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Overview

e

e Incremental Instant Radiosity

e Imperfect Shadow Maps




Instant Radiosity

e Goal is to enable “interactive” global illumination in
purely diffuse environments

e Approximate direct and indirect lighting with virtual
point lights (VPL).




Instant Radiosity

e Take the rendering equation
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Approximate with
many point lights

Turnsf into E , yields: Instant Radiosity [keller's7)

One way to think of Instant Radiosity is the following. All the direct and indirect
illumination is approximated with point lights, which are used for rendering.



Instant Radiosity
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Instant radiosity works as follows:

Starting from a direct light source, so called virtual point lights — VPLs — are
created, which represent the indirect illumination.

Note that a single VPL is essentially a hemispherical light with a cosine-falloff.

To compute the indirect illumination at some surface location, we gather light from
all VPLs .

However, we still need to take dynamic visibility into account. For instance, this
path is blocked.
The easiest idea is to use shadow maps, even though that is expensive.



Creating VPLs

e High-level idea

/ [

e Shoot photons from light source
e Follow them through scene

e At each hit point, create VPL
(VPL = point light with cosine distribution)

e Russian roulette to end path

Derivation is intricate, this is the high-level idea.



VPL Distribution

e VPLs are distributed according to p'
(o = av. reflectance, i = bounce)

Sample direct lighting (L_0), one-bounce indirect (L_1), two-bounce indirect (L_2),
etc...

Sum up contributions.

Make sure VPLs are distributed according to average reflectance (raised to the bounce
number).

This ensures that there are more VPLs for the direct lighting, and then fewer for the
first bounce, and then even fewer for the second bounce, etc.



Rendering with VPLs

@ Render scene

e llluminated by each VPL, including shadows

eE.g., use shadow maps or volumes




Pseudo-Code

void InslanlRadiosily(inl N, double 7)
double w, Start; int End, Reflections - 0;
colnr L; Point y; Vectar &;

start = End = NV;

whilei{Bnd > 0)

{

Start *= p;

for(int i = (int) start; i < kEnd; i++)

r

1

// 8elect starting point on light source
- yo(®2(d),%3(:));

L = L.(y)* supp Le:

// trace reflections
for(int j = 0; j <= Reflections; j++)

glRenderShadowedScene IﬁL, y);
glAccum |GLACCUM, .{,);
// diffuse scattering
G = Gal®uy, (D). @by 4 (1))
//trace ray from y into direction &
y = h(y,@);
// Bttenuate and compensats
L *= fa(y);
w = B
}

}
Reflections++;

End = (int) Start;

)

glAncum (GT. RETIRN, 1.0)

e First, render paths that
immediately end on the
light source

e Then, render paths that
are reflected once, etc.

Pseudo-code for IR.




DERIVATION
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Rendering Equation

e Defined as:
Lx,w,)=L,(x,0,) +j;2f(x,a),.,w,,)L(y,—w,)cos 0. dw,
e Using operator R:
(RL)(x, ) =j;2f(x,a),.,a))L(y,—a),)cos(9, dw,

e Equation becomes:

L=L,+RL

Let’s go back to the rendering equation and derive Instant Radiosity (IR).
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Rendering Equation

e Solving for L:

L=L +RL
(1-R)L=1,
L=(1-R)"'L,

L=(1+R+R*+R’+..)L,

e Radiance towards eye =
e direct light from light source
e plus light reflected once,
e plus light reflected twice, ...

Using the operator notation, we know that radiance towards the eye = ...
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Instant Radiosity

@ Assume BRDF is diffuse

kd
JT

JFX)=fx0,0,)=

e Rewrite rendering equation with explicit sampling of
all possible paths (with length j=0, j=1, j=2, ...)

IR assumes diffuse BRDFs and explicitly samples all possible paths.

13



Instant Radiosity

I
Lim.n)y=—( L(y.P-y
(mm) = [, L/ Py

mn

1

mn

Vv, )1,

e Integrate over pixel P,

e Sum over all paths with
length j

e Integrate over all paths
Q) (QxQx...) with length |

e Integrate over light
source S, (positions y,)

‘P_ﬁ’ 120];2/_’; P, (y()aa)o,...,a)j)-

cosf, cosf’

————dy,do,..dw,dP

\y_,- ‘y"

First integral part of sum: all light emitted from y’ through Pixel

Second part of sum:

-Integrate of pixel

-Sum over all path lengths j

-Integrate over all paths of length j, p j(...) is

assumed to be valid paths!

