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This Part of the CourseThis Part of the Course

• Derive general case for glossy (view-
dependent) reflection
– transferred incident radiance

– transfer matrices

• Look at
– methods for computing the final bounce towards 

the eye

– properties of different basis sets
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Parameterization of 
Emission
Parameterization of 
Emission

• The object is lit by a 
distant lighting 
environment as before
– represented as an 

environment map

)(env ωL

As before, we’ll be looking at an object sitting in free space, distant from the lighting 
environment that illuminates it. Extensions are possible, but we’ll go through this 
simple case not to be overly general.

“Distant” means that location on the object does not affect the directional distribution 
of incident light. In other words, in absence of occlusion, the direct light incident 
upon all points on the object is the same, i.e., L_env(p,omega) = L_env(omega) for 
all p.

We usually represent the lighting environment using an a so-called “light probe” 
image, but it is also possible to use analytic area lights (cones, etc.). These will be 
covered in a subsequent part of the course.
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Projected EmissionProjected Emission

• Project the environment map into a low-
dimensional function space to yield basis 
coefficients

)(env ωL
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As described in the earlier section, the environment map that we use for lighting the 
object is projected into a function basis {y_i} with i=1,…,n. This yields an 
approximation to the original environment map, and the approximation is fully 
defined by the vector l of coefficients.



Precomputed Radiance Transfer: 
Theory and Practice

7

Main GoalMain Goal

• With time-varying lighting, want to shade 
objects that have shiny BRDFs
– Shininess: The appearance of surfaces change 

according to the viewing direction – diffuse case 
doesn’t apply any more!

What we want to do: Global illumination with glossy reflections and time-varying 
lighting. Shiny BRDFs mean that the appearance of a point changes depending on 
where it is looked at from. This means that the diffuse case described earlier 
doesn’t work any more.

Here we deal exclusively with scenes and objects that are rigid, i.e., they do not 
change their shapes. It is possible to rotate the object (that corresponds just to an 
opposite rotation of the incident lighting). Real-time Global Illumination for deforming 
scenes is very challenging.
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Secondary GoalSecondary Goal

• Neighborhood transfer: Want to know the 
lighting in free space around the object
== parameterized radiance volume
– Account for both occlusion and light reflected by 

the object

– Can be used for placing new (small) objects in the 
scene

• Think of a landscape lit by skylight. How does the static 
landscape reflect the skylight onto a moving car, say?

We also want to approximate the lighting in FREE SPACE around the object. Why 
this is useful: Think of the object being a landscape scene with mountains, hills, 
valleys etc. If we can compute the lighting incident to points in free space in the 
landscape, we can shade moving objects (vehicles, characters, say) with lighting 
that is affected by the environment, and thus get color bleeding and soft shadowing 
effects onto the moving objects.

However, the effect of the object on the scene – shadows, etc. -- needs to be 
handled separately, then. Some work into that direction has been presented by my 
Finnish colleagues at I3D this year, and will be presented here at Siggraph this 
week by people from MSR Asia.
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Goals — visually
What does p look like, given Lenv?
Goals — visually
What does p look like, given Lenv?

)(env ωL ?)(out ω→pL
Some linear operation for 
each p = Transfer matrix

?

So, what we want to know is: Given some projected environment map, what do 
points on the object look like? That is, what is the directional distribution of outgoing 
light from each point? If we know these values, we can directly assign to pixels in an 
image.

The appearance of each point is linearly related to the distant lighting environment, 
so we are looking for some linear operator that takes as input the lighting 
environment, and produces the appearance of the point as output. In the end, we 
will represent this appearance in some linear basis, so the linear mapping will be, 
for each point, a matrix that maps the coefficients of incident, distant lighting 
environment into coefficients for outgoing radiance for the point p.
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Goals — visually
What does p look like, given Lenv?
Goals — visually
What does p look like, given Lenv?

)(env ωL ?)(out ω→pL
Some linear operation for 
each p = Transfer matrix

? ?

Compute transfer 
matrices for many 
points and 
interpolate to get 
appearance of the 
whole object

We’ll compute this mapping for many points on the object, so that we can get a 
reasonable approximation for the appearance of the whole object by interpolating 
from these samples.
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Goals — visuallyGoals — visually

)(env ωL

The other question: What do the points near but not on the object “see” when the 
object is illuminated using an environment map? In other words, how does the 
presence of the object affect the lighting that impinges upon these points in free 
space?

