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MotivationMotivation

Why another shadow algorithm?
Why not use perspective shadow maps?

Stamminger and Drettakis, SIGGRAPH 2002

In a nutshell, the topic of this session – the shadow silhouette map – is an 
extension to the shadow map algorithm that addresses aliasing problems.  
Perspective shadow maps, described in another session, address the same 
problem.  So why are we bothering with this algorithm if we already have that 
one?  It turns out that the two approaches have different tradeoffs.  Hopefully 
these tradeoffs will become clear as we proceed.
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Perspective Shadow MapsPerspective Shadow Maps

Addresses perspective aliasing
Optimizes distribution of depth samples
Difficulties:
• Does not handle projection aliasing
• Dueling frusta problem

There are two types of aliasing caused by shadow maps: perspective and 
projection aliasing.  See Marc Stamminger’s session on Perspective Shadow 
Maps for a discussion of these aliasing types.  Perspective Shadow Maps 
(PSM) only addresses perspective aliasing, and then only in some cases.  In 
particular, the PSM optimizes the distribution of the depth samples so that 
more samples are located toward the viewer.  However, when the light and 
camera roughly face each other, PSMs don’t work as well.  This scene 
configuration is called the “dueling frusta” problem.
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Dueling Frusta ProblemDueling Frusta Problem

Here is a diagram that shows the light and camera frusta facing each other.
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Dueling Frusta ProblemDueling Frusta Problem

Mark Kilgard, NVIDIA

light’s view

eye’s view

aliasing artifacts

high magnification

Here is a visualization of what happens from both the light’s view and the 
observer’s view.  The left two images are color-coded so that red pixels 
show areas of the scene for which the shadow map is least magnified, and 
the blue pixels show areas where the shadow map is most magnified.  In the 
left image, we see the scene from the light’s viewpoint.  The dark blue 
outline is the observer’s view frustum.

In the middle image, we see the same scene, but from the observer’s view.  
The yellow lines represent the light’s view frustum, which faces the observer.  
Here, we see that areas of the image close to the viewer are precisely the 
areas where the shadow map has the greatest magnification when projected 
onto the image.  Unfortunately, when using PSMs, the two perspective 
transforms (one from the light, one from the camera) mutually cancel and the 
result is that we’re back to a standard, uniform shadow map.

The resulting shadow aliasing artifacts are seen in the right image.

In summary, PSMs are very useful, but they only address aliasing in certain 
cases.  This is the main motivation for exploring another shadow algorithm, 
such as shadow silhouette maps.
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Shadow Silhouette MapsShadow Silhouette Maps

• Research at Stanford University
– P. Sen, M. Cammarano, and P. Hanrahan
– Proceedings of SIGGRAPH 2003

• See course notes
• Also available online

The shadow silhouette map algorithm was developed at Stanford University 
by Pradeep Sen, Mike Cammarano, and Pat Hanrahan.  Their original paper 
which describes the method in detail was published in the Proceedings of 
ACM SIGGRAPH 2003.  A copy of the paper should be included with these 
course notes.  You can of course also download the paper online.

Pradeep Sen gave a nice talk at SIGGRAPH 2003, presenting the silhouette 
map algorithm.  Many of the figures in these slides and notes are borrowed 
from his presentation.
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ObservationObservation

Shadow maps
• undersampling can occur anywhere
• artifacts visible only at shadow edges

The silhouette map algorithm is based on the following simple observation.  
Shadow maps can lead to undersampling, but the artifacts are visually 
objectionable only at the shadow silhouettes, i.e. the edges between 
shadowed and illuminated regions.
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ObservationObservation

Shadow volumes
• accurate everywhere, but high fillrate
• accuracy only needed at silhouettes

In contrast, shadow volumes give per-pixel accuracy everywhere, but this 
degree of accuracy is only needed at the silhouettes.  The price for being 
accurate everywhere with shadow volumes is high fillrate and bandwidth 
consumption, illustrated in the right figure.  The yellow polygons visualize 
shadow volume polygons.  Clearly there is a lot of shadow volume overdraw 
in this scene, which leads to high fillrate and bandwidth.  One of the 
characteristics of shadow maps, as we shall see, is relatively low bandwidth 
and fillrate consumption.  This helps to keep the algorithm scalable to large 
scenes.
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Algorithm GoalsAlgorithm Goals

• Accuracy of shadow volumes
• Efficiency of shadow maps
• Treats perspective and

projection aliasing
• Supports dynamic scenes
• Maps to graphics hardware

We want a hybrid algorithm that combines the best characteristics of shadow 
maps and shadow volumes.  The silhouette map algorithm will focus on the 
shadow silhouettes, since those are the pixels in the image that are critical to 
get right.

These are the goals of the silhouette map algorithm.  Ideally, we would have 
the accuracy of shadow volumes and the efficiency of shadow maps.  As 
we’ll see, silhouette maps don’t quite achieve this goal, but they do offer an 
excellent tradeoff.  Silhouette maps are designed to work on dynamic 
scenes, i.e. the light, observer, and objects can move from frame to frame; 
no precomputation is required.  Finally, silhouette maps are designed to be 
simple enough to implement on graphics hardware.  As we’ll see, though, 
they make heavy use of the programmable features of modern graphics 
hardware.
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OverviewOverview

depth map silhouette map

The basic idea is to augment the normal depth map with an extra buffer, 
called a silhouette map, which helps to represent shadow silhouettes more 
accurately.
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Shadow Map (Review)Shadow Map (Review)

light source

blocker

receiver

To understand how the silhouette map algorithm works, let’s review how the 
regular shadow map algorithm works.  We have a light source, blocker, and 
receiver.
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Shadow Map (Review)Shadow Map (Review)

depth map

We rasterize the blocker into a depth map.  In the visualization on the right, 
dark values represent small depths (close to the light), and light values 
represent large depths (far from light).
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Shadow Map (Review)Shadow Map (Review)

depth map

Due to limited depth buffer resolution, we obtain a poor representation of the 
blocker’s shadow silhouette.
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Shadow Map (Review)Shadow Map (Review)

depth map

For reference, the true silhouette curve is shown in green.  We can think of 
the standard shadow map algorithm as providing a piecewise-constant 
approximation to the shadow contour.  This is because all samples in the 
final image that get mapped to a given texel in the shadow map will have the 
same binary value: 0 if the depth test fails, 1 if the depth test passes.  It is 
this piecewise-constant approximation that leads to blocky aliasing artifacts 
in the final image.



