow can be cast
over the object (unless, it's part of the object preprocess).

18

Precomputed Radiance
Transter

This shows the rendering process.

We project the lighting into SH (integral against basis functions). If the object is rotated wrt.
to the lighting, we need to apply the inverse rotation to the lighting vector (using the SH
rotation matrix).

At run-time, we need to lookup the transfer vector at every pixel (or vertex, depending on
implementation). A (vertex/pixel)-shader then computes the dot-product between the
coefficient vectors. The result of this computation is the exitant radiance at that point.

19

PRT Results

Unshadowed

- g \
-~ ﬁ
" 1

| -~ \
< e

l

Shadowed

20

PRT Results

Unshadowed

Shadowed

21

PRT Results

Unshadowed

Shadowed

22

i
E
)]
b)
e
I—
0
ok

23

PRT Results

o Diffuse velume: 32x32x32 grid
s Runs 40fps on 2.2Ghz P4, ATI 8500
o Here: dynamic illuminatien

The same technique can be applied to diffuse volumes. Here we have a transfer vector at
each voxel, instead of each pixel/vertex.

24

PRT Results

o Bump Map: 128x128 texel
» 50fpsion 1.0Ghz Athlon, ATl 8500

Since, the normal is implicitly encoded in the transfer function, we can easily do bump
mapping as well...

25

More Details

» How is precomputation done (for transfer
Vectors)?

» How! is rendering dene exactly?

» How can we reduce storage
requirements?

Some detail has been lacking so far, which we will explain in the following.

26

Precomputation

» \We need to project the transfer function
T, (S)into SH (at every pointp):

T =[T,6)y(5)ds

with: T, (8) = % V. (8) max(i, -5.0)

albedo A~

visibility. cosine

» Boils down to: Integral against basis
functions

As we've seen before, both the lighting and the transfer function need to be projected into
SH. Here we will talk about the projection of the transfer function.

As introduced in the Background-Section, projecting a function into SH boils down to
integrating that function against the SH basis functions. This results in a vector of
coefficients.

As a reminder: the transfer function is the visibility times the dot-product between the
normal n and the sample direction s (multiplied by the albedo, which says how reflective the
surface is).\

27

Precomputation

 |ntegral

T, =2 [V, (5)max(n, -5,0) y; (5)ds
U

evaluated numerically with ray-tracing:
47T'OZV (;)max(f -5;,0); (S;)

» Directions sj need to be unifermly
distributed (e.g. randem)

« Visibility V. isidetermined with ray-tracing

The main question is how to evaluate the integral. We will evaluate it numerically using
Monte-Carlo integration. This basically means, that we generate a random (and uniform) set
of directions s_j, which we use to sample the integrand. All the contributions are then
summed up and weighted by 4*pi/(#samples).

The visibility V_p() needs to be computed at every point. The easiest way to do this, is to
use ray-tracing.

Aisde: uniform random directions can be generated the following way.
1) Generate random points in the 2D unit square (X,y)
2) These are mapped onto the sphere with:

theta = 2 arccos(sqrt(1-x))

phi = 2y*pi

28

Precomputation —
Visually

° |ntegrate V(§)-max(ﬁ -§,O)° |

Visual explanation 1).

29

Precomputation —
Visually

H.Elll'

illuminate

A\
@
7/

Visual explanation 2):

This slide illustrates the precomputation for direct lighting. Each image on the right is
generated by placing the head model into a lighting environment that simply consists of the
corresponding basis function (SH basis in this case illustrated on the left.) This just requires
rendering software that can deal with negative lights.

The result is a spatially varying set of transfer coefficients shown on the right.

To reconstruct reflected radiance just compute a linear combination of the transfer
coefficient images scaled by the corresponding coefficient for the lighting environment.

30

Precomputation — Code

// p: current vertex/pixel position

// normal: normal at current position

// sample[j]: sample direction #j (uniformly distributed)

// sample[j]-dir: direction

// sample[j]-SHcoeff[i]: SH coefficient for basis #i and dir #j

for(J=0; j<numberSamples; ++j) {
double csn = dotProduct(sample[j].dir, normal);
if(csn > 0.0F) {
if(IselfShadow(p, sample[j]-dir)) { // are we self-shadowing?
for(i=0; i<numberCoeff; ++i) {
value = csn * sample[j].SHcoeff[i]; 7/ multiply with SH coeff.
result[i] += albedo * value; // and albedo

const double factor = 4.0*P1 / numberSamples; // ds (for uniform dirs)
Ffor(i=0; i<numberCoeff; ++i)
Tcoeff[i] = result[i] * factor; // resulting transfer vec.

