
1

Shadow Silhouette MapsShadow Silhouette Maps

Eric Chan
Massachusetts Institute of Technology

2

Game PlanGame Plan

Motivation
Algorithm
Implementation
Examples
Comparison

3

MotivationMotivation

Why another shadow algorithm?
Why not use perspective shadow maps?

Stamminger and Drettakis, SIGGRAPH 2002

In a nutshell, the topic of this session – the shadow silhouette map – is an
extension to the shadow map algorithm that addresses aliasing problems.
Perspective shadow maps, described in another session, address the same
problem. So why are we bothering with this algorithm if we already have that
one? It turns out that the two approaches have different tradeoffs. Hopefully
these tradeoffs will become clear as we proceed.

4

Perspective Shadow MapsPerspective Shadow Maps

Addresses perspective aliasing
Optimizes distribution of depth samples
Difficulties:
• Does not handle projection aliasing
• Dueling frusta problem

There are two types of aliasing caused by shadow maps: perspective and
projection aliasing. See Marc Stamminger’s session on Perspective Shadow
Maps for a discussion of these aliasing types. Perspective Shadow Maps
(PSM) only addresses perspective aliasing, and then only in some cases. In
particular, the PSM optimizes the distribution of the depth samples so that
more samples are located toward the viewer. However, when the light and
camera roughly face each other, PSMs don’t work as well. This scene
configuration is called the “dueling frusta” problem.

5

Dueling Frusta ProblemDueling Frusta Problem

Here is a diagram that shows the light and camera frusta facing each other.

6

Dueling Frusta ProblemDueling Frusta Problem

Mark Kilgard, NVIDIA

light’s view

eye’s view

aliasing artifacts

high magnification

Here is a visualization of what happens from both the light’s view and the
observer’s view. The left two images are color-coded so that red pixels
show areas of the scene for which the shadow map is least magnified, and
the blue pixels show areas where the shadow map is most magnified. In the
left image, we see the scene from the light’s viewpoint. The dark blue
outline is the observer’s view frustum.

In the middle image, we see the same scene, but from the observer’s view.
The yellow lines represent the light’s view frustum, which faces the observer.
Here, we see that areas of the image close to the viewer are precisely the
areas where the shadow map has the greatest magnification when projected
onto the image. Unfortunately, when using PSMs, the two perspective
transforms (one from the light, one from the camera) mutually cancel and the
result is that we’re back to a standard, uniform shadow map.

The resulting shadow aliasing artifacts are seen in the right image.

In summary, PSMs are very useful, but they only address aliasing in certain
cases. This is the main motivation for exploring another shadow algorithm,
such as shadow silhouette maps.

7

Shadow Silhouette MapsShadow Silhouette Maps

• Research at Stanford University
– P. Sen, M. Cammarano, and P. Hanrahan
– Proceedings of SIGGRAPH 2003

• See course notes
• Also available online

The shadow silhouette map algorithm was developed at Stanford University
by Pradeep Sen, Mike Cammarano, and Pat Hanrahan. Their original paper
which describes the method in detail was published in the Proceedings of
ACM SIGGRAPH 2003. A copy of the paper should be included with these
course notes. You can of course also download the paper online.

Pradeep Sen gave a nice talk at SIGGRAPH 2003, presenting the silhouette
map algorithm. Many of the figures in these slides and notes are borrowed
from his presentation.

8

ObservationObservation

Shadow maps
• undersampling can occur anywhere
• artifacts visible only at shadow edges

The silhouette map algorithm is based on the following simple observation.
Shadow maps can lead to undersampling, but the artifacts are visually
objectionable only at the shadow silhouettes, i.e. the edges between
shadowed and illuminated regions.

9

ObservationObservation

Shadow volumes
• accurate everywhere, but high fillrate
• accuracy only needed at silhouettes

In contrast, shadow volumes give per-pixel accuracy everywhere, but this
degree of accuracy is only needed at the silhouettes. The price for being
accurate everywhere with shadow volumes is high fillrate and bandwidth
consumption, illustrated in the right figure. The yellow polygons visualize
shadow volume polygons. Clearly there is a lot of shadow volume overdraw
in this scene, which leads to high fillrate and bandwidth. One of the
characteristics of shadow maps, as we shall see, is relatively low bandwidth
and fillrate consumption. This helps to keep the algorithm scalable to large
scenes.

10

Algorithm GoalsAlgorithm Goals

• Accuracy of shadow volumes
• Efficiency of shadow maps
• Treats perspective and

projection aliasing
• Supports dynamic scenes
• Maps to graphics hardware

We want a hybrid algorithm that combines the best characteristics of shadow
maps and shadow volumes. The silhouette map algorithm will focus on the
shadow silhouettes, since those are the pixels in the image that are critical to
get right.

These are the goals of the silhouette map algorithm. Ideally, we would have
the accuracy of shadow volumes and the efficiency of shadow maps. As
we’ll see, silhouette maps don’t quite achieve this goal, but they do offer an
excellent tradeoff. Silhouette maps are designed to work on dynamic
scenes, i.e. the light, observer, and objects can move from frame to frame;
no precomputation is required. Finally, silhouette maps are designed to be
simple enough to implement on graphics hardware. As we’ll see, though,
they make heavy use of the programmable features of modern graphics
hardware.

11

OverviewOverview

depth map silhouette map

The basic idea is to augment the normal depth map with an extra buffer,
called a silhouette map, which helps to represent shadow silhouettes more
accurately.

12

Shadow Map (Review)Shadow Map (Review)

light source

blocker

receiver

To understand how the silhouette map algorithm works, let’s review how the
regular shadow map algorithm works. We have a light source, blocker, and
receiver.