16

Depth MeshDepth Mesh

depth mesh (sampling grid)

Now let’s see how we can improve the approximation.  Let’s stretch our 
minds a bit and think of the depth map not as a buffer, but as a mesh where 
each sample is a vertex of the mesh.  In 2D, the mesh is just a uniform, 
rectilinear grid as shown here.
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Depth MeshDepth Mesh

depth mesh + dual mesh

original grid (blue)

dual grid (red)

The depth mesh is shown in blue.  As we’ll soon see, it will be useful also to 
consider the dual mesh, shown in red.  Practically, this is the same as the 
original grid, but offset by ½ a pixel in both x and y.
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Depth MeshDepth Mesh

original grid (blue)

dual grid (red)

discrete silhouette
boundary

depth mesh + dual mesh

With the standard shadow map algorithm, we get discrete shadow 
boundaries that are aligned with the rectilinear grid of the depth mesh.
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Depth MeshDepth Mesh

original grid (blue)

dual grid (red)

discrete silhouette
boundary

continuous silhouette
boundary (green)

depth mesh + dual mesh

Here’s the magic: why restrict ourselves to a regular depth mesh?  It would 
be better if we could somehow deform the depth mesh so that the samples 
are better aligned with the true silhouette boundary (shown in green).  In 
fact, we can do just that.
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Depth MeshDepth Mesh

original grid (blue)

dual grid (red)

discrete silhouette
boundary

continuous silhouette
boundary (green)

silhouette map pixels

depth mesh + dual mesh

Here’s where the dual mesh comes in handy.  Look at all the cells of the dual 
grid (highlighted in red) that contain the continuous silhouette curve.  These 
are also the cells that contain the discrete, grid-aligned shadow boundary 
(dark blue).
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Depth Mesh DeformationDepth Mesh Deformation

deformed depth mesh

Move depth samples
to lie on silhouette curve

The idea is to deform the depth mesh: move the relevant depth samples so 
that they lie precisely on the silhouette curve itself.  This results in the 
deformed depth mesh shown here.
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Depth Mesh DeformationDepth Mesh Deformation

adjusted depth samples

deformed depth mesh

We still have the same number of depth samples as before.  It just so 
happens that some of them have been moved from their original position to 
lie on the silhouette curve.
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Depth Mesh DeformationDepth Mesh Deformation

adjusted depth samples

deformed depth mesh

Now let’s see when we apply the shadow map algorithm, this time with the 
deformed mesh.
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Better ApproximationBetter Approximation

piecewise-linear approximation

Notice that now we get a much better approximation to the shadow
silhouette.  Instead of a piecewise-constant approximation to the contour, we 
have piecewise-linear approximation (imagine connecting the dots of the 
deformed depth samples).

Conceptually, this is all there is to the silhouette map algorithm.
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Silhouette MapSilhouette Map

silhouette mapdepth map

deformed depth map
Decomposition of
deformed depth map

In practice, however, we can’t easily create or use deformed depth meshes 
on graphics hardware.  But we can look at the problem from a slightly 
different angle.  Instead of working directly with a deformed depth mesh, we 
can use two buffers: a regular depth map and a silhouette map, a 2D image 
that we’ll describe in a moment.  Together, these buffers effectively give you 
a deformed depth map that can be used to give the piecewise-linear 
approximation of the shadow boundary.
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What is a Silhouette Map?What is a Silhouette Map?

Many ways to think about it:
• Edge representation
• 2D image, same resolution as depth map
• Offset from depth map by ½ pixel in x, y 
• Stores xy-coordinates of silhouette points
• Stores only one silhouette point per texel
• Piecewise-linear approximation

So what exactly IS a silhouette map?  There are many ways to think about it.  
Abstractly, it’s an edge representation, meaning that its main purpose is to 
store accurate edge information.  After all, the overall goal here is to improve 
the shadow silhouette.  Concretely, the silhouette map is just a buffer offset 
from the depth map by ½ pixel in both x and y.  Each texel in the silhouette 
map stores a single point; for texels that are crossed by the silhouette curve, 
the texel stores a point that lies on the curve.  Note that only one silhouette 
point is stored per texel.  We’ll see some implications of this restriction.
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Algorithm
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Algorithm OverviewAlgorithm Overview

Image-space algorithm

Here’s an overview of the algorithm.  There are 3 rendering passes.
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Algorithm OverviewAlgorithm Overview

Create depth map

Step 1

The first pass draws a regular depth map from the light’s viewpoint.  This is 
exactly the same as in the standard shadow map algorithm.
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Algorithm OverviewAlgorithm Overview

Create silhouette map

Step 2

The second step is to render a silhouette map, also from the light’s 
viewpoint.  We’ll see later exactly how this is done.
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Algorithm OverviewAlgorithm Overview

Render scene and shadows

Step 3

Finally, we render the scene from the observer’s viewpoint and refer to both 
the shadow map and silhouette map to obtain accurate shadows.
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Algorithm DetailsAlgorithm Details

• Focus now on concepts
• Worry later about implementation

?