Pseudo-code for the precomputation.

The function selfShadow(p, sample[j].dir) traces a ray from position p in direction

sample[j].dir. It returns true if there it hits the object, and false otherwise.

31

Precomputation —
Bump Map

» Basically: no difference!

» \We use per-pixel normal instead of
interpolated normal. ..

» Self-shadewed bump maps are possible:
— selfShadow() needs to account for that

o Again: run-time dees not change

Bump mapping is really easy to incorporate (if transfer vectors are stored in a texture).

The precomputation algorithm from the previous slide remains the same. Only the normal
needs to be looked up from a bump map in the precomputation phase!

If the bump map is too incorporate shadows from the bumps, then the selfShadow() function
needs to be augmented to test for intersections with the bump map (e.g. convert to a
heightfield for intersection tests).

32

Precomputation —
Interreflections

 Light can interreflect froem positions g onte p

Note: Light is arriving
from infinity.

/

g \/ p
Object

Not only shadows can be included into PRT, but also interreflections.

Light arriving at a point q can be subsequently scattered onto a point p. l.e. light arriving
from s_q can arrive at p, although there is may be no direct path (along s_g) to p (as in this
example).

Note, that light is arriving from infinity, so both shown direction s_q originate from the
same point in infinity.

33

Precomputation —
Interreflections

 Light can interreflect from positions g,
where there is self-shadewing (no direct
visibility: of spherel):

L2 (W) = > + j L2(8) (@~ V., (5))max(S -1, ,0)dS

ﬁ_/

light leaving| fromi(
direct illumination towards 3 inverse visibility cosine

More formally, we do not only have direct illumination L"DS (Direct Shadowed), but also
light arriving from directions s, where there is self-shadowing (i.e. 1-V_p(s)). The light
arrives from positions g, which are the first hit along s.

34

Precomputation —
Interreflections

» Precomputation of transfer vector has to
be changed

» An additienallbeunce b Is computed with

P g _ o _
T? =7'°ITb.1(1—Vp(s)) max(fi, -§,0) ds

q,!

where Tp?,i IS from the pure shadow pass

B—1
® I . . b
Final transfer vector: Tp,i = boTp’i

Run-time remains the same!

To account for interreflections, the precomputation has to be changed again.

Each additional bounce b generates a vector T"b_{p,i}, which is computed as shown on the
slide. Each of these additional transfer vectors is for a certain bounce.

To get the final transfer vector, they have to be added. Again, the run-time remains the
same!

35

Interreflections — Results

|

Nor Shadows/Inter: Shadows - Shadows+Inter

This set of images shows the buddha model lit in the same lighting environment, without
shadows, with shadows and with shadows and inter reflections.

36

Rendering

Reminder:

L2 (V) = Z L' T

Need! lighting coefficient vector:
L, = [L"(s)y;(s)ds

Compute every frame (ifilighting changes)

Projection can e.g. be done using Monte-
Carlo integration| (see before)

Rendering is just the dot-product between the coefficient vectors of the light and the
transfer.

The lighting coefficient vector is computed as the integral of the lighting against the basis
functions (see slides about transfer coefficient computation).

37

Rendering

» Work that has to be done per-vertex is
very simple:

// No color bleeding, i.e. transfer vector is valid for all 3 channels

for(J=0; j<numberVertices; ++j) { // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j]-red += Tcoeff[i] * lightingR[i]; // multiply transfer
vertex[j].green += Tcoeff[i] * lightingG[il; // coefficients with
vertex[j].-blue += Tcoeff[i] * lightingB[il; // lighting coeffs.
b
}

» Only shadews: independent of color;
channels = single transfer vector

o |ntenreflections: coler bleeding — 3 vectors

Sofar, the transfer coefficient could be single-channel only (given that the 3-channel albedo
is multiplied onto the result later on). If there are interreflections, color bleeding will happen
and the albedo cannot be factored outside the precomputation. This makes 3-channel
transfer vectors necessary, see next slide.

38

Rendering

 In case of interreflections (and color
bleeding):

for(J=0; j<numberVertices; ++j) {
for(i=0; i<numberCoeff; ++i) {
vertex[j]-red += TcoeffR[i] * lightingR[i];
vertex[j]-green += TcoeffG[i] * lightingG[i];
vertex[j]-blue += TcoeffB[i] * lightingB[i];
}
b

39

Extensions

Reducing Storage Cost

Animated Objects

Other Materials

Other Basis Functions (not SH)

In the following we talk about 4 extensions.