Note that we are NOT talking about a camera for rendering pictures. Instead, we 
are interested in placing new, tiny objects in the scene, and thus we need to know 
the lighting incident to the point in order to shade the new object realistically.
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Goals — visually
What does p see, given Lenv?
Goals — visually
What does p see, given Lenv?

)(env ωL ?)(xfer ω←pL

?

)(env ωL )(xfer ω←pL

Let’s concentrate on a single point somewhere near the object.

Here you see the distant lighting environment, and on the right we have a schematic 
drawing of what point p sees when the scene is lit using the source environment 
map.

Some light proceeds directly from the lighting environment to point p; that happens 
in those directions where the object doesn’t block the view from p.
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Goals — visually
What does p see, given Lenv?
Goals — visually
What does p see, given Lenv?

)(env ωL ?)(xfer ω←pL

?

)(env ωL )(xfer ω←pL

Some light that leaves the distant environment will be blocked by the object. That 
happens in directions where the object blocks the view from p to the environment. 
We denote that by cutting away a part of the environment here on the right.
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Goals — visually
What does p see, given Lenv?
Goals — visually
What does p see, given Lenv?

)(env ωL ?)(xfer ω←pL

?
Some linear operation for 
each p = Transfer matrix

)(env ωL )(xfer ω←pL

Some light takes a bounce or multiple bounces off the object before impinging upon 
point p. In other words, p sees an image of the what our object looks like when lit by 
the environment map.

The relationship between the lighting environment and what point p sees is linear; 
we will in the following project the light impinging on p in a finite function space, and 
thus this relationship will be characterized by a matrix. This matrix will in general be 
different for each point.
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Derivation of Transfer MatricesDerivation of Transfer Matrices

In this section we will derive the exact relationship of the distant lighting 
environment and the lighting after it has interacted with the scene.
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Transferred Incident 
Radiance
Transferred Incident 
Radiance

• Define Transferred Incident Radiance
for point p as all light arriving 

at p that originated from Lenv

• a spherical function
around p, i.e., “what p sees”

• Either on surface or in free
space unified treatment
of both goals

)(xfer ω←pL

To get going, we first define a helper quantity called transferred incident radiance.

For each point in the scene, be it on the surface of the object or in free space, we 
define it as the radiance incident onto that point from each direction. This is different 
from the distant environment, since the light is blocked and reflected by the object 
before impinging upon the point. In other words, it is a spherical function for each 
point in the scene, and it defines “what point p sees”, and it of course changes as 
the lighting environment changes.
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Transferred Incident 
Radiance
Transferred Incident 
Radiance

)(env ωL

)(xfer ω←pL

[Sloan03]
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Outline of the PRT ProcessOutline of the PRT Process

• Transfer matrices give         from

1. precompute transfer matrices off-line

2. use them at runtime to determine
for surfaces to be shaded

3. then integrate         with BRDF * cosine to 
get outgoing radiance

– just evaluate the usual reflectance equation

xferL

xferL envL

xferL

The basic idea is that we’ll precompute the linear operators (that is, matrices) that 
map our distant lighting environment into transferred incident radiance for discrete 
set of points in the scene, and at runtime we’ll use them for computing transferred 
incident radiance at those points, given the current lighting environment. Obviously, 
the light going out from a point on the object is the sum of emitted light and reflected 
light, and we get reflected light by computing the usual reflectance integral of the 
transferred incident lighting. This yields final reflected radiance towards the virtual 
camera.

The matrices that map the incident lighting into transferred incident radiance will be 
precomputed off-line.

At runtime, given the current lighting environment, these matrices will be used for 
computing the transferred incident radiance at points that we want to shade.

Then the transferred incident radiance is reflected once more for computing the 
intensity of light flowing from p towards the viewing direction omega_out.
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Rationale for Transferred 
Incident Radiance 
Rationale for Transferred 
Incident Radiance 

• Why transferred incident radiance?
– For surfaces, useful: Can interpolate transferred 

incident radiance from sparser samples, add detail 
in final reflection [Sloan03BRT] (details later)

• Computation and storage of transfer is expensive

• The same idea is behind usual light mapping!