This part of the discussion will focus on the concepts of the algorithm.  It 
may not yet be clear how to implement this in hardware.  Don’t worry; we’ll 
cover this later.
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Create Depth MapCreate Depth Map

Same as in regular shadow maps

The first step is to render a depth map.
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Identify Silhouette EdgesIdentify Silhouette Edges

Find object-space silhouettes (light’s view)

Before we can create a silhouette map, we have to identify the silhouette 
edges.  This task is sometimes referred to as object-space silhouette 
extraction.  For polygonal models, a simple way to perform this task is to 
loop through all edges and check to see if one of its adjacent faces is facing 
the light and another is facing away.  This approach may sound overly 
simplistic, but in fact it’s one of the best methods available for dynamic 
scenes with animated characters.  Best of all, it’s easy to implement and 
always works.

Note the assumption that we’ve made here: objects (in particular, the 
blockers in the scene) are represented as polygons.



35

Create Silhouette MapCreate Silhouette Map

• Rasterize silhouette edges (light’s view)
• Find points that lie on silhouette edges
• Store one such point per texel

silhouette edges silhouette points

Now that we have the silhouette edges, we draw them (again from the light’s 
viewpoint) to generate the silhouette map.  The overall idea is to pick points 
that lie on the edges and store these points in the silhouette map.
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Compute Silhouette PointsCompute Silhouette Points

Example:

silhouette edges

point of view of light

Let’s use an example to understand exactly how this process works.  Here is 
a visualization of the silhouette edges of a Knight character, seen from the 
point of view of the light source.  We’ll focus on the part outlined in red, i.e. 
the Knight’s shield.



37

Compute Silhouette PointsCompute Silhouette Points

silhouette map (dual grid)

The grid lines in this image show the pixel boundaries of the silhouette map.  
Remember that the silhouette map is the dual to the original depth map, i.e. 
it’s offset by ½ pixel in both x and y.
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Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

Now let’s see how we rasterize the silhouette edges and wind up with 
silhouette points.
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Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

pick an edge

Pick any edge to start with.
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Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

rasterize edge conservatively:
be sure to generate fragments
for silhouette pixels

We rasterize the edge conservatively, meaning that we must guarantee that 
all fragments (i.e. pixels) that are crossed by the silhouette edge are 
rasterized.  (We’ll see later how to guarantee this.)  The generated 
fragments are highlighted above.  Note that since we are rasterizing 
conservatively, it is possible that some fragments will be generated that are 
not crossed by any silhouette edge.  Again, later we’ll see how to handle this 
situation.
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Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

for each fragment:
pick a point on the edge

Each fragment generated by the rasterizer will eventually end up in a texel in 
the silhouette map.  For each fragment, we pick a point that lies on the 
silhouette edge.
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Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

silhouette points

We store the coordinates of these points into the silhouette map.



43

Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

do the same for other edges

Repeat this step for all the silhouette edges.
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Compute Silhouette PointsCompute Silhouette Points

rasterization of silhouettes

completed silhouette map

subtle issues:
• only one point per texel
• new values overwrite old ones

how to pick silhouette points?

Here is a visualization of what the final silhouette map might look like after 
rasterizing all the silhouette edges and storing the associated silhouette 
points into the buffer.  There are two issues to be aware of.  Remember that 
we only store one point per texel in the silhouette map.  (The reason for 
storing just one point is that it makes the algorithm consistent and easier to 
implement on graphics hardware.  The alternative, storing multiple points per 
texel, complicates matters.)  The second issue is that multiple edges may 
cross a single texel of the silhouette map.  Since only one value may be 
stored per texel, we (somewhat arbitrarily) choose to let new silhouette 
points overwrite old ones.  Thus only the last silhouette point written to a 
texel will be kept.

Now that we’ve seen the overall approach, the main question is: how do we 
pick the silhouette points?



45

Picking Silhouette PointsPicking Silhouette Points

Pick a point on the line that lies inside the texel

?

Let’s say we’ve drawn a silhouette edge, and the rasterizer has generated a 
bunch of fragments.  For each fragment covered by the edge, we want to 
pick a point.

We’ll break the problem of picking points into a few cases.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

In the first case, one of the endpoints of the edge (i.e. a vertex) lies within 
the fragment, as shown here.  The thick orange lines represent the fragment 
boundary.  Ignore the diagonal purple lines for the moment.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

pick the vertex itself

In this case, we simply pick the vertex itself as the silhouette point and store 
its coordinates into the silhouette map.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

test for intersection against two diagonals

one
intersection

Case 2:

If neither endpoint of the silhouette edge lies within the fragment, we need to 
check for intersections.  One way to do this is to perform a line segment 
intersection test against the two diagonals, shown in purple.  Clearly, the 
silhouette edge will intersect the fragment if and only if it intersects at least 
one of the diagonals.

In the second case, suppose the silhouette edge intersects only one of the 
diagonals.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

pick the intersection point itself

Case 2:

one
intersection

For this case, we pick the intersection point itself as the silhouette point to be 
stored.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

In the third case, there are two intersections, one with each diagonal.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

use midpoint

In this situation, we pick the midpoint of the two intersections as the 
silhouette point.



52

Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

Case 4:

no
intersections

Finally, it is possible that there is no intersection between the silhouette edge 
and the fragment.  This is possible because we are rasterizing the silhouette 
edge conservatively, and thus such fragments may be generated by the 
rasterizer.

In this case, nothing is written to the silhouette map for this fragment.
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Silhouette Point AlgorithmSilhouette Point Algorithm

Case 1:

vertex inside

Case 2:

one
intersection

Case 3:

two
intersections

Case 4:

no
intersections

That’s all there is to the silhouette-point-picking algorithm.  In summary, we 
rasterize the silhouette edges (conservatively) and for each fragment 
generated, we perform the four tests shown here.
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Render sceneRender scene

How to compute shadows?