-Integrate over all light source (starting) positions

-Note that: V() is the visibility of betweeny jandy’,i.e.,y jisa VPL and y’ are

locations visible in screen-space.

8/15/09
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Instant Radiosity

e Radiance after j reflections

P, (Vs @yses)) 1= Le(yo)H (cosO,_. 1, (»))

[Assumes valid paths (all y, are mutually visib.)]

The definition of p_j(): essentially the radiance after j reflections (assuming valid
paths).



Instant Radiosity

e Now, we importance sample those paths
e Create paths of different lengths (y, to y;)
e All'y; act as virtual point lights

Now sample those paths.
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Instant Radiosity

e Sampling the paths
e Start with random point y, on light source

e Follow them (using IS) through the scene
e Every hitpoint y; becomes a VPL
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When and how to end a path?

e We start with N point lights on the area light
e Reflect all N of them? Paths never end then...
@ Russian Roulette?

e Assume surfaces are not far from average reflectivity p
e Enables use of fractional absorption
e Of the initial N: pN get reflected (1%t bounce)
e 2" bounce: p°N get reflected, etc...
@ Average path length: I%N

Instead of individually deciding which paths to continue, use fractional absorption
based on the average reflectivity of the scene.
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DERIVATION END
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Incremental Updates

e Original paper proposes incremental updates for
real-time speeds
e Keep last N VPLs (and the rendering for each)
e Replace oldest one with a new VPL
e Accumulate

@ Has problems for dynamic scenes: illumination lags behind
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Practical Considerations

e How many total VPLs needed?

e Artifact-free results:
several hundred VPLs

e Temporal coherent results:
about 1000 VPLs

(just rule of thumb!)

21



GPU-Based VPL Generation

e Original VPL creation requires ray-tracer

e For single bounce (point light), can be done on GPU

Classic Instant Radiosity requires a ray-tracer to follow photons through the scene.

However, for a single bounce this can be easily done on the GPU.
To this end, the scene is rendered as seen from the light source into an

omnidirectional map.
In particular, positions, normals and direct lighting are rendered.

Then all textures are sampled in parallel at a number of random points, which are

importance sampled according to the brightness of the direct illumination.
For instance, this gives you this VPL here.

This is essentially the first step of reflective shadow mapping, what was shown before.
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Instant Radiosity Problems

e Difficult to extend to specular surfaces

Instant Radiosity Path Tracing

VPLs become visible for highly specular surfaces.
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Summary

e Instant Radiosity

e Approximate indirect illumination with VPLs
@ Accumulate contributions from VPLs

© Easy to implement on GPUs
@ Assumes diffuse scenes (or very low-glossy)

@ Fast only for small scenes (due to the need for
creating many shadow maps/volumes)

8/15/09
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Overview

e Instant Radiosity

e Imperfect Shadow Maps
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Instant Radiosity Bottleneck

We will need about 1000 VPLs...

In practice, IR needs to render a large number of shadow maps, which is very costly.
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Instant Radiosity Bottleneck

e 1024 VPLs
e 100k 3D model
e draw ~100M triangles
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In fact, the shadow map generation is the bottleneck:

Assuming we use 1024 VPLs and a 100k triangle 3d-model.

This means drawing 100 million triangles to fill the 1000 shadow maps .
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__Incremental Instant Radiosity

e Goal: real-time indirect illumination
e Essentially static static (plus dynamic receivers)
¢ Single bounce

e Allow light to move

Incremental Instant Radiosity allows semi-dynamic scenes with moving lights.
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Incremental Instant Radiosity

The Recipe:

e Instant radiosity with single bounce
e Interleaved sampling
e Paraboloid shadow mapping

e Reuse of VPLs

The ingredients are known but one: reuse of VPLs for moving lights.
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VPL Reuse

e Reuse VPLs from previous frame

e Generate as few new VPLs as possible

e Stay within budget, e.g. 4-8 new VPLs/frame

+ Benefit: Can reuse shadow maps!
I Disclaimer: Scene needs to be static
Note: lllumination lag behind