13

Shadow Map (Review)Shadow Map (Review)

depth map

We rasterize the blocker into a depth map. In the visualization on the right,
dark values represent small depths (close to the light), and light values
represent large depths (far from light).

14

Shadow Map (Review)Shadow Map (Review)

depth map

Due to limited depth buffer resolution, we obtain a poor representation of the
blocker’s shadow silhouette.

15

Shadow Map (Review)Shadow Map (Review)

depth map

For reference, the true silhouette curve is shown in green. We can think of
the standard shadow map algorithm as providing a piecewise-constant
approximation to the shadow contour. This is because all samples in the
final image that get mapped to a given texel in the shadow map will have the
same binary value: 0 if the depth test fails, 1 if the depth test passes. It is
this piecewise-constant approximation that leads to blocky aliasing artifacts
in the final image.

16

Depth MeshDepth Mesh

depth mesh (sampling grid)

Now let’s see how we can improve the approximation. Let’s stretch our
minds a bit and think of the depth map not as a buffer, but as a mesh where
each sample is a vertex of the mesh. In 2D, the mesh is just a uniform,
rectilinear grid as shown here.

17

Depth MeshDepth Mesh

depth mesh + dual mesh

original grid (blue)

dual grid (red)

The depth mesh is shown in blue. As we’ll soon see, it will be useful also to
consider the dual mesh, shown in red. Practically, this is the same as the
original grid, but offset by ½ a pixel in both x and y.

18

Depth MeshDepth Mesh

original grid (blue)

dual grid (red)

discrete silhouette
boundary

depth mesh + dual mesh

With the standard shadow map algorithm, we get discrete shadow
boundaries that are aligned with the rectilinear grid of the depth mesh.

19

Depth MeshDepth Mesh

original grid (blue)

dual grid (red)

discrete silhouette
boundary

continuous silhouette
boundary (green)

depth mesh + dual mesh

Here’s the magic: why restrict ourselves to a regular depth mesh? It would
be better if we could somehow deform the depth mesh so that the samples
are better aligned with the true silhouette boundary (shown in green). In
fact, we can do just that.

20

Depth MeshDepth Mesh

original grid (blue)

dual grid (red)

discrete silhouette
boundary

continuous silhouette
boundary (green)

silhouette map pixels

depth mesh + dual mesh

Here’s where the dual mesh comes in handy. Look at all the cells of the dual
grid (highlighted in red) that contain the continuous silhouette curve. These
are also the cells that contain the discrete, grid-aligned shadow boundary
(dark blue).

21

Depth Mesh DeformationDepth Mesh Deformation

deformed depth mesh

Move depth samples
to lie on silhouette curve

The idea is to deform the depth mesh: move the relevant depth samples so
that they lie precisely on the silhouette curve itself. This results in the
deformed depth mesh shown here.

22

Depth Mesh DeformationDepth Mesh Deformation

adjusted depth samples

deformed depth mesh

We still have the same number of depth samples as before. It just so
happens that some of them have been moved from their original position to
lie on the silhouette curve.

23

Depth Mesh DeformationDepth Mesh Deformation

adjusted depth samples

deformed depth mesh

Now let’s see when we apply the shadow map algorithm, this time with the
deformed mesh.

24

Better ApproximationBetter Approximation

piecewise-linear approximation

Notice that now we get a much better approximation to the shadow
silhouette. Instead of a piecewise-constant approximation to the contour, we
have piecewise-linear approximation (imagine connecting the dots of the
deformed depth samples).

Conceptually, this is all there is to the silhouette map algorithm.

25

Silhouette MapSilhouette Map

silhouette mapdepth map

deformed depth map
Decomposition of
deformed depth map

In practice, however, we can’t easily create or use deformed depth meshes
on graphics hardware. But we can look at the problem from a slightly
different angle. Instead of working directly with a deformed depth mesh, we
can use two buffers: a regular depth map and a silhouette map, a 2D image
that we’ll describe in a moment. Together, these buffers effectively give you
a deformed depth map that can be used to give the piecewise-linear
approximation of the shadow boundary.

26

What is a Silhouette Map?What is a Silhouette Map?

Many ways to think about it:
• Edge representation
• 2D image, same resolution as depth map
• Offset from depth map by ½ pixel in x, y
• Stores xy-coordinates of silhouette points
• Stores only one silhouette point per texel
• Piecewise-linear approximation

So what exactly IS a silhouette map? There are many ways to think about it.
Abstractly, it’s an edge representation, meaning that its main purpose is to
store accurate edge information. After all, the overall goal here is to improve
the shadow silhouette. Concretely, the silhouette map is just a buffer offset
from the depth map by ½ pixel in both x and y. Each texel in the silhouette
map stores a single point; for texels that are crossed by the silhouette curve,
the texel stores a point that lies on the curve. Note that only one silhouette
point is stored per texel. We’ll see some implications of this restriction.

27

Algorithm

28

Algorithm OverviewAlgorithm Overview

Image-space algorithm

Here’s an overview of the algorithm. There are 3 rendering passes.

29

Algorithm OverviewAlgorithm Overview

Create depth map

Step 1

The first pass draws a regular depth map from the light’s viewpoint. This is
exactly the same as in the standard shadow map algorithm.

30

Algorithm OverviewAlgorithm Overview

Create silhouette map

Step 2

The second step is to render a silhouette map, also from the light’s
viewpoint. We’ll see later exactly how this is done.