Split problem into two parts:
• non-silhouette pixels: use shadow map
• silhouette pixels: use silhouette map

In the final step (third rendering pass) of the algorithm, we draw the scene 
from the observer’s viewpoint and compute shadows.  How do we use the 
information gathered so far (a depth map and a silhouette map) to compute 
these shadows?

A conceptually simple way to think about the problem involves splitting the 
problem into two parts.  Let’s use the term “silhouette pixels” to refer to the 
pixels in the final image (seen from the observer’s view) that contain shadow 
discontinuities, i.e. the boundary between shadowed and illuminated regions.  
Recall that with standard shadow maps, these pixels give us the most grief 
because they are precisely the ones that exhibit aliasing artifacts.  All other 
pixels in the scene look fine because they are completely illuminated or 
completely in shadow.

Therefore, let’s consider silhouette pixels and non-silhouette pixels 
separately.  Since non-silhouette pixels don’t show aliasing artifacts, we’ll 
use the standard shadow map to compute shadows for those pixels. On the 
other hand, for the silhouette pixels, we’ll use the silhouette map to obtain a 
good, piecewise-linear reconstruction of the shadow silhouette.  We’ll see 
exactly how to do this in a moment.
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Find Silhouette PixelsFind Silhouette Pixels

• Project sample into light space
• Compare depth against 4 nearest samples 

in shadow map

shadow map samples

sample to be shaded
(projected to light space)

First, we need a way to identify silhouette pixels.  This task turns out to be 
surprisingly easy.  Let’s say we have a sample (pixel) in the final image, and 
we want to know whether it’s a silhouette or non-silhouette pixel.  We 
transform the pixel into light space, just as we would do when using the 
standard shadow map algorithm.  In general, the transformed sample 
(shown in green in the diagram) will lie between four samples of the shadow 
map (shown in blue).  Compare the depth of the sample against the depths 
associated with the four adjacent samples of the shadow map.
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Find Silhouette PixelsFind Silhouette Pixels

S

S

S

S

results agree:
non-silhouette pixel

If all the depth comparison results agree, then the sample is a non-silhouette 
pixel.  In the example shown here, all the depth comparison results indicate 
that the sample is in shadow (S).
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L

L

S

S

Find Silhouette PixelsFind Silhouette Pixels

S

S

S

S

results agree:
non-silhouette pixel

results disagree:
silhouette pixel

Case #1 Case #2

On the other hand, if the depth comparison results disagree, then the sample 
is a silhouette pixel.  In the example here, two of the four tests declare that 
the sample is in shadow, but the other two declare that the sample is 
illuminated.

(You may have noticed this technique is very similar to the idea of 
Percentage Closer Filtering [Reeves et al. 1987].)
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L

L

L

L

Treat Non-Silhouette PixelsTreat Non-Silhouette Pixels

S

S

S

S

in shadow illuminated

Easy: use depth comparison result

For non-silhouette pixels, computing shadows is easy.  We just use the 
results of the depth comparisons to shade the sample.  If all results say the 
sample is in shadow (left image) then the sample is in shadow.  Similarly, if 
all results say the sample is illuminated (right image), then the sample 
should be illuminated.
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Treat Silhouette PixelsTreat Silhouette Pixels

fetch five silhouette points

Reconstruct edge using silhouette map

L

L

S

S

The more interesting part is handling silhouette pixels.  In this case, we rely 
on the silhouette map to help us reconstruct shadow edges.  First, transform 
the sample to light space (just as in the previous step) and lookup the 
current silhouette point and the four neighbors (shown as red points in the 
diagram).  This essentially amounts to five texture lookups.
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Treat Silhouette PixelsTreat Silhouette Pixels

Reconstruct edge using silhouette map

L

L

S

Ssplits cell into four quadrants

If we imagine drawing line segments between these silhouette points as 
shown, we see that the segments split up the texel into four quadrants.  
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Treat Silhouette PixelsTreat Silhouette Pixels

Shade sample according to quadrant

L

L

S

Sexample: sample in shadow

Find the quadrant that contains the sample and shade the sample according 
to the depth comparison result of the associated depth sample.  In the above 
example, the top-left quadrant contains the sample, and the depth sample 
associated with that quadrant indicates the sample should be in shadow.  
Thus we render this sample as being in shadow.  If the sample had instead 
fallen into the top-right quadrant, it would have been illuminated.  

Hopefully it is clear from the diagram why we obtain a piecewise-linear 
approximation to the shadow edge, as opposed to the previous piecewise-
constant approximation (using a regular shadow map).  The quadrants 
essentially define different shadow boundaries within a single texel, i.e. at 
sub-texel precision.  All samples that fall into a given quadrant will be shaded 
the same.  In contrast, with a regular shadow map, all samples that lay 
within the texel itself are shaded the same.  
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Six Combinations (1 of 6)Six Combinations (1 of 6)

S

S

S

S

For clarity, let’s consider all the possible cases that can arise.  There are 
only six of them.  The first possibility, shown here, is when all four depth 
samples indicate the current sample (i.e. the sample to be shaded) is in 
shadow.  (This actually falls into the case of the non-silhouette pixels, which 
we covered earlier.)
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Six Combinations (2 of 6)Six Combinations (2 of 6)

S

S

S

S

L

S

S

S
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Six Combinations (3 of 6)Six Combinations (3 of 6)

S

S

S

S

L

S

S

S

L

L

S
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Six Combinations (4 of 6)Six Combinations (4 of 6)

S

S

S
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L

S

S

S
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L
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S

S
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Six Combinations (5 of 6)Six Combinations (5 of 6)

S

S

S

S
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Six Combinations (6 of 6)Six Combinations (6 of 6)

S

S

S

S

L

S

S

S

L

L

S

S

L

S
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L

L

L
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L

L

L

L

L

In the final case, all depth comparisons agree and the sample is illuminated.  
Again this falls into the case of non-silhouette pixels.