The main idea is to reuse VPLs from previous frames (assuming static geometry).
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How To Reuse VPLs

e Every frame, do the following:
e Delete invalid VPLs

@ Reproject existing VPLs to a 2D domain according to the
new light source position

e Delete more VPLs if the budget says so
e Create new VPLs

e Compute VPL intensities

The basic algorithm is simple:
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2D Domain for VPLs

e Let’s concentrate on 180° cosine-falloff spot lights as
main light source for now

e Nusselt analog
Uniform distribution in unit disc

= Cosine-weighted directional distribution

Let’s assume for now that our main light source is a hemispherical spot-light with a
cosine-fall off.
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Reprojecting VPLs

e So we have VPLs from previous frame
@ Discard ones behind the spot light
e Discard ones behind obstacles

e Reproject the rest
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Spatial Data Structures

e Compute Voronoi diagram and Delaunay
triangulation for the VPL point set
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Deleting VPLs

e Greedily choose the "worst” VPL

=The one with shortest Delaunay edges
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Generating New VPLs

e Greedily choose the “best” spot

=The one with longest distance to existing VPLs
e Re-project VPL into scene (use sh. map from light)
@ Create shadow map for new VPL

36



Computing VPL Intensities

e Since our distribution may be nonuniform, weight
each VPL according to Voronoi area
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Omnidirectional Lights

e Perform all 2D domain actions on the surface
of unit sphere
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Interleaved Sampling (G-Buffer)

e Accumulating from hundreds of VPLs expensive

e Interleaved Sampling:
e Reduces the number of shadow map lookups per pixel
e For each pixel, use a subset of all VPLs
e Apply geometry-aware filtering
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Results

@ 256 VPLs in all scenes
e Budget: 4-8 new VPLs per frame
e GeForce 8800 GTX
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Cornell

Triangles:

original 32
tessellated 4.4k

Resolution Time (ms) FPS
1024x7680 13.9 65.1
1600x1200 26.8 29.7

41



Maze

Triangles:

original 55k
tessellated 63k

Resolution Time (ms) FPS
1024x7680 15.6 49.2
1600x1200 28.6 28.5
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Sibenik

Triangles:

original 80k
tessellated 109k

Resolution Time (ms) FPS
1024x7680 17.0 48.6
1600x1200 30.1 25.9
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Discussion

@ Not full GI

e Well, one could use entire light paths, but that would lead
to many faint VPLs

@ Diffuse surfaces only

e Slightly glossy should work OK

e Truly glossy won’t work (same as Instant Radiosity)
@ Not view-dependent

e Distributing VPLs should be based on visual importance
@ Dynamic scenes non-trivial

e The shadows are wrong for when the
scene changes...
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Strengths

© No precomputation

© Dynamic objects can receive indirect light
© Real-time performance

© Simplicity

© No temporal aliasing (VPLs are consistent)
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Overview

e Instant Radiosity

e Incremental Instant Radiosity
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Imperfect Shadow Maps

e Based on Instant Radiosity

@ Observation:
e Indirect illumination varies smoothly
@ Contribution of each VPL is small

Direct + Indirect Direct only

e Goal: Indirect illumination for fully dynamic scenes

Indirect only

Imperfect shadow maps are based on two key observations.
1. indirect lighting varies smoothly in most scenes.

2. the individual contribution of each VPL is small.
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Imperfect Shadow Maps

e Conclusion:
e Low quality (imperfect) depth maps sufficient

High-Quality Depth Low-Quality Depth
(20% corrupted)

Which leads to the conclusion that it is sufficient to use many low quality depth
maps to determine visibility in indirect illumination, as errors tend to average out.

Here you can see an example, where using low-quality depth maps does not impact
the final rendering much.
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Imperfect Shadow Maps

2
3.
4

e Observation:
Low quality (imperfect) depth maps sufficient for
many VPLs that form smooth lighting

e Tool:
Efficient generation of imperfect shadow maps

e Main steps (detailed next)
1.

VPL generation
Point-based depth maps
Pull-push to fill holes
Shading

The main ingredient of ISM is to allow imperfection when creating a depth map,

which enables a much more efficient generation.

The algorithm consists of 4 steps:

b=

Shading

VPL generation,
Point-based depth map generation

A pull-push operation to fill holes from point rendering

I will detail all four steps now.
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Step 1: VPL generation (= Refl. Shad. Map)

There should be no VPLs where there is no direct light and there should be VPLs
where there is direct light .

To achieve this, the scene is rendered as seen from the light source into an
omnidirectional map.
In particular, positions, normals and direct lighting are rendered.