31

Algorithm OverviewAlgorithm Overview

Render scene and shadows

Step 3

Finally, we render the scene from the observer’s viewpoint and refer to both
the shadow map and silhouette map to obtain accurate shadows.

32

Algorithm DetailsAlgorithm Details

• Focus now on concepts
• Worry later about implementation

?

This part of the discussion will focus on the concepts of the algorithm. It
may not yet be clear how to implement this in hardware. Don’t worry; we’ll
cover this later.

33

Create Depth MapCreate Depth Map

Same as in regular shadow maps

The first step is to render a depth map.

34

Identify Silhouette EdgesIdentify Silhouette Edges

Find object-space silhouettes (light’s view)

Before we can create a silhouette map, we have to identify the silhouette
edges. This task is sometimes referred to as object-space silhouette
extraction. For polygonal models, a simple way to perform this task is to
loop through all edges and check to see if one of its adjacent faces is facing
the light and another is facing away. This approach may sound overly
simplistic, but in fact it’s one of the best methods available for dynamic
scenes with animated characters. Best of all, it’s easy to implement and
always works.

Note the assumption that we’ve made here: objects (in particular, the
blockers in the scene) are represented as polygons.

35

Create Silhouette MapCreate Silhouette Map

• Rasterize silhouette edges (light’s view)
• Find points that lie on silhouette edges
• Store one such point per texel

silhouette edges silhouette points

Now that we have the silhouette edges, we draw them (again from the light’s
viewpoint) to generate the silhouette map. The overall idea is to pick points
that lie on the edges and store these points in the silhouette map.

36

Compute Silhouette PointsCompute Silhouette Points

Example:

silhouette edges

point of view of light

Let’s use an example to understand exactly how this process works. Here is
a visualization of the silhouette edges of a Knight character, seen from the
point of view of the light source. We’ll focus on the part outlined in red, i.e.
the Knight’s shield.

37

Compute Silhouette PointsCompute Silhouette Points

silhouette map (dual grid)

The grid lines in this image show the pixel boundaries of the silhouette map.
Remember that the silhouette map is the dual to the original depth map, i.e.
it’s offset by ½ pixel in both x and y.

38

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

Now let’s see how we rasterize the silhouette edges and wind up with
silhouette points.

39

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

pick an edge

Pick any edge to start with.

40

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

rasterize edge conservatively:
be sure to generate fragments
for silhouette pixels

We rasterize the edge conservatively, meaning that we must guarantee that
all fragments (i.e. pixels) that are crossed by the silhouette edge are
rasterized. (We’ll see later how to guarantee this.) The generated
fragments are highlighted above. Note that since we are rasterizing
conservatively, it is possible that some fragments will be generated that are
not crossed by any silhouette edge. Again, later we’ll see how to handle this
situation.

41

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

for each fragment:
pick a point on the edge

Each fragment generated by the rasterizer will eventually end up in a texel in
the silhouette map. For each fragment, we pick a point that lies on the
silhouette edge.

42

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

silhouette points

We store the coordinates of these points into the silhouette map.

43

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

do the same for other edges

Repeat this step for all the silhouette edges.

44

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

completed silhouette map

subtle issues:
• only one point per texel
• new values overwrite old ones

how to pick silhouette points?

Here is a visualization of what the final silhouette map might look like after
rasterizing all the silhouette edges and storing the associated silhouette
points into the buffer. There are two issues to be aware of. Remember that
we only store one point per texel in the silhouette map. (The reason for
storing just one point is that it makes the algorithm consistent and easier to
implement on graphics hardware. The alternative, storing multiple points per
texel, complicates matters.) The second issue is that multiple edges may
cross a single texel of the silhouette map. Since only one value may be
stored per texel, we (somewhat arbitrarily) choose to let new silhouette
points overwrite old ones. Thus only the last silhouette point written to a
texel will be kept.

Now that we’ve seen the overall approach, the main question is: how do we
pick the silhouette points?

45

Picking Silhouette PointsPicking Silhouette Points

Pick a point on the line that lies inside the texel

?

Let’s say we’ve drawn a silhouette edge, and the rasterizer has generated a
bunch of fragments. For each fragment covered by the edge, we want to
pick a point.

We’ll break the problem of picking points into a few cases.

46

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

In the first case, one of the endpoints of the edge (i.e. a vertex) lies within
the fragment, as shown here. The thick orange lines represent the fragment
boundary. Ignore the diagonal purple lines for the moment.

47

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

pick the vertex itself

In this case, we simply pick the vertex itself as the silhouette point and store
its coordinates into the silhouette map.

48

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

test for intersection against two diagonals

one
intersection

Case 2:

If neither endpoint of the silhouette edge lies within the fragment, we need to
check for intersections. One way to do this is to perform a line segment
intersection test against the two diagonals, shown in purple. Clearly, the
silhouette edge will intersect the fragment if and only if it intersects at least
one of the diagonals.

In the second case, suppose the silhouette edge intersects only one of the
diagonals.

49

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

pick the intersection point itself

Case 2:

one
intersection

For this case, we pick the intersection point itself as the silhouette point to be
stored.

50

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

In the third case, there are two intersections, one with each diagonal.

51

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

use midpoint

In this situation, we pick the midpoint of the two intersections as the
silhouette point.

52

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

Case 4:

no
intersections

Finally, it is possible that there is no intersection between the silhouette edge
and the fragment. This is possible because we are rasterizing the silhouette
edge conservatively, and thus such fragments may be generated by the
rasterizer.

In this case, nothing is written to the silhouette map for this fragment.