In summary, there are 2 cases (top-left, bottom-right) for non-silhouette 
pixels and 4 cases for silhouette pixels.
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Algorithm RecapAlgorithm Recap

Image-space algorithm

We have now covered all the algorithm’s details.  Let’s take a step back and 
review the algorithm at a higher-level.

First, note that the algorithm works in image space.  All relevant information 
(depth samples, silhouette points) are stored using 2D image 
representations.  The silhouette map is really just an image-based edge 
representation.
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Algorithm Recap (1 of 3)Algorithm Recap (1 of 3)

Create depth map

Easy: just like regular shadow map

The first step is to create a depth map from the light’s viewpoint.
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Algorithm Recap (2 of 3)Algorithm Recap (2 of 3)

Pick silhouette points, 1 per texel

Create silhouette map

Rasterize silhouette edges

The second step is to create the silhouette map, also from the light’s 
viewpoint.  During this step, we rasterize silhouette edges conservatively and 
pick points that lie exactly on the edge and store the coordinates of these 
points into the silhouette map.  The idea is to check for edge-fragment 
intersections by checking against the two diagonals of the fragment.  There 
are a few simple cases to consider, as described in detail earlier.
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Algorithm Recap (3 of 3)Algorithm Recap (3 of 3)

Render scene and shadows

Reconstruct shadow edge
Fetch local silhouette points

In the final pass, we draw the scene from the observer’s viewpoint and draw 
the shadows.  For non-silhouette pixels, just use the shadow map.  For 
silhouette pixels, we fetch five silhouette points (current point + four 
neighbors) and use these points to reconstruct a piecewise-linear 
approximation to the true shadow silhouette.
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Implementation

Up till now, we’ve been discussing the concepts of the algorithm.  It’s time to 
see how we can implement the algorithm on modern graphics hardware.
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ImplementationImplementation

• Details (OpenGL)
• Hardware acceleration
• Optimizations

The silhouette map algorithm can be implemented on DirectX 9-class 
hardware.  This means specifically that you need to have programmable 
vertex and fragment units, and floating-point precision (at least 16 bits of 
floating-point) must be available in the programmable fragment unit.  This 
precision is necessary for a number of tasks we have to perform. For 
instance, we need to perform intersection tests when generating the 
silhouette map. Examples of suitable hardware include the ATI R300 chips 
(e.g. Radeon 9700 and later) and the NVIDIA NV30 chips (e.g. GeForce FX 
and later).

The silhouette map algorithm can be implemented using both OpenGL and 
DirectX.  However, any code snippets I show here will be in OpenGL.
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Create Shadow MapCreate Shadow Map

Render to standard OpenGL depth buffer

Optimizations
• for closed models, cull back faces
• turn off shading, color writes
• only send vertex positions 
• draw roughly front-to-back

To create a shadow map, we place the OpenGL camera at the light position 
of the light source, aim it at the scene, and draw.  Keep in mind there are a 
number of optimizations that we can perform.  For closed models, turn on 
back-face culling, e.g.

glEnable(GL_CULL_FACE);

since those faces won’t be seen anyways.  In addition, since we only care 
about drawing depth values, we don’t have to perform shading.  Therefore, 
turn all fancy shaders off.  Furthermore, we don’t even have to write anything 
to the color buffer, so turn off color writes:

glColorMask(0, 0, 0, 0);

In terms of transferring data from the host processor (CPU) to the graphics 
processor (GPU), we only need to send the vertex positions.  Since we’re 
not doing any shading, don’t send extra information like texture coordinates 
and normals.

Finally, draw the objects roughly in front-to-back order.  Doing so maximizes 
the hardware’s ability to perform early Z rejection (i.e. occlusion culling).
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Create Silhouette MapCreate Silhouette Map

Goal: store points that lie on silhouette

Now let’s see how to compute the silhouette points in the second step of the 
algorithm.
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Create Silhouette MapCreate Silhouette Map

Place default point at texel center

default silhouette point

silhouette map texel

use glClear(...)

Remember that the silhouette map is the dual grid of the depth map and is 
offset from the depth map by ½ a pixel. Earlier, we discussed the concept of 
having a deformed depth mesh in which the depth samples are moved to lie 
along silhouettes. Our strategy for creating the silhouette map will be as 
follows.  First, let’s start with an undeformed depth mesh, meaning that all 
depth samples lie at their original, undeformed positions.  Then we’ll 
rasterize silhouette edges and compute silhouette points to perform the 
deformation on some of the depth samples.

To implement this, we start by placing a default silhouette point at the center 
of every texel of the silhouette map.  This essentially places the silhouette 
points directly on top of the depth samples of the depth map.  This 
construction is shown in the diagram.  The purple box represents the 
boundary of a single texel of the silhouette map.  The blue dots are the 
locations of the depth samples.  We initialize the silhouette map by placing 
silhouette points at these blue points.

In practice, it’s easy to perform this initialization by using the glClear call to 
clear the whole buffer.
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Create Silhouette MapCreate Silhouette Map

Fragment program finds silhouette points

silhouette point

We’ll use a fragment program (pixel shader) to compute the silhouette points 
for texels that contain silhouette edges.  To make this concrete, consider the 
purple texel shown in the diagram.  A fragment associated with this texel will 
be generated by the rasterizer.  We want a fragment program that checks 
that a silhouette edge passes through this fragment, computes the silhouette 
point, and writes it to the output buffer (the silhouette map).
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Create Silhouette MapCreate Silhouette Map

Fragment program finds silhouette points
• use local coordinates 
• store only xy offsets

(0,0) (1,0)

(1,1)(0,1)

(0.6, 0.3)

The fragment program simply performs the various intersection tests 
discussed earlier in the silhouette-point-picking algorithm.  For fragments 
that are generated by the rasterizer but not crossed by a silhouette edge, the 
fragment program uses a “fragment kill” to throw away the fragment (i.e. 
write nothing to the output).