Then all textures are sampled in parallel at a number of random points, which are

importance sampled according to the brightness of the direct illumination.
For instance, this gives you this VPL here.

50



Step 2: Point-based depth maps

e Goal: Fill ¥1000 depth maps for every frame

e Classic approach takes Pt b Sy et 1 4 oS SO A 3
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eCheaper
e Level-of-detail is easy (no connectivity)

Recall, that our goal is to generate as many depth maps as possible.
Using classic depth maps for this, takes around half a second for the Sponza scene.

We want it much faster, but as high-quality as possible.

We will do this by simplification.

We will draw a small number of points instead of a large number of tris, which is
much cheaper.

Also LOD for points is very simpler, because they don’t require connectivity.
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Step 2: Point-based depth maps

e Pre-process:
Represent scene with points
e ~8k points for every VPL
e Different set for every VPLs

e At runtime:
Deform this distribution

VPL / Depth Map

At startup, we approximate the surfaces with a set of points.
Each VPL has it’s own different set of points; typically, we use 8k points per VPL.
At run-time we deform this distribution according to surface deformations.

The image to the right visualizes the point set for a single VPL, and as you can see it’s
quite sparse.
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Step 3: Pull-Push

Classic Imperfect Imperfect
Triangles Smaller points Pull-Push
Fewer points Hole Filling

Here’s a classic shadow map with triangles compared to an imperfect shadow map
with points. There are quite a few holes.

Using a process called pull-push, we fill holes, and then the maps are quite similar.

Pull-push is essentially a hierarchical method to fill holes, essentially averaging
nearby depth values.
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Step 3: Pull-Push

e We fill those holes using pull-push ..

Classic Without pull-push With pull-push

Here we show the imperfect shadow of an individual VPL.

A depth map without pull-push will have light leaks, that are fixed by pull-push.

At least mostly, of course, there are still some errors in the depth maps.

However, since we accumulate the result of many VPLs, and the errors are
uncorrelated, they tend to average out.
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Step 3: Pull-Push

e .. on all depth maps in parallel.

F+‘¥L+T:' -+f4

£ S +"unﬂ

Without pull-push With pull-push

We can do this pull-push step on all depth maps in parallel, as we work in texture
space.



Step 4: Shading

e Separate direct and indirect

e Render separately

Direct + Indirect Direct only Indirect only

e Direct: standard techniques
e Indirect: gather from VPLs with lookup into ISM

The rendering of direct and indirect lighting is separated, like in most current
methods.

For the direct illumination, we use standard methods.

For the indirect, we accumulate light from all VPLs, with a visibility lookup into the
[SMs.



Step 4: Shading

e Indirect: Interleaved sampling, geometry-aware blur
(same as incremental instant radiosity)

G-Buffer
Edge-aware

Interleaved sampling is used for the indirect illumination,

i.e. not every pixel is lit with every VPL, but only, say, 16 random ones out of 1024
VPLs for every pixel (in order to save computation).

Doing so, will result in noise, that is blurred away using a geometry-aware blur
filter.



Results: Quality (/ISM, 11 fps)

Time for some results. Our method is used to render this at 11 FPS, and it looks quite
nice.

You can see color bleeding as well as indirect shadows.

But how does it compare to a reference solution?
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Results: Quality (Reference, hours)

This is a Monte Carlo reference rendering.

There are some differences. But remember this is an extreme case, where indirect
illumination dominates.

In more “normal” scenes (without spot lights), the differences are then almost
indistinguishable.
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Results: Quality

Reference (hours)

Imperfect Shadow Maps (15Hz)
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Results: Performance

e /ms
244 ms
e 8ms
e 15 ms
e 4ms

el11lms

e “Christo’s Sponza” e Total

e 70k faces, dynamic
e 1024 VPLs

@ 256x256 depth maps

e 8k points each

e Breakdown

VPL generation
ISM

Pull-push
Rendering
Blur (G-Buffer)
Direct light

@ 89 ms frame time
e11frames/s

Here is a performance breakdown of the ,,Christo’s Sponza“ scene.

It has 70k triangles and was rendered using 1024 VPLs, with a shadow map of 256x256

each. 8k points are splatted into each individual depth map.

The ISMs are generated in 44 ms. Generating classic shadow maps instead, takes around 10 to
15 times longer for this step, because 70k triangles would be drawn per depth map.