53

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

Case 4:

no
intersections

That’s all there is to the silhouette-point-picking algorithm. In summary, we
rasterize the silhouette edges (conservatively) and for each fragment
generated, we perform the four tests shown here.

54

Render sceneRender scene

How to compute shadows?

Split problem into two parts:
• non-silhouette pixels: use shadow map
• silhouette pixels: use silhouette map

In the final step (third rendering pass) of the algorithm, we draw the scene
from the observer’s viewpoint and compute shadows. How do we use the
information gathered so far (a depth map and a silhouette map) to compute
these shadows?

A conceptually simple way to think about the problem involves splitting the
problem into two parts. Let’s use the term “silhouette pixels” to refer to the
pixels in the final image (seen from the observer’s view) that contain shadow
discontinuities, i.e. the boundary between shadowed and illuminated regions.
Recall that with standard shadow maps, these pixels give us the most grief
because they are precisely the ones that exhibit aliasing artifacts. All other
pixels in the scene look fine because they are completely illuminated or
completely in shadow.

Therefore, let’s consider silhouette pixels and non-silhouette pixels
separately. Since non-silhouette pixels don’t show aliasing artifacts, we’ll
use the standard shadow map to compute shadows for those pixels. On the
other hand, for the silhouette pixels, we’ll use the silhouette map to obtain a
good, piecewise-linear reconstruction of the shadow silhouette. We’ll see
exactly how to do this in a moment.

55

Find Silhouette PixelsFind Silhouette Pixels

• Project sample into light space
• Compare depth against 4 nearest samples

in shadow map

shadow map samples

sample to be shaded
(projected to light space)

First, we need a way to identify silhouette pixels. This task turns out to be
surprisingly easy. Let’s say we have a sample (pixel) in the final image, and
we want to know whether it’s a silhouette or non-silhouette pixel. We
transform the pixel into light space, just as we would do when using the
standard shadow map algorithm. In general, the transformed sample
(shown in green in the diagram) will lie between four samples of the shadow
map (shown in blue). Compare the depth of the sample against the depths
associated with the four adjacent samples of the shadow map.

56

Find Silhouette PixelsFind Silhouette Pixels

S

S

S

S

results agree:
non-silhouette pixel

If all the depth comparison results agree, then the sample is a non-silhouette
pixel. In the example shown here, all the depth comparison results indicate
that the sample is in shadow (S).

57

L

L

S

S

Find Silhouette PixelsFind Silhouette Pixels

S

S

S

S

results agree:
non-silhouette pixel

results disagree:
silhouette pixel

Case #1 Case #2

On the other hand, if the depth comparison results disagree, then the sample
is a silhouette pixel. In the example here, two of the four tests declare that
the sample is in shadow, but the other two declare that the sample is
illuminated.

(You may have noticed this technique is very similar to the idea of
Percentage Closer Filtering [Reeves et al. 1987].)

58

L

L

L

L

Treat Non-Silhouette PixelsTreat Non-Silhouette Pixels

S

S

S

S

in shadow illuminated

Easy: use depth comparison result

For non-silhouette pixels, computing shadows is easy. We just use the
results of the depth comparisons to shade the sample. If all results say the
sample is in shadow (left image) then the sample is in shadow. Similarly, if
all results say the sample is illuminated (right image), then the sample
should be illuminated.

59

Treat Silhouette PixelsTreat Silhouette Pixels

fetch five silhouette points

Reconstruct edge using silhouette map

L

L

S

S

The more interesting part is handling silhouette pixels. In this case, we rely
on the silhouette map to help us reconstruct shadow edges. First, transform
the sample to light space (just as in the previous step) and lookup the
current silhouette point and the four neighbors (shown as red points in the
diagram). This essentially amounts to five texture lookups.

60

Treat Silhouette PixelsTreat Silhouette Pixels

Reconstruct edge using silhouette map

L

L

S

Ssplits cell into four quadrants

If we imagine drawing line segments between these silhouette points as
shown, we see that the segments split up the texel into four quadrants.

61

Treat Silhouette PixelsTreat Silhouette Pixels

Shade sample according to quadrant

L

L

S

Sexample: sample in shadow

Find the quadrant that contains the sample and shade the sample according
to the depth comparison result of the associated depth sample. In the above
example, the top-left quadrant contains the sample, and the depth sample
associated with that quadrant indicates the sample should be in shadow.
Thus we render this sample as being in shadow. If the sample had instead
fallen into the top-right quadrant, it would have been illuminated.

Hopefully it is clear from the diagram why we obtain a piecewise-linear
approximation to the shadow edge, as opposed to the previous piecewise-
constant approximation (using a regular shadow map). The quadrants
essentially define different shadow boundaries within a single texel, i.e. at
sub-texel precision. All samples that fall into a given quadrant will be shaded
the same. In contrast, with a regular shadow map, all samples that lay
within the texel itself are shaded the same.

62

Six Combinations (1 of 6)Six Combinations (1 of 6)

S

S

S

S

For clarity, let’s consider all the possible cases that can arise. There are
only six of them. The first possibility, shown here, is when all four depth
samples indicate the current sample (i.e. the sample to be shaded) is in
shadow. (This actually falls into the case of the non-silhouette pixels, which
we covered earlier.)