1) How to reduce the storage cost

2) How to incorporate animated objects
3) Other materials (other than diffuse)
4) Use of other basis functions

40

Reducing Storage Cost

* Original method:
— Store transfer vector at each pixel/vertex

— Each transfer vector has 25 coeflicients (can
pe 8hit If scaled/biased appropriately)

— Original paper suggest to just store 24 coeffs.

Pack into 6 textures
— For a 256x256 texture, that's 1.5MB

» Reduce storage semehow.

The original storage cost is fairly high (25 coefficients per texel).

41

Reducing Storage Cost

» Reduction:

— Don't need high-resolution texture — shadews
are very smooth (comparable to light maps)

— Use standard texture compression

» Better Reduction:
— Use Principle Component Analysis (PCA)
— Use Vector Quantization (VQ)
— Use combination (Clustered PCA)

Standard texture compression can work, but there are better techniques.

42

Reducing Storage Cost —
PCA

e PCA:
— Take all Tp and run PCA on it

K

; o k K

— Result: Tp ~ +k WpT
=1

— Where: W'; are weights that change per pixel
— And: T* are basis vectors

— Since original transfer vectors Tp can be very
different, a high K is neededifor geod gquality,

PCA (Principle Component Analysis):
Plug all the vectors T_p (for all p) into PCA, and you will get above result/approximation.

The quality of the approximation depends on the number of basis vectors. If the variation in
the T_p is high, a high number of basis vectors is needed.

The beauty of this is, that now we only need to store weights per pixel (hopefully far less
than there are original coefficients). Unfortunately, this might not be the case, rendering
pure PCA not very usuful (or only limited to certain objects, where T_p is well-
approximated with less than 25 basis vectors).

43

Reducing Storage Cost —
VQ

* VO:
— Take all Tp and run VQ on it

— Result:
« Each Tp gets a unique T < associated

» Store k at each pixel, instead of actual vector
_ Number of TX is much smaller than the
number of Tp
» Problem:

— Indices are stered in textures
» Cannot do mip-mapping onithem!

— Visible guantization artifacts

VQ:

We plug all T_p into VQ and get a set of representative T"k back. Each T_p is uniquely
associated with a Tk, but different T_p may map to the same T”k (quantization).

Now we only need to store the index at teach pixel, instead of the actual vector.

Storage is hereby reduced, as the codebook (containing the T”k) is usually much smaller
than the number of original vectors T/p.

Unfortunately, quantization artifacts may be visible and mip-mapping is not possible
anymore.

44

Reducing Storage Cost —
VO+PCA

o VO+PCA:
— Take all Tp and run VQ on it

— For each VQ transfer vector T :
« Find all Tp that map to it (cluster)

» Do PCA only on those

— Works much better thani before, since the vectors
in a cluster are veny: similar (because off V@)

— Works well, but complicates rendering a bit
— But also makesi it faster (few needed dot-

products can be computed on CPU; GPU only
does weightedi sum for PCA)

The best compression technique combines both algorithms.

First run VQ. All the T_p that map to the same Tk are considered a cluster. Within that
cluster PCA is used, which now works much better, because all T_p of a cluster are similar
(due to VQ).

Rendering is slightly different now. The dot-products between T_p and lighting vector L is
now: T_pdotL =SUM(w_kT k) dotL=SUM(w_k (T"k dot L)) =SUM(w_k R"k)

Rk can be computed on the CPU, since the T"k don't change per-pixel, but only the
weights. Only the SUM(w_k * R”k) is then done on the GPU.

Attention has to be paid to the different areas of an object, that belong to different clusters
(they have different basis vectors).

45

Compression —
Comparison

Collfizsy
Slozin)

SH Order 10, VQ+RPCA SH Order 10, VQ+PCA SH Order 10, VOQ+RPCA
(2 PCA Vectors, 64 clus.)" (SIPCA vectors, 64 clus.) (4 PCA vectors, 64 clus.)