One way of computing and storing the silhouette points is to use a local 
coordinate system, in which the texel area is taken to be a unit square (see 
the lower-left diagram).  The default silhouette point is at the center, (0.5, 
0.5).  For silhouette points computed via intersection tests, we just store xy 
offsets in the local coordinate system into the silhouette map. These offsets 
are in the range [0,1].
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Rasterizing SilhouettesRasterizing Silhouettes

Two issues:
• must guarantee generation 

of silhouette pixels
• discard occluded silhouettes

There are two issues to be aware of when rasterizing silhouette edges.  All 
along we’ve talked about performing conservative rasterization to guarantee 
that all fragments crossed by a silhouette edge will be generated.  Now we’ll 
see how to do that.  The second issue is that some silhouette edges, seen 
from the light’s viewpoint, will be hidden by blockers (occluders).  Since the 
fragments from these edges aren’t seen by the light, we don’t want to 
process them.
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Rasterizing SilhouettesRasterizing Silhouettes

Rasterize conservatively
• Be careful using OpenGL wide lines
• Use width of at least 3

• Make lines slightly longer to cover endpoints

Another solution: use thin quads, not lines
• See Sen et al. [SIG2003] paper

glLineWidth(3);

Let’s address the conservative rasterization first.  Sen et al., in their original 
paper on shadow silhouette maps, recommend drawing “thin quads” – thick 
enough to guarantee the generation of all fragments crossed by a silhouette.  
Their reason for doing so is that the alternative, drawing wide lines in 
OpenGL, may vary in behavior across different graphics hardware.

In turns out, however, that by choosing a line width that is large enough, all 
necessary fragments will in fact be generated.  In practice, I’ve found that 
using a width of at least 3 works consistently.  Another detail to remember is 
that you have to make the line slightly longer than the original edge to 
guarantee that the fragments containing the endpoints of the edge will also 
be generated.
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Occluded Silhouette PixelsOccluded Silhouette Pixels

Example:

don’t draw these!

The second issue is dealing with occluded silhouette pixels.  In the example 
shown here, the hexagon is partly occluded by the circle, seen from the point 
of view of the light source.  The fragments belonging to the occluded 
silhouette edges, shown as dotted gray lines, should be ignored.
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Occluded Silhouette PixelsOccluded Silhouette Pixels

Implementing occlusion:
• Use depth map from first pass
• Recall silhouette map offset by ½ pixel

?

?

?

?

• Use fragment kill if depth is 
greater than 4 nearest samples 
in depth map

This case is easy to check for, because we already have a depth map of the 
blockers from the first rendering pass.  In the fragment program that 
computes silhouette points, we also perform the following check. If the 
depth of a fragment belonging to a silhouette edge lies behind all four of the 
neighboring depth samples in the shadow map, then this fragment is 
occluded and should be discarded.  To throw away the pixel, issue a 
fragment kill.
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Rendering Final ImageRendering Final Image

Recall
• Draw from observer’s view
• Identify silhouette vs. non-silhouette pixels
• Use shadow map for non-silhouette pixels
• Use silhouette map for silhouette pixels

In the final rendering pass, we need to distinguish between silhouette and 
non-silhouette pixels.  Just as a reminder, earlier we saw how to accomplish 
this by transforming a sample into light space and checking its depth against 
the 4 nearest samples of the shadow map.  If the depth comparison results 
agree, then the pixel is a non-silhouette pixel.  Otherwise, it’s a silhouette 
pixel.
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Identify Silhouette PixelsIdentify Silhouette Pixels

• Take advantage of hardware shadow mapping
• Use percentage closer filtering

L

L

S

S

S

S

S

S

value is 0
non-silhouette pixel

L

L

L

L

non-silhouette pixel silhouette pixel
value is 1 0 < value < 1

Implementing this step is a breeze using graphics hardware.  The hardware 
supports percentage closer filtering (see Reeves et al. [1987]), meaning that 
instead of performing a single depth comparison of a sample against the 
depth map, it actually compares the depth against the 4 nearest depth 
samples and filters the binary results.  This means that if the depth 
comparison results agree, then the final result will be either 0 (for a 
shadowed pixel) or 1 (for an illuminated one).  In contrast, if the depth 
comparison results disagree, then, since the results are filtered, the final 
value will lie in between 0 and 1.

The nice thing is that this entire operation can be performed using a single 
shadow map (texture) lookup in a fragment program.  The hardware takes 
care of performing the depth comparisons and returns the filtered result to 
your fragment program.  This is both simple and fast.
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Silhouette ReconstructionSilhouette Reconstruction

sample point

Use a fragment program to
compute the shadows

For silhouette pixels, we also use the fragment program to perform accurate 
shadow edge reconstruction.  Let’s see exactly how it works.
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Silhouette ReconstructionSilhouette Reconstruction

silhouette points

Fetch silhouette points
• 1 interior point
• 4 neighbors

First, project the sample into light space, which maps the sample to a 
particular texel in the silhouette map.  We fetch the silhouette points from the 
silhouette map, 1 point for the current texel, and its four immediate 
neighbors.  This amounts to five texture fetches.
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Silhouette ReconstructionSilhouette Reconstruction