63

Six Combinations (2 of 6)Six Combinations (2 of 6)

S

S

S

S

L

S

S

S

64

Six Combinations (3 of 6)Six Combinations (3 of 6)

S

S

S

S

L

S

S

S

L

L

S

S

65

Six Combinations (4 of 6)Six Combinations (4 of 6)

S

S

S

S

L

S

S

S

L

L

S

S

L

S

S

L

66

Six Combinations (5 of 6)Six Combinations (5 of 6)

S

S

S

S

L

S

S

S

L

L

S

S

L

S

S

L

L

L

S

L

67

Six Combinations (6 of 6)Six Combinations (6 of 6)

S

S

S

S

L

S

S

S

L

L

S

S

L

S

S

L

L

L

S

L

L

L

L

L

In the final case, all depth comparisons agree and the sample is illuminated.
Again this falls into the case of non-silhouette pixels.

In summary, there are 2 cases (top-left, bottom-right) for non-silhouette
pixels and 4 cases for silhouette pixels.

68

Algorithm RecapAlgorithm Recap

Image-space algorithm

We have now covered all the algorithm’s details. Let’s take a step back and
review the algorithm at a higher-level.

First, note that the algorithm works in image space. All relevant information
(depth samples, silhouette points) are stored using 2D image
representations. The silhouette map is really just an image-based edge
representation.

69

Algorithm Recap (1 of 3)Algorithm Recap (1 of 3)

Create depth map

Easy: just like regular shadow map

The first step is to create a depth map from the light’s viewpoint.

70

Algorithm Recap (2 of 3)Algorithm Recap (2 of 3)

Pick silhouette points, 1 per texel

Create silhouette map

Rasterize silhouette edges

The second step is to create the silhouette map, also from the light’s
viewpoint. During this step, we rasterize silhouette edges conservatively and
pick points that lie exactly on the edge and store the coordinates of these
points into the silhouette map. The idea is to check for edge-fragment
intersections by checking against the two diagonals of the fragment. There
are a few simple cases to consider, as described in detail earlier.

71

Algorithm Recap (3 of 3)Algorithm Recap (3 of 3)

Render scene and shadows

Reconstruct shadow edge
Fetch local silhouette points

In the final pass, we draw the scene from the observer’s viewpoint and draw
the shadows. For non-silhouette pixels, just use the shadow map. For
silhouette pixels, we fetch five silhouette points (current point + four
neighbors) and use these points to reconstruct a piecewise-linear
approximation to the true shadow silhouette.

72

Implementation

Up till now, we’ve been discussing the concepts of the algorithm. It’s time to
see how we can implement the algorithm on modern graphics hardware.

73

ImplementationImplementation

• Details (OpenGL)
• Hardware acceleration
• Optimizations

The silhouette map algorithm can be implemented on DirectX 9-class
hardware. This means specifically that you need to have programmable
vertex and fragment units, and floating-point precision (at least 16 bits of
floating-point) must be available in the programmable fragment unit. This
precision is necessary for a number of tasks we have to perform. For
instance, we need to perform intersection tests when generating the
silhouette map. Examples of suitable hardware include the ATI R300 chips
(e.g. Radeon 9700 and later) and the NVIDIA NV30 chips (e.g. GeForce FX
and later).

The silhouette map algorithm can be implemented using both OpenGL and
DirectX. However, any code snippets I show here will be in OpenGL.

74

Create Shadow MapCreate Shadow Map

Render to standard OpenGL depth buffer

Optimizations
• for closed models, cull back faces
• turn off shading, color writes
• only send vertex positions
• draw roughly front-to-back

To create a shadow map, we place the OpenGL camera at the light position
of the light source, aim it at the scene, and draw. Keep in mind there are a
number of optimizations that we can perform. For closed models, turn on
back-face culling, e.g.

glEnable(GL_CULL_FACE);

since those faces won’t be seen anyways. In addition, since we only care
about drawing depth values, we don’t have to perform shading. Therefore,
turn all fancy shaders off. Furthermore, we don’t even have to write anything
to the color buffer, so turn off color writes:

glColorMask(0, 0, 0, 0);

In terms of transferring data from the host processor (CPU) to the graphics
processor (GPU), we only need to send the vertex positions. Since we’re
not doing any shading, don’t send extra information like texture coordinates
and normals.

Finally, draw the objects roughly in front-to-back order. Doing so maximizes
the hardware’s ability to perform early Z rejection (i.e. occlusion culling).

75

Create Silhouette MapCreate Silhouette Map

Goal: store points that lie on silhouette

Now let’s see how to compute the silhouette points in the second step of the
algorithm.

76

Create Silhouette MapCreate Silhouette Map

Place default point at texel center

default silhouette point

silhouette map texel

use glClear(...)

Remember that the silhouette map is the dual grid of the depth map and is
offset from the depth map by ½ a pixel. Earlier, we discussed the concept of
having a deformed depth mesh in which the depth samples are moved to lie
along silhouettes. Our strategy for creating the silhouette map will be as
follows. First, let’s start with an undeformed depth mesh, meaning that all
depth samples lie at their original, undeformed positions. Then we’ll
rasterize silhouette edges and compute silhouette points to perform the
deformation on some of the depth samples.

To implement this, we start by placing a default silhouette point at the center
of every texel of the silhouette map. This essentially places the silhouette
points directly on top of the depth samples of the depth map. This
construction is shown in the diagram. The purple box represents the
boundary of a single texel of the silhouette map. The blue dots are the
locations of the depth samples. We initialize the silhouette map by placing
silhouette points at these blue points.

In practice, it’s easy to perform this initialization by using the glClear call to
clear the whole buffer.

77

Create Silhouette MapCreate Silhouette Map

Fragment program finds silhouette points

silhouette point

We’ll use a fragment program (pixel shader) to compute the silhouette points
for texels that contain silhouette edges. To make this concrete, consider the
purple texel shown in the diagram. A fragment associated with this texel will
be generated by the rasterizer. We want a fragment program that checks
that a silhouette edge passes through this fragment, computes the silhouette
point, and writes it to the output buffer (the silhouette map).