This results is more than 11 fps, on a Geforce 8800 GTX, around ten times faster than normal

instant radiosity with classic shadow maps.

61



Imperfect Shadow Maps

Results

e Parameters

e Number of
points

e Shadow map
size

There are two main parameters that can be tweaked: the number of points and the
shadow map size.

We have experimented with these, and the findings are not surprising:
More points per VPL yields higher quality, and
larger shadow maps are better, if there are sufficient points available.

In general 1282 or 2562 shadow maps with 8k points yields good results.
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Results

Cornell box L,
h Christo’s Sponza
orse
Multiple .
b Caustics
ounces

Timings: Nvidia GeForce 8800 GTX

Some ISM results, which range from diffuse bounces in a Cornell box to complex
scenes, including multiple bounces, arbitrary local area lights, natural illumination to

caustics.



In this example, running at 20 fps, we placed animated meshes inside the Cornell box
with a dynamic direct light.

Most of the light in this scene is indirect.

Note, how the animals feet cast high-frequency shadows, whereas the animal itself
casts a correct soft shadow.

Also note, the subtle variations in shadow color.

Despite the fundamental changes, in indirect lighting there is no flickering.
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This is a more complex scene, where a deforming cloth is placed inside the Sponza
model.

To achieve sufficient temporal coherence, we need 1024 VPLs in this example.

Note, how the bounced light color changes drastically when the cloth is moving. Also
note, the indirect shadow from the columns.

No other method can do this - all previous real-time methods were essentially
limited to static scenes.
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Finally, we are not limited to diffuse materials.

Here, we have a gold ring, casting a caustic at 15 fps with full indirect visibility.
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Results: Multiple Bounces

e Imperfect reflective shadow maps
e Multiple bounces

Imperfect reflective shadow map, generalize all this to additional bounces.
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Results

e Why not approximate direct lighting with a number
of point lights and use ISMs?

LX((U,)\IO * 0 y 'dw' - @
Direct Lighting Visibility BRDF

Complex, local
area lights

Natural
illumination

Why couldn’t we use the same idea for direct lighting and approximate it with a
number of point lights.

In fact, that is easily possible. Let’s look at two results.
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In this example, animals using direct natural illumination are rendered using ISMs.

Note the shadows and the glossy highlights.
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In a similar way, we can generate local soft shadows from complex area lights, even
with varying color.

Again, here the area light is approximated with many point lights and use ISMs for
rendering.

Notice the glossy reflections on the floor. This is even difficult for offline rendering
methods.

There is no other method that can do this at this speed.

This example runs at 15fps.
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Imperfect Shadow Maps

© Exploit simplified indirect visibility
© Very fast global illumination
€ Can be used for direct illumination as well

@ Diffuse (low-glossy) only
@ Not (directly) scalable to very large scenes
@ Parameters need to be set

In summary, visibility for global illumination effects can be drastically simplified
and a simple, practical method to exploit this on current graphics hardware was
shown.

Note that in the limit, i.e. with enough points, our method yields correct results.

It can also be used for direct illumination, where it’s not quite as fast as the first
technique, but more flexible.

There are some limitations, ISMs could be more scalable to very large scenes (like an
office building).

Also, parameters are currently set by hand, an automated method for setting the
parameters is not available.
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Schedule

8:30 — 8:40 Introduction (Kautz)
- Motivation
- Problem Statement

- Definitions (Rendering Equation, Neumann
Series, ...)

- Direct lllumination vs. Indirect lllumination

8:40 — 9:10 Screen Space Techniques
(Dachsbacher)

- Screen-Space Ambient Occlusion (SSAO)
- Extending SSAO to Indirect lllumination
- Reflective Shadow Maps

- (Multiresolution ) Splatting of Indirect
Illumination

- Examples, Results, Limitations

9:10 — 9:40 Virtual Point Lights (Kautz)
- Instant Radiosity
- Incremental Instant Radiosity
- Imperfect Shadow Maps
- Examples, Results, Limitations

9:40 — 10:05 Hierarchical Finite Elements
(Dachsbacher)

- Dynamic Ambient Occlusion for Indirect
lllumination

- Implicit Visibility
- Anti-Radiance
- Examples, Results, Limitations

10:05 — 10:15 Conclusions/Summary (Kautz)
* Comparison of Presented Techniques
* Q&A
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