– Peter-Pike gives more examples later

– For neighborhood transfer, must: No way of 
knowing the surface that we want to shade in 
advance (just empty space!)

So why bother with transferred incident radiance and not compute outgoing 
radiance directly? For surfaces of the object, this is certainly possible. But it is also 
possible to decouple the sampling rates of transferred incident radiance and 
outgoing radiance. The rationale is that transferred incident radiance often (but not 
always) varies quite slowly over space, whereas the outgoing radiance from a 
surface often has high spatial frequencies. Thus, the transferred incident radiance 
can often be interpolated from sparser samples, and turned into higher-frequency 
outgoing radiance (bi-scale radiance transfer). Of course, we want to avoid as much 
work as possible, and computing the transfer is expensive.

The same idea makes usual light maps work: You have a coarser representation of 
incident irradiance (from the light map) that gets turned into higher-frequency 
outgoing radiance by multiplication with a higher-resolution texture map. In effect 
you interpolate incident lighting from sparser samples and add detail in the final 
reflection. Peter-Pike has more examples of this in a later part of the course.

If we want to place a new object in the scene, we need to know the light incident 
upon the object from all directions, and thus we need transferred incident radiance.
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Directional Inner ProductDirectional Inner Product
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In the rest of the presentation we’ll denote a directional inner product using wedges 
like this.

The arguments to this inner product are always two functions: One that varies both 
in space (p) and direction (omega), and another that varies only in the direction 
domain (omega). We’ll use this notation for getting projection coefficients for 
different functions.
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Transferred Incident 
Radiance
Transferred Incident 
Radiance

p

The object

)(xfer ω←pL

)(env ωL

As we’ve stated before, transferred incident radiance at point p is a spherical 
function that tells you “what p sees” when the scene is lit by Lenv.
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Basic IdeaBasic Idea

p

The object
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)(env ωLProject 
transferred 
incident radiance 
at p into a 
function space

To start the way towards deriving the transfer matrix that maps the distant 
illumination into transferred lighting, we project the transferred lighting into a finite, 
spherical function space spanned by functions {z}; that is, we discretize transferred 
incident radiance and represent it using a finite number of basis coefficients that we 
denote by l^p.
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Basic IdeaBasic Idea

• We’ll do this projection of transferred incident 
radiance into the basis {zj}, j=1,…,m in a 
number of points in the scene (e.g., at 
vertices of mesh, texels…)
– Basis not necessarily the same as used for lighting

pT

m

i
i

p
i zlpL

lz ⋅=
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=

)(

)()(
1

xfer

ω

ωω basis 
functions

coefficients

We’ll start our way towards deriving the transfer matrices that map the incident 
illumination into transferred incident radiance.

It all starts from representing transferred incident radiance for point p in a function 
space spanned by spherical basis functions z. The coefficient vector that describes 
this approximation of transferred incident radiance is denoted by l^p.

Note that what we’ll do here corresponds to a simple discretization of the 
continuous rendering equation, but we skip the details of this.
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Enter The Transfer MatrixEnter The Transfer Matrix

• We want to approximate lighting incident to 
point p in a basis {zj} by coefficients

• The distant lighting environment Lenv is given 
in basis {yi} by coefficients 

• Lighting and projection are linear there is 
a linear relationship between these vectors:

pl

l

lTl pp =

So, we want a “spherical image” that gives the light incident to p; since we use a 
basis expansion, the image is defined by the coefficient vector l^p.

The coefficients l^p are unknown, the coefficients l that define the distant incident 
lighting we know.

What we want to do is find their relationship; this relationship between the two 
vectors is linear, and thus it can be expressed using a matrix. We call this matrix the 
transfer matrix for point p: It maps the distant, incident illumination to an 
approximation of the lighting that reaches p.

We’ll come to what the matrix looks like next…



Precomputed Radiance Transfer: 
Theory and Practice

25

Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

Consider light 
from a single 
lighting basis 

function at unit 
intensity

Let’s think about that for a while. What happens if the scene is lit by just a single 
lighting basis function y_i, i.e., there is just a single ONE in the emission vector l 
and the rest is just zero?

That’s marked there in the visual depiction as the white box in the gray vector.

If we think of the matrix-vector product, what happens here?
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Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

∑

Take the dot product of the vector l with the first row == copy the fourth entry over to 
the result
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Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

∑

..
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Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

∑

..
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Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

∑

..