78

Create Silhouette MapCreate Silhouette Map

Fragment program finds silhouette points
• use local coordinates
• store only xy offsets

(0,0) (1,0)

(1,1)(0,1)

(0.6, 0.3)

The fragment program simply performs the various intersection tests
discussed earlier in the silhouette-point-picking algorithm. For fragments
that are generated by the rasterizer but not crossed by a silhouette edge, the
fragment program uses a “fragment kill” to throw away the fragment (i.e.
write nothing to the output).

One way of computing and storing the silhouette points is to use a local
coordinate system, in which the texel area is taken to be a unit square (see
the lower-left diagram). The default silhouette point is at the center, (0.5,
0.5). For silhouette points computed via intersection tests, we just store xy
offsets in the local coordinate system into the silhouette map. These offsets
are in the range [0,1].

79

Rasterizing SilhouettesRasterizing Silhouettes

Two issues:
• must guarantee generation

of silhouette pixels
• discard occluded silhouettes

There are two issues to be aware of when rasterizing silhouette edges. All
along we’ve talked about performing conservative rasterization to guarantee
that all fragments crossed by a silhouette edge will be generated. Now we’ll
see how to do that. The second issue is that some silhouette edges, seen
from the light’s viewpoint, will be hidden by blockers (occluders). Since the
fragments from these edges aren’t seen by the light, we don’t want to
process them.

80

Rasterizing SilhouettesRasterizing Silhouettes

Rasterize conservatively
• Be careful using OpenGL wide lines
• Use width of at least 3

• Make lines slightly longer to cover endpoints

Another solution: use thin quads, not lines
• See Sen et al. [SIG2003] paper

glLineWidth(3);

Let’s address the conservative rasterization first. Sen et al., in their original
paper on shadow silhouette maps, recommend drawing “thin quads” – thick
enough to guarantee the generation of all fragments crossed by a silhouette.
Their reason for doing so is that the alternative, drawing wide lines in
OpenGL, may vary in behavior across different graphics hardware.

In turns out, however, that by choosing a line width that is large enough, all
necessary fragments will in fact be generated. In practice, I’ve found that
using a width of at least 3 works consistently. Another detail to remember is
that you have to make the line slightly longer than the original edge to
guarantee that the fragments containing the endpoints of the edge will also
be generated.

81

Occluded Silhouette PixelsOccluded Silhouette Pixels

Example:

don’t draw these!

The second issue is dealing with occluded silhouette pixels. In the example
shown here, the hexagon is partly occluded by the circle, seen from the point
of view of the light source. The fragments belonging to the occluded
silhouette edges, shown as dotted gray lines, should be ignored.

82

Occluded Silhouette PixelsOccluded Silhouette Pixels

Implementing occlusion:
• Use depth map from first pass
• Recall silhouette map offset by ½ pixel

?

?

?

?

• Use fragment kill if depth is
greater than 4 nearest samples
in depth map

This case is easy to check for, because we already have a depth map of the
blockers from the first rendering pass. In the fragment program that
computes silhouette points, we also perform the following check. If the
depth of a fragment belonging to a silhouette edge lies behind all four of the
neighboring depth samples in the shadow map, then this fragment is
occluded and should be discarded. To throw away the pixel, issue a
fragment kill.

83

Rendering Final ImageRendering Final Image

Recall
• Draw from observer’s view
• Identify silhouette vs. non-silhouette pixels
• Use shadow map for non-silhouette pixels
• Use silhouette map for silhouette pixels

In the final rendering pass, we need to distinguish between silhouette and
non-silhouette pixels. Just as a reminder, earlier we saw how to accomplish
this by transforming a sample into light space and checking its depth against
the 4 nearest samples of the shadow map. If the depth comparison results
agree, then the pixel is a non-silhouette pixel. Otherwise, it’s a silhouette
pixel.

84

Identify Silhouette PixelsIdentify Silhouette Pixels

• Take advantage of hardware shadow mapping
• Use percentage closer filtering

L

L

S

S

S

S

S

S

value is 0
non-silhouette pixel

L

L

L

L

non-silhouette pixel silhouette pixel
value is 1 0 < value < 1

Implementing this step is a breeze using graphics hardware. The hardware
supports percentage closer filtering (see Reeves et al. [1987]), meaning that
instead of performing a single depth comparison of a sample against the
depth map, it actually compares the depth against the 4 nearest depth
samples and filters the binary results. This means that if the depth
comparison results agree, then the final result will be either 0 (for a
shadowed pixel) or 1 (for an illuminated one). In contrast, if the depth
comparison results disagree, then, since the results are filtered, the final
value will lie in between 0 and 1.

The nice thing is that this entire operation can be performed using a single
shadow map (texture) lookup in a fragment program. The hardware takes
care of performing the depth comparisons and returns the filtered result to
your fragment program. This is both simple and fast.

85

Silhouette ReconstructionSilhouette Reconstruction

sample point

Use a fragment program to
compute the shadows

For silhouette pixels, we also use the fragment program to perform accurate
shadow edge reconstruction. Let’s see exactly how it works.

86

Silhouette ReconstructionSilhouette Reconstruction

silhouette points

Fetch silhouette points
• 1 interior point
• 4 neighbors

First, project the sample into light space, which maps the sample to a
particular texel in the silhouette map. We fetch the silhouette points from the
silhouette map, 1 point for the current texel, and its four immediate
neighbors. This amounts to five texture fetches.