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Now, recall that we want to know which of the four neighboring depth 
samples should be used for the depth comparison.  Imagine using the five 
silhouette points and the four depth samples to carve up the texel into eight 
wedges (shown in orange in the diagram).  
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Silhouette ReconstructionSilhouette Reconstruction

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Find enclosing wedge
• point-in-triangle tests

Then we simply find which wedge contains our sample.  This amount to 
performing point-in-triangle tests.
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Silhouette ReconstructionSilhouette Reconstruction

S L

S L

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Find enclosing wedge
• point-in-triangle tests

Shade the sample using
wedge’s depth test result

We shade the sample according to the depth comparison result associated 
with the wedge.  In the example here, the relevant wedge is associated with 
the top-right depth sample, and the depth comparison against that sample
indicates that the sample should be illuminated.
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Silhouette ReconstructionSilhouette Reconstruction

S L

S L

Fetch silhouette points
• 1 interior point
• 4 neighbors

Create eight wedges

Find enclosing wedge
• point-in-triangle tests

Shade the sample using
wedge’s depth test result

Repeat for all samples

Repeat this step for all samples in the image.  That’s all there is to 
computing the shadows.
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OptimizationsOptimizations

Fragment program is expensive
• lots of arithmetic
• lots of texture reads (5 silhouette points)

However, only required for silhouette pixels!

Now let’s discuss some potential optimizations when computing the 
shadows.  Using the silhouette map for silhouette pixels is rather expensive 
because it requires 5 texture reads (to gather the silhouette points) and a lot 
of arithmetic to perform the point-in-wedge tests.  The good news, however, 
is that this extra work is required only for silhouette pixels.
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OptimizationsOptimizations

Very few silhouette pixels in practice

original scene silhouette pixels
(1% total image)

In practice, the number of silhouette pixels accounts for only a small fraction 
of the total number of pixels in the image.  This example shows a cylinder 
casting a shadow onto the ground plane.  The number of silhouette pixels 
(shown in green on the right) occupy less than 1% of the total image!
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OptimizationsOptimizations

Use fragment program branching
• Potentially huge performance wins
• Only available in latest hardware

To take advantage of this observation, we simply use if/else branching in a 
fragment program.  Most of the pixels are non-silhouette pixels, so the 
branching will enable us to skip the 5 texture lookups for gathering the 
silhouette points and all the point-in-wedge arithmetic.

Keep in mind, however, that branching in fragment programs is a very recent 
addition to graphics hardware, and at the time of this writing is supported 
only by the NVIDIA GeForce 6 series graphics cards.
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Examples and Analysis

Now let’s take a look at some examples and comparisons between various 
shadow algorithms.
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Example 1Example 1

shadow maps shadow volumes silhouette maps

Here is a scene with the Knight character casting shadows on the ground 
plane.  On the left is the result obtained using shadow maps.  Aliasing 
artifacts are apparent.  Shadow volumes generate accurate shadows, as 
shown in the middle image.  The result on the right is obtained using shadow 
silhouette maps.  Notice that it dramatically reduces aliasing artifacts, and 
the image is very similar to the middle image.
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Example 1 (closeup)Example 1 (closeup)

shadow maps shadow volumes silhouette maps

Here’s a closeup of the same scene.
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Example 2Example 2

shadow maps

Here’s a second example with bowling pins (yellow) casting shadows onto 
each other and the ground plane.  Ordinary shadow maps lead to aliasing 
artifacts.
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Example 2Example 2

projected silhouette map

Here’s a visualization of the silhouette map, projected from the point of view 
of the light source onto the scene.  
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Example 2Example 2

shadows using silhouette map

Here are the resulting shadows computed using a silhouette map.
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Quality ComparisonQuality Comparison

silhouette mapshadow map
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Bandwidth ComparisonBandwidth Comparison

shadow volumes silhouette maps

One of the advantages of silhouette maps over shadow volumes is that they 
consume far less bandwidth.  Consider this example with three knights 
standing on the ground plane.
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Bandwidth ComparisonBandwidth Comparison

shadow volumes silhouette maps

Here’s a view of the scene from the side.
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Bandwidth ComparisonBandwidth Comparison

shadow volumes silhouette maps
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Here’s a visualization of the amount of overdraw when rendering the scene 
using the two algorithms.  Dark blue regions indicate low overdraw, whereas 
red and yellow regions indicate high overdraw.  The extra polygons in the left 
image show the shadow volume polygons rasterized from the observer’s 
point of view.  Clearly, the shadow volumes consume far more fillrate and 
bandwidth than silhouette maps.
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Bandwidth ComparisonBandwidth Comparison

Shadow volumes
Silhouette maps

5.94 MB 126.3 MB
1.53 MB 1.07 MB

1200 triangles 14,800 triangles

Bandwidth ratio 3.9 : 1 118:1

To make this more quantitative, here are two test scenes that compare 
bandwidth usage between the two algorithms.  In both cases, silhouette 
maps consume far less bandwidth than shadow volumes.

Keep in mind, however, that bandwidth usage does not translate directly to 
performance.  Shadow volumes perform many operations, but each of those 
operations (a stencil update) is relatively simple.  In contrast, the operation 
performed on each pixel for silhouette maps can be rather complex.  The 
actual performance differences between the two algorithms is highly scene-
dependent and will clearly vary on a case-by-case basis.
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ArtifactsArtifacts

• Silhouette map: one point per texel
• Multiple edges inside a texel

Now let’s take a look at some of the artifacts that can arise with the shadow 
silhouette map algorithm.  We should expect to get artifacts in some cases 
because, after all, we are sampling the scene with a discrete buffer, limited 
in size by our choice of resolution for the depth map and silhouette map.