Precomputed Radiance Transfer: 
Theory and Practice

30

Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

∑



Precomputed Radiance Transfer: 
Theory and Practice

31

Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

∑
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Transfer Matrix — VisuallyTransfer Matrix — Visually

lTl pp =

!!!!

In the end, we’ve just copied the fourth column of the matrix over to the result.

Now think back to what the coefficients in l^p are supposed to be: The basis 
coefficients that represent transferred incident radiance at point p in terms of the 
basis functions {z}!
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The Transfer MatrixThe Transfer Matrix

• Intuition
– The i:th column of approximates the 

appearance of the scene (as seen from point p) in 
terms of the basis {zj} when the scene is 
illuminated by the i:th lighting basis function alone

– Since the scene is lit using a linear combination of 
the basis lights (weights specified by    ), just take 
a linear combination of these “basis appearances” 
(matrix-vector multiplication) to get Lxfer!

pT

l

lTl pp =

This leads us to conclude that the i:th column of the matrix is a basis appearance: 
it describes the lighting at p when the scene is lit using the i:th lighting basis function 
alone.

And since the scene is lit by a linear combination of basis lights, getting the 
transferred incident radiance at p just involves taking a linear combination of these 
basis appearances with weights taken from the emission vector l. That’s just matrix-
vector multiplication!
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Entries of the Transfer 
Matrix — Visually
Entries of the Transfer 
Matrix — Visually

p)(~ ωjz
Integrate Li

xfer against 
dual basis function over 
sphere centered on p

)(ωiy
1+iy

1−iy

The object

ωωω d)(~)(xfer∫
Ω

←= j
ip

ji zpLT

= the light from 
basis function yi

that reaches p
either directly or 

through any 
number of 

bounces off the 
object

)(xfer ω←pLi
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Entries of the Transfer 
Matrix — Visually
Entries of the Transfer 
Matrix — Visually

p

)(ωiy
1+iy

1−iy

The object

ωωω d)(~)(xfer∫
Ω

←= j
ip

ji zpLT

= the light from 
basis function yi

that reaches p
either directly or 

through any 
number of 

bounces off the 
object

)(xfer ω←pLi

The y and z functions are drawn as “hat” functions for illustrational purposes only. 
Such functions can be used for computing transfer, but other basis functions, 
possibly with global supports like the Spherical Harmonics, are often used.
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Entries of the Transfer 
Matrix
Entries of the Transfer 
Matrix

The matrix entry         is the j:th projection 

coefficient of                           :

p
jiT

)(xfer ω←pLi

j
ip

ji zpLT ~),(xfer=
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Entries of the Transfer 
Matrix
Entries of the Transfer 
Matrix

• Can evaluate                        using any 
suitable algorithm
– Monte Carlo path tracing
– Photon Mapping
– Progressive radiosity –like procedure, etc.
– Must be able to render with ”negative light” (e.g., 

Spherical Harmonics have negative values)

ωωω dzpLT j
ip

ji ∫
Ω

←= )(~)(xfer

)(xfer ω←pLi

All you need is to be able to compute the radiance that is incident to the point p 
when the scene is lit using the i:th light basis function alone! NOTE that the lighting 
basis functions can be negative, so the renderer must be able to handle “negative 
light” as well.

Next we’ll consider the simple case of direct illumination only; that is, we consider 
only the light incident to the object that has been shadowed by the object, but has 
not bounced on the surface before impinging upon p. This simple case will show 
that this perhaps abstract-looking computation can really be simple in some cases.
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• The direct lighting incident to p (denote by 
L0) is just the lighting environment modulated 
by the visibility from p:

Easiest Case: Transfer 
Matrix for Direct Lighting
Easiest Case: Transfer 
Matrix for Direct Lighting

),()(
)(

env

0

ωω
ω

pVL
pL =← )(env ωL

),( ωpV

p

The first term, the direct lighting term L_0, is just our lighting environment L_env
times the visibility function V(p,w) that encodes whether or not the object blocks the 
sightline from p towards w: If p can see the environment at direction w, the lighting 
is taken from the environment; otherwise there is no direct light from that direction, 
i.e., L_0(p w) = 0 for that direction.
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Easiest Case: Transfer 
Matrix for Direct Lighting
Easiest Case: Transfer 
Matrix for Direct Lighting

• The direct lighting to p due to basis function 
yi is then ),()()(0 ωωω pVypL i

i =←

),( ωpV

p

)(ωiy

The matrix entry T_ji is the integral of the visibility function times the i:th lighting 
basis function times the j:th transferred incident radiance coefficient!
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Easiest Case: Transfer 
Matrix for Direct Lighting
Easiest Case: Transfer 
Matrix for Direct Lighting

• The direct lighting to p due to basis function 
yi is then

• And thus

• Call the direct-lighting-only matrix 

∫
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The matrix entry T_ji is the integral of the visibility function times the i:th lighting 
basis function times the j:th transferred incident radiance coefficient!
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What the Transfer Matrix 
Gives You
What the Transfer Matrix 
Gives You
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• In all, we get the following formula for the 
approximate lighting impinging on p from the 
full lighting environment:

If we substitute the previous into the equation that gives the approximated 
transferred incident radiance from the its basis coefficients, we end up with the 
following.

The sum in the middle can be written in matrix form as given on the second line, 
where we have stacked the values of all the basis functions z_j, evaluated in 
direction omega, together to form the vector z.

The transfer matrices T0 map the incident illumination (expressed in basis {y} by 
vector l) into direct, shadowed incident radiance at the point p, expressed in basis 
{z}.
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A Progressive Method of 
Simulation
A Progressive Method of 
Simulation

Accounting for Indirect Lighting

The next section derives a particular method for computing the transfer matrices 
that account for indirect lighting as well. It resembles a progressive gathering 
radiosity method, and bears a close resemblance to an early non-diffuse global 
illumination method of Sillion and others from Siggraph ’91.

In what follows, we’ll derive a recursive formula that computes the transfer matrices 
that correspond to k+1 bounces of light, given that we know the transfer matrices 
that account for k bounces for light everywhere in the scene. As we already have a 
method for computing T_0, the transfer matrix for direct lighting, we are able to 
account for an arbitrary number of bounces this way. And as lighting is linear, the 
transfer matrix T^p that accounts for all bounces is just the sum of the matrices 
T_0^p, T_1^p, … that each account for a particular number of bounces.
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Rendering Equation for 
Transferred Incident Radiance
Rendering Equation for 
Transferred Incident Radiance

• Rewrite the rendering equation for 
transferred incident radiance

• Works also in
free space, not only
on surfaces

p

p’

?
'ωω

'd'cos)','()''(

),()()(

)'(
xfer

envxfer

ωθωωω

ωωω

−→←

+=←

∫
Ω

pfpL

pVLpL

r
p

Direct w/ shadows

Reflected

In order to derive the method, we’ll use a “transposed” version of the rendering 
equation; one that we have written specifically using transferred incident radiance 
as the unknown, not outgoing radiance as is usually done. These equations are 
equivalent; if we know the solution to the other, we get the other pretty easily from it.

What the equation says: The lighting incident to p is the sum of
•direct lighting from the lighting environment, shadowed by the object
•Light reflected by the scene towards p. 

Note that the first term is only non-zero if the ray from p towards omega doesn’t 
intersect the scene anywhere, and the second term can only be non-zero if the ray 
does intersect the scene.

P’ is the point that the ray from p towards omega intersects. Note that the usual 
reflectance integral is performed above the point p’ here, not p as in the usual 
version of the rendering equation.

This works just as well for points p not on the surfaces, but in free space.
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Recursion by Neumann 
Series
Recursion by Neumann 
Series

• The Neumann series gives recursion for Lk+1
from Lk:

• once you know Lk, you can compute Lk+1

– You still have to know Lk
everywhere in the scene

'd'cos)','()''()(
)'(

k1k ωθωωωω −→←=← ∫
Ω

+ pfpLpL r
p

p

p’

?
'ω

The incident version of the rendering equation can be solved using Neumann series 
just as well as the outgoing version: The lighting upon p is the sum of direct light, 
light that has taken one, two, three, etc. bounces.