87

Silhouette ReconstructionSilhouette Reconstruction

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Now, recall that we want to know which of the four neighboring depth
samples should be used for the depth comparison. Imagine using the five
silhouette points and the four depth samples to carve up the texel into eight
wedges (shown in orange in the diagram).

88

Silhouette ReconstructionSilhouette Reconstruction

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Find enclosing wedge
• point-in-triangle tests

Then we simply find which wedge contains our sample. This amount to
performing point-in-triangle tests.

89

Silhouette ReconstructionSilhouette Reconstruction

S L

S L

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Find enclosing wedge
• point-in-triangle tests

Shade the sample using
wedge’s depth test result

We shade the sample according to the depth comparison result associated
with the wedge. In the example here, the relevant wedge is associated with
the top-right depth sample, and the depth comparison against that sample
indicates that the sample should be illuminated.

90

Silhouette ReconstructionSilhouette Reconstruction

S L

S L

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Find enclosing wedge
• point-in-triangle tests

Shade the sample using
wedge’s depth test result

Repeat for all samples

Repeat this step for all samples in the image. That’s all there is to
computing the shadows.

91

OptimizationsOptimizations

Fragment program is expensive
• lots of arithmetic
• lots of texture reads (5 silhouette points)

However, only required for silhouette pixels!

Now let’s discuss some potential optimizations when computing the
shadows. Using the silhouette map for silhouette pixels is rather expensive
because it requires 5 texture reads (to gather the silhouette points) and a lot
of arithmetic to perform the point-in-wedge tests. The good news, however,
is that this extra work is required only for silhouette pixels.

92

OptimizationsOptimizations

Very few silhouette pixels in practice

original scene silhouette pixels
(1% total image)

In practice, the number of silhouette pixels accounts for only a small fraction
of the total number of pixels in the image. This example shows a cylinder
casting a shadow onto the ground plane. The number of silhouette pixels
(shown in green on the right) occupy less than 1% of the total image!

93

OptimizationsOptimizations

Use fragment program branching
• Potentially huge performance wins
• Only available in latest hardware

To take advantage of this observation, we simply use if/else branching in a
fragment program. Most of the pixels are non-silhouette pixels, so the
branching will enable us to skip the 5 texture lookups for gathering the
silhouette points and all the point-in-wedge arithmetic.

Keep in mind, however, that branching in fragment programs is a very recent
addition to graphics hardware, and at the time of this writing is supported
only by the NVIDIA GeForce 6 series graphics cards.

94

Examples and Analysis

Now let’s take a look at some examples and comparisons between various
shadow algorithms.

95

Example 1Example 1

shadow maps shadow volumes silhouette maps

Here is a scene with the Knight character casting shadows on the ground
plane. On the left is the result obtained using shadow maps. Aliasing
artifacts are apparent. Shadow volumes generate accurate shadows, as
shown in the middle image. The result on the right is obtained using shadow
silhouette maps. Notice that it dramatically reduces aliasing artifacts, and
the image is very similar to the middle image.

96

Example 1 (closeup)Example 1 (closeup)

shadow maps shadow volumes silhouette maps

Here’s a closeup of the same scene.

97

Example 2Example 2

shadow maps

Here’s a second example with bowling pins (yellow) casting shadows onto
each other and the ground plane. Ordinary shadow maps lead to aliasing
artifacts.

98

Example 2Example 2

projected silhouette map

Here’s a visualization of the silhouette map, projected from the point of view
of the light source onto the scene.

99

Example 2Example 2

shadows using silhouette map

Here are the resulting shadows computed using a silhouette map.

100

Quality ComparisonQuality Comparison

silhouette mapshadow map

101

Bandwidth ComparisonBandwidth Comparison

shadow volumes silhouette maps

One of the advantages of silhouette maps over shadow volumes is that they
consume far less bandwidth. Consider this example with three knights
standing on the ground plane.

102

Bandwidth ComparisonBandwidth Comparison

shadow volumes silhouette maps

Here’s a view of the scene from the side.

103

Bandwidth ComparisonBandwidth Comparison

shadow volumes silhouette maps

1

100

ov
er

dr
aw

50

Here’s a visualization of the amount of overdraw when rendering the scene
using the two algorithms. Dark blue regions indicate low overdraw, whereas
red and yellow regions indicate high overdraw. The extra polygons in the left
image show the shadow volume polygons rasterized from the observer’s
point of view. Clearly, the shadow volumes consume far more fillrate and
bandwidth than silhouette maps.

104

Bandwidth ComparisonBandwidth Comparison

Shadow volumes
Silhouette maps

5.94 MB 126.3 MB
1.53 MB 1.07 MB

1200 triangles 14,800 triangles

Bandwidth ratio 3.9 : 1 118:1

To make this more quantitative, here are two test scenes that compare
bandwidth usage between the two algorithms. In both cases, silhouette
maps consume far less bandwidth than shadow volumes.

Keep in mind, however, that bandwidth usage does not translate directly to
performance. Shadow volumes perform many operations, but each of those
operations (a stencil update) is relatively simple. In contrast, the operation
performed on each pixel for silhouette maps can be rather complex. The
actual performance differences between the two algorithms is highly scene-
dependent and will clearly vary on a case-by-case basis.

105

ArtifactsArtifacts

• Silhouette map: one point per texel
• Multiple edges inside a texel

Now let’s take a look at some of the artifacts that can arise with the shadow
silhouette map algorithm. We should expect to get artifacts in some cases
because, after all, we are sampling the scene with a discrete buffer, limited
in size by our choice of resolution for the depth map and silhouette map.