Left: VQ producing 64 clusters. 2 PCA Vectors (mean + first) - Quantization artifacts are
still visible (varies only linearly within a cluster)

Middle: VQ producing 64 clusters. 3 PCA Vectors (mean + first, second) - Artifacts almost
gone (variation is now bilineaer)

Right: VQ producing 64 clusters. 4 PCA Vectors (mean + first, second, third) - Visually as
good as original (variation is trilinear within cluster)

46

Animated Objects

» So far, objects were assumed static

» This Is ok for e.g. architectural
walkthroughs, but not for games

» Need to extend PRT to animated models

s Two kinds of models:
— Key-framed
— Eully dynamic

Assumption so far was: static models (because of precomputation).

47

Animated Objects

» Key-framed animations:
— Compute PRT solution for (sub-set) ofi key-
frames
— Interpolate in-between (coefficients can be
interpolated)

» Problems:

— Very high storage costs
» Solution: Do VQ+PCA on all' precomputed frames

— High ceamputation cest (PR for each frame)
» Solution: Nene really.

Key-framed objects can be easily used with PRT. Just precompute transfer coefficient for
every key-frame and interpolate coefficients within key-frames (as the rest is interpolated as

well).

Storage cost can be decrease by using the same compression technique as before.

The precomputation becomes a lot more expensive... (Nothing really to prevent this).

48

Animated Objects

» Fully dynamic models:

— No individual frames, for which PRT could be
precomputed

— Would need/to do everything on-the-fly.
— No solution yet!

Fully dynamic models:

No solution in sight. Visibility changes radically (and in unknown ways). Computation of
transfer vectors would need to be done on-the-fly.

49

Example:
Animation with PRT

Example of a key-framed animation.

Courtesy
Deug James

50

Other Effects / Materials

» The following effects can be incorporated
easily:
— Caustics: ‘ ’] r

, _‘\\i

— Subsurface-Scattering: 5 "

' ' Courtesy.
P.-P. Sloan

o View-dependent effects reguire transfer
maitrices (see original paper)
— E.g., glossy materials

Other effects that can be incorporated with an enhance pre-process: caustics and subsurface-
scattering.

View-dependent effects require transfer matrices and not vectors (see original PRT paper).

51

PRT with glossy BRDFs

52

PRT Quality —
s SH basis well-suited?

il ‘U[]LI

- _]r W 3
— f___a.____i = Sk N = |

- —.1._ T F '!qr - jr’ e |

Il |

n=2 n=3 n=4 n=5 n=6 n=26 n=26
linear guadratic cubic guartic guintic windowed

Quality of SH solution.
0 degree (point light) source, 20 degree light source, 40 degree light-source.

Light is blocked by a blocker casting a shadow onto the receiver plane. Different order of
SH is shown (order*2 = number of basis functions). Very right: exact solution.

As stated before, lighting is assumed low-frequency, i.e. point light doesn't work well, but
large area lights do!

53

Other Basis Functions

e - = falpurtesy
Ren Ng

SH produce very
soft shadows

Alternative:

Haar Wavelets
[Ng et al. 02]
Quality improves
guite a bit

ldea remains the
Same:

— Per-pixel dot-product

to compute shading
SHI (100 coeffs) Wavelets (100 coefis)

As we've noticed SH make shadows smooth (few coefficients are used, hence the low-
frequency lighting assumption). Even if more are used (say 100), still low-frequency.

Alternative: Use Haar Wavelets. Quality improves quite a bit. Basic algorithm remains the
same.

PRT with Haar \Wavelets

- Main difference to SH: 4 Ren N
— Haar needs to - ._‘:,\ ?IE
precompute all - r’ &~
lighting/transfer vy SH(100)

coefficients!

— Decide depending on
lighting, which ones to
use! (see right)

— Implies (compressed)
storage of: all transport
coefficients (64*64*6)
— Not well-suited to .
hardware rendering SH (10,000)

As shown in the comparison on the right, with more coefficients, wavelets do much better
represent the lighting than the SH (which show a lot of ringing artifacts).

There are a few differences when using Haar instead of SH:
1) All transfer coefficients need to be computed!

2) Because the actual N coefficients used, is decided at run-time based on the lighting's
most important N coefficients (N=100 seems sufficient).

3) This requires all transfer coefficients to be stored as well (can be compressed well, like
lossy wavelet compressed images).

4) Since the coefficients to be used change at run-time, this is not well-suited to a GPU
implementation (but works fine on CPU)

55

Conclusions

Pros:
o Fast, arbitrary dynamic lighting

* PRT: includes shadows and
interreflections

Cons:
» Works only well for low-freguency lighting
» Animated models are difficult to handle

56

e Thanks to:
— ATl & NVIDIA for hardware donations
— Paul Debevec for HDR environments

Thank you!

57