Given that we know the lighting in the scene that has taken k bounces: Then the 
Neumann series gives the relationship of this known k-times reflected light and k+1 
–times reflected light, i.e., if we know the incident radiance from the previous 
bounce, the next one is obtained from the reflectance equation.
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Projection of Transferred 
Incident Radiance
Projection of Transferred 
Incident Radiance

• At each point, project the transferred 
radiance into a function space {zj}, j=1,…,m
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∑

Ω

=

ωωω

ωω

To derive transfer matrices for all bounces, we’ll start from the projection equation: 
We want to express L_xfer at p in terms of the basis functions z. In the end this will 
yield the transfer matrices for all bounces.

As we saw earlier: In order to get the j:th projection coefficients, we have to 
integrate the function against the dual basis function z^tilde.
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Projection of Transferred 
Incident Radiance
Projection of Transferred 
Incident Radiance

• But by the Neumann series
j

p
j zpLl ~),(xfer=
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As we saw earlier, the rendering equation may be solved by the Neumann series as 
the sum of direct lighting, light bounced off the object once, twice, etc.

That is, the radiance incident to p is the sum of radiance directly from the lighting 
environment L that is shadowed by the object…
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Projection of Transferred 
Incident Radiance
Projection of Transferred 
Incident Radiance

• But by the Neumann series

1 bounce

p
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j

p
j zpLl ~),(xfer=

K
434214342143421

+←+←+←
=←

bounces 2

2

bounce 1

1

shadowed direct,

0

xfer

)()()(
)(

ωωω
ω

pLpLpL
pL

…the light that reaches p through one bounce off the object…
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Projection of Transferred 
Incident Radiance
Projection of Transferred 
Incident Radiance

• But by the Neumann series
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…two bounces, and so on.

Since the inner product is linear, the projection coefficients can be computed by 
projecting each bounce of light separately and adding the results together.
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The Story So FarThe Story So Far

• We’ve already derived per-point matrices       
that map coefficients of lighting environment 
to coefficients that represent direct lighting
– map the lighting environment in basis {yi} to 

incident direct light in basis {zj}

• Next: derive matrices for each point that give 
bounce k+1, given the matrices for bounce k

p
0T
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Transfer Matrix for Bounce 
k+1
Transfer Matrix for Bounce 
k+1

• Subsequent bounces:

• Difficulty: Don’t know Lk in all points, only 
some need to interpolate
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We’ll start the derivation of the matrices T_^p{k+1} from the projection coefficients 
l^p_k.

The projection of the bounce k+1 at point p is the directional inner product (at p) of 
the radiance reflected towards p from the previous bounce k and the dual basis 
functions z_j^tilde. That is, for a large number of directions around p, we have to
evaluate the k+1 –bounce radiance reflected towards p from each direction. That 
reflected radiance is determined by reflecting the previous bounce at the points 
where the rays from p hit by performing the usual reflectance integration at the 
points where our rays hit. NOTE that if a ray does not hit the object, there is no light 
of bounce k+1 coming from that direction!

We will present efficient methods for evaluating the reflectance integral later when 
we talk about producing outgoing radiance from transferred incident radiance.

Notice that the rays from p may hit the surface of the object anywhere, not just at 
the points where we know the previous bounce k. We know an approximation to 
transferred incident radiance from the previous bounce at the finite set of points p, 
not in all points in the scene to get L_k for a point p’ that falls between the 
samples, interpolate linearly from the nearest known points.
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Interpolation of LkInterpolation of Lk

• Interpolate Lk from nearby, known points 
p1,p2,…po with weights ws:

∑
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←≈←
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s
sksk pLwpL

1
)'()''( ωω
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p2

p’

p

)'( 1 ω←pLk

)'( 2 ω←pLk

)''( ω←pLk

Interpolate transferred incident radiance from nearest known points.

The w_s are interpolation weights (positive, sum to one).

In practice we know L_k at the vertices of our model (or texels, if we sample transfer 
using textures). This means we can easily interpolate using barycentric coordinates 
(from vertices) or bilinearly (from textures).
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Transfer Matrix for Bounce 
k+1
Transfer Matrix for Bounce 
k+1
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Now we have the tools to compute the next bounce.

When evaluating the radiance reflected from the last bounce by point p’ towards p, 
substitute the interpolated transferred incident radiance into the reflectance integral.

The transferred incident radiance through k bounces we know; we can compute its 
coefficients using the matrices for k bounces T_k.
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Transfer Matrix for Bounce 
k+1
Transfer Matrix for Bounce 
k+1
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Visually next…

No dependence on l,
just the previous 
matrices Tk

At the points from which we interpolate, transferred incident radiance of the 
previous bounce is linear in the incident coefficients (induction hypothesis – we’ve 
proved this for direct lighting, i.e., k=0, already).

On the top row we substitute this linear relationship to the previous equation,

Then move the sum out of the inner product by linearity,

And notice that what’s left inside the inner product is just integrals of basis 
functions, the BRDF and the entries of transfer matrices for the previous bounce, 
and that there are again two free indices,

and that this is again just a matrix-vector multiplication with the incident lighting 
coefficients l. We define the stuff inside the the inner product as T_{k+1}, the 
transfer matrix for bounce k+1.

!!! You should notice that the coefficients l for the lighting environment DO NOT 
affect the transfer matrix T_k+1 – it is computed purely from suitable integrals and 
interpolations of the transfer matrices T_k.

This is just to convince you that it works, a more graphical explanation is coming up 
next…
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Transfer Matrix for Bounce 
k+1 — visually
Transfer Matrix for Bounce 
k+1 — visually
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at p1 and p2 by basis 
functions za, interpolated 
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When evaluating the projection of transferred incident radiance of bounce k+1 from 
lighting basis function y_i to point p, we have to compute the radiance reflected 
towards p from the previous bounce. To do this, we have to evaluate a directional 
inner product for many directions omega around p.

For a single direction omega, the boxed formula is just the transferred incident 
radiance from y_i after k bounces at the point p’ where the ray from p towards 
omega hits the surface of the object, interpolated in the fashion we just described.
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Transfer Matrix for Bounce 
k+1 — visually
Transfer Matrix for Bounce 
k+1 — visually

p1

p2

p’

p

ω

'ωTransferred incident 
radiance from incident 
basis function yi, captured 
at p1 and p2 by basis 
functions za, interpolated 
to p’, reflected towards p

The boxed formula is now the radiance reflected by point p’ from the previous 
bounce towards p; this is just the usual reflectance equation.
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Transfer Matrix for Bounce 
k+1 — visually
Transfer Matrix for Bounce 
k+1 — visually

p1

p2

p’

p

ω

'ωTransferred incident 
radiance from incident 
basis function yi, captured 
at p1 and p2 by basis 
functions za, interpolated 
to p’, reflected towards p, 
projected to zj

And finally, as we repeat this process for many different omegas, we project 
transferred incident radiance from y_i after k+1 bounces into the function space 
spanned by the z functions.

The inner product (=outer integral <>) is just a “gather” operation as seen from point 
p: Shoot a number of rays from p, determine the light reflected towards p from 
where the rays hit (using interpolation from nearby samples), and project that light 
into the basis z.

If we use spherical harmonics for representing the transferred incident radiance, this 
bears quite some resemblance to an early non-diffuse radiosity method from 1991 
by Sillion and others; they used spherical harmonics for representing outgoing 
radiance from surface points, and used a similar gathering scheme. They worked 
with fixed lighting, though.



Precomputed Radiance Transfer: 
Theory and Practice

57

Complete Transfer MatrixComplete Transfer Matrix

• Each bounce results in a new matrix
so that the final operator for point p is

• Any transport mechanism can be modeled
– caustics, etc.

– runtime remains the same!

p
k 1+T

K+++= pppp
210 TTTT

In the beginning we gave an explicit formula for T_0 and now we have a recursion 
for T_{k+1} from T_k we can compute transfer matrices for all bounces.

The compound transfer matrix that accounts for all bounces is obtained from these 
by just summing them up.

It is worth noticing that nothing in the previous derivation prevents inclusion of 
subsurface scattering; all you need to do is simulate with your favorite method when 
determining the matrices T_{k+1} from the previous bounce.
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Transfer Matrix in Free 
Space
Transfer Matrix in Free 
Space

• In a non-scattering medium, points not on 
surfaces do not affect the appearance of the 
scene

compute solution with all bounces for surface 
points first, then gather all bounces at once for 
points in free space
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Outgoing RadianceOutgoing Radiance

The Final Bounce Towards the Eye
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Outgoing RadianceOutgoing Radiance

• Once we have transferred incident radiance, 
must reflect it according to the BRDF to 
produce outgoing radiance
– must know this to render pixels

• Many methods
– [Sloan02] (original PRT), [Kautz02], [Lehtinen03],

[Sloan03] (bi-scale transfer), [Ng03], [Liu04] & 
[Wang04] (wavelets)
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• Again a linear operation
on Lxfer!
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We’ll add another linear operator O^p that maps the transferred incident radiance at 
p into outgoing radiance.

O may be a matrix, in which case it maps the transferred incident radiance into full, 
spherical outgoing radiance expressed in a new function basis, or it can be a vector
that depends on the outgoing viewing direction, in which case it is just dotted with 
the transferred incident radiance coefficients to produce outgoing radiance into the 
viewing direction.

In order to define the integration domain as the whole sphere instead of the 
hemisphere centered at the normal as done usually, we’ll change the cosine term
cos theta = dot(normal, omega_in) to read cos’ theta := max( dot(normal, 
omega_in), 0 ) to signify clamping of the cosine to zero from below.
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Rotation to Tangent FrameRotation to Tangent Frame

• First, rotate Lxfer into the tangent frame of the 
surface at p
– Reason: in global frame the BRDF would need to be tabulated for 

each orientation If surface material is constant, the BRDF looks 
the same for all points in the tangent frame 3 DOF less

)(R
xfer ω←pL)(xfer ω←pL

Global coordinates Tangent frame

In order to simplify things a bit, we will perform the outgoing radiance integration in 
the canonical frame of each point. This canonical space is the so-called tangent 
space.

Note that this has nothing to do with the orientation of the object; only the 
orientation of the vertex’ tangent space w.r.t. the object space.

The rationale for this is that in the tangent space the BRDF takes the simplest 
possible form; indeed, if the computation would be done in global coordinates, we 
would need to perform different computations for surface points oriented differently. 
This would add a significant storage burden.

However, this step is not strictly necessary. For instance Ng et al. [2004] (triple 
product wavelet integrals) make the BRDF higher-dimensional by adding the 
surface orientation as another dimension, and compressing this high-D signal with 
wavelets.
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Rotation to Tangent FrameRotation to Tangent Frame

• Can be done using a rotation matrix
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(Details on SH rotation 
matrices in [Kautz02], other 
basis sets not so nice)

Since rotation is a linear operation, we can get coefficients of rotated transferred 
incident radiance by applying a suitable rotation matrix R to the coefficients of 
transferred incident radiance. We denote this by l^{R,p}.

Only the Spherical Harmonics and other “steerable” bases are nice in the rotation 
sense, since they are closed under rotation. This means that any SH expansion can 
be rotated an arbitrary amount, and still represented exactly using the same basis 
functions. This means the projected lighting environment does not suffer from 
spurious wobbling or aliasing under rotation.

Other basis sets not necessarily closed under rotation, which means that the 
rotation cannot be represented exactly with the same basis set. This might result in 
temporal “wobbling” and similar aliasing artifacts.
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Outgoing Radiance from 
Rotated Lxfer

Outgoing Radiance from 
Rotated Lxfer
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In order to get outgoing radiance from transferred, rotated incident radiance, we’ll 
first plug its basis expansion into the usual reflectance equation.

The components of the vector l^{R,p} are the basis coefficients of transferred, 
rotated incident radiance.

The integral in the red box only depends on the basis index j and the outgoing angle 
– thus, they are view-dependent vectors of length m (the number of basis functions 
used for representing transferred incident radiance). They can be stored in an 
environment map, and outgoing radiance can be computed simply by looking the 
appropriate vector with the view direction and dotting it with the l^{R,p}.
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Two choices now…Two choices now…

• Can either
– store                directly in an env. map [Kautz02]

– or project                into a new function space {uk}

)( outωjO

)( outωjO

lTRO ppTppL ⋅=→ )()( outoutout ωω

( ) lTRBCu ppppTpL )()( outoutout ωω =→

compound BRDF + 
basis change matrix

env. lookup

new basis functions
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Projection of Outgoing 
Radiance
Projection of Outgoing 
Radiance
• If using SH for both transfer 

and outgoing radiance, the 
BRDF + basis change 
matrix turns out to be the 
SH matrix from Westin et 
al. [1992]

• Can use any basis, though 
[Lehtinen03]

• If BRDF is represented 
using separable 
approximation, outgoing 
basis is optimal [Liu04, 
Wang04]

[Lehtinen03]

[Liu04]
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Phong