I promised earlier that I would discuss the implications of storing only one
silhouette point per texel in the silhouette map. The silhouette map provides
a reasonable approximation as long as only one silhouette edge passes
through the texel. The main problem occurs when you have multiple,
different silhouette edges that pass through the texel, as shown in the three
cases above. Each column shows a different situation where artifacts can
occur. In the left column, two curves meet at a T-intersection. One of the
texels contains the T-intersection and the two edges, but only one point can
be stored. Since there is no explicit knowledge about the T-intersections
(since silhouette edges are found and rasterized independently of each
other), the choice of silhouette point is rather arbitrary. In this case, a
silhouette point is chosen for the lower curve, and information about the
upper curve is lost. This leads to the shadow reconstruction artifact shown
in the bottom-left image.

Another problematic situation is when you simply have two curves that pass
near each other without touching. These may be silhouettes belonging to
completely different objects. Again, texels may be crossed by two or more
silhouette edges, but ultimately only one silhouette point is stored, so
information about one of the curves is lost. This leads to the zig-zag
reconstruction artifacts shown in the bottom-center image.

106

ArtifactsArtifacts

shadow maps shadow volumes silhouette maps

To summarize, the silhouette map algorithm can lead to artifacts whenever
multiple silhouette edges cross a texel. Clearly this is related to the
silhouette map resolution. The lower the resolution, the more likely that
multiple edges will cover a given texel. Also, scenes with fine geometry tend
to have silhouette edges that are close to one another.

In this jeep scene, artifacts can be seen in the shadow cast by the jeep’s
fender onto the ground plane.

107

Artifacts (closeup)Artifacts (closeup)

shadow maps shadow volumes silhouette maps

Artifacts due to multiple edges
More noticeable when animated

Here’s a closeup of the artifacts. Note that these artifacts are generally
more visible in animations, because the shadow artifacts tend to “pop”
abruptly depending on how the image samples get projected onto the
silhouette map. A more severe version of popping occurs with regular
shadow maps.

108

Algorithm ComparisonAlgorithm Comparison

Perspective Shadow Maps:
• same generality as shadow maps
• minimal overhead (2 passes)
• doesn’t address aliasing in all cases

Shadow Silhouette Maps:
• addresses aliasing more generally
• more overhead (3 passes + big shaders)
• less general than shadow maps

Now that we’ve seen both the perspective shadow map and silhouette map
techniques, let’s compare these two methods qualitatively. Perspective
shadow maps require minimal changes to the original shadow map method;
conceptually, they just involve an extra perspective transform. Thus they
require only 2 rendering passes and have the same level of generality as
regular shadow maps: they automatically handle any geometry that can be
represented in a depth buffer, such as polygonal models, points, sprites, and
so on. However, they do not fix aliasing in all cases. In particular they do
not solve projection aliasing, and they also cannot solve perspective aliasing
for all scene configurations.

The shadow silhouette map algorithm fixes aliasing in a manner independent
of the relationship between the light and camera perspective transforms.
Thus shadow silhouette maps handle aliasing in all situations, including
projection aliasing, though small artifacts remain due to undersampling.
Shadow silhouette maps are also fundamentally more complicated than
perspective shadow maps: they rely on fragment programs, consume more
memory, and require an extra rendering pass. Additional hardware may
eventually reduce this overhead. Finally, the price to be paid for the higher
quality of using shadow silhouette maps is that the algorithm is less general
than perspective shadow maps. Since the silhouette map algorithm requires
that we explicitly find silhouette edges (in order to rasterize them), it means
that we must use polygonal models. This is not a major concern for many
real-time applications, since modern graphics hardware is dedicated to
polygonal rendering. In the future, however, other types of primitives such
as higher-order surfaces may be supported.

109

Combination of AlgorithmsCombination of Algorithms

Why not combine techniques?

Perspective shadow map:
• Optimizes depth sample distribution
• More samples closer to viewer

Shadow silhouette map:
• Optimizes depth sample information
• Exact silhouette edge locations

Fortunately, shadow silhouette maps and perspective shadow maps are
complementary. It is possible to combine them to get the best of both
worlds, at very little added cost. Keep in mind that the two techniques
address aliasing in different ways. Perspective shadow maps optimize the
distribution of the depth samples in the shadow map so that more samples
are assigned to regions of the image closer to the viewer. In contrast,
shadow silhouette maps optimizes the amount of information provided by
each sample. In particular, depth samples are effectively deformed so that
they lie along silhouette edges. This explicit edge information is used to
reconstruct shadow edges accurately.

110

SummarySummary

• Image-space algorithm
• Silhouette map: deformed depth map
• Piecewise-linear approximation
• Scalable (compared to shadow volumes)

Compared to (perspective) shadow maps:
• Removes aliasing in more cases
• Additional overhead and requirements

There are a few key ideas to remember about shadow silhouette maps. It is
an extension of the regular shadow map algorithm, and it also works in
image space. In addition to the shadow map, we add a silhouette map,
which conceptually helps us to represent a deformed depth map in which
depth samples are located where we need them: on the blockers’
silhouettes, which give rise to hard shadow edges. Since we store one point
per texel in the silhouette map, we obtain a piecewise-linear reconstruction
of the true silhouette curve. This looks much better than the piecewise-
constant reconstruct obtained using a standard shadow map. Compared to
shadow volumes, which work in object-space, the silhouette map consumes
less fillrate and bandwidth and scales better to complex scenes.

Compared to existing shadow-map-based approaches like perspective
shadow maps, silhouette maps offer better quality, but the tradeoff is
additional overhead and less generality. This is a classic tradeoff in shadow
algorithms.

111