I promised earlier that I would discuss the implications of storing only one 
silhouette point per texel in the silhouette map.  The silhouette map provides 
a reasonable approximation as long as only one silhouette edge passes 
through the texel.  The main problem occurs when you have multiple, 
different silhouette edges that pass through the texel, as shown in the three 
cases above.  Each column shows a different situation where artifacts can 
occur.  In the left column, two curves meet at a T-intersection.  One of the 
texels contains the T-intersection and the two edges, but only one point can 
be stored.  Since there is no explicit knowledge about the T-intersections 
(since silhouette edges are found and rasterized independently of each 
other), the choice of silhouette point is rather arbitrary.  In this case, a 
silhouette point is chosen for the lower curve, and information about the 
upper curve is lost.  This leads to the shadow reconstruction artifact shown 
in the bottom-left image.

Another problematic situation is when you simply have two curves that pass 
near each other without touching.  These may be silhouettes belonging to 
completely different objects.  Again, texels may be crossed by two or more 
silhouette edges, but ultimately only one silhouette point is stored, so 
information about one of the curves is lost.  This leads to the zig-zag 
reconstruction artifacts shown in the bottom-center image.
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ArtifactsArtifacts

shadow maps shadow volumes silhouette maps

To summarize, the silhouette map algorithm can lead to artifacts whenever 
multiple silhouette edges cross a texel. Clearly this is related to the 
silhouette map resolution.  The lower the resolution, the more likely that 
multiple edges will cover a given texel.  Also, scenes with fine geometry tend 
to have silhouette edges that are close to one another.

In this jeep scene, artifacts can be seen in the shadow cast by the jeep’s 
fender onto the ground plane.
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Artifacts (closeup)Artifacts (closeup)

shadow maps shadow volumes silhouette maps

Artifacts due to multiple edges
More noticeable when animated

Here’s a closeup of the artifacts.  Note that these artifacts are generally 
more visible in animations, because the shadow artifacts tend to “pop” 
abruptly depending on how the image samples get projected onto the 
silhouette map.  A more severe version of popping occurs with regular 
shadow maps.
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Algorithm ComparisonAlgorithm Comparison

Perspective Shadow Maps:
• same generality as shadow maps
• minimal overhead (2 passes)
• doesn’t address aliasing in all cases

Shadow Silhouette Maps:
• addresses aliasing more generally
• more overhead (3 passes + big shaders)
• less general than shadow maps

Now that we’ve seen both the perspective shadow map and silhouette map 
techniques, let’s compare these two methods qualitatively.  Perspective 
shadow maps require minimal changes to the original shadow map method; 
conceptually, they just involve an extra perspective transform. Thus they 
require only 2 rendering passes and have the same level of generality as 
regular shadow maps: they automatically handle any geometry that can be 
represented in a depth buffer, such as polygonal models, points, sprites, and 
so on.  However, they do not fix aliasing in all cases.  In particular they do 
not solve projection aliasing, and they also cannot solve perspective aliasing 
for all scene configurations.

The shadow silhouette map algorithm fixes aliasing in a manner independent 
of the relationship between the light and camera perspective transforms.  
Thus shadow silhouette maps handle aliasing in all situations, including 
projection aliasing, though small artifacts remain due to undersampling.  
Shadow silhouette maps are also fundamentally more complicated than 
perspective shadow maps: they rely on fragment programs, consume more 
memory, and require an extra rendering pass.  Additional hardware may 
eventually reduce this overhead.  Finally, the price to be paid for the higher 
quality of using shadow silhouette maps is that the algorithm is less general 
than perspective shadow maps.  Since the silhouette map algorithm requires 
that we explicitly find silhouette edges (in order to rasterize them), it means 
that we must use polygonal models.  This is not a major concern for many 
real-time applications, since modern graphics hardware is dedicated to 
polygonal rendering.  In the future, however, other types of primitives such 
as higher-order surfaces may be supported.
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Combination of AlgorithmsCombination of Algorithms

Why not combine techniques?

Perspective shadow map:
• Optimizes depth sample distribution
• More samples closer to viewer

Shadow silhouette map:
• Optimizes depth sample information
• Exact silhouette edge locations

Fortunately, shadow silhouette maps and perspective shadow maps are 
complementary.  It is possible to combine them to get the best of both 
worlds, at very little added cost.  Keep in mind that the two techniques 
address aliasing in different ways.  Perspective shadow maps optimize the 
distribution of the depth samples in the shadow map so that more samples 
are assigned to regions of the image closer to the viewer.  In contrast, 
shadow silhouette maps optimizes the amount of information provided by 
each sample.  In particular, depth samples are effectively deformed so that 
they lie along silhouette edges.  This explicit edge information is used to 
reconstruct shadow edges accurately.
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SummarySummary

• Image-space algorithm
• Silhouette map: deformed depth map
• Piecewise-linear approximation
• Scalable (compared to shadow volumes)

Compared to (perspective) shadow maps:
• Removes aliasing in more cases
• Additional overhead and requirements

There are a few key ideas to remember about shadow silhouette maps.  It is 
an extension of the regular shadow map algorithm, and it also works in 
image space.  In addition to the shadow map, we add a silhouette map, 
which conceptually helps us to represent a deformed depth map in which 
depth samples are located where we need them: on the blockers’ 
silhouettes, which give rise to hard shadow edges.  Since we store one point 
per texel in the silhouette map, we obtain a piecewise-linear reconstruction 
of the true silhouette curve.  This looks much better than the piecewise-
constant reconstruct obtained using a standard shadow map.  Compared to 
shadow volumes, which work in object-space, the silhouette map consumes 
less fillrate and bandwidth and scales better to complex scenes.

Compared to existing shadow-map-based approaches like perspective 
shadow maps, silhouette maps offer better quality, but the tradeoff is 
additional overhead and less generality.  This is a classic tradeoff in shadow 
algorithms.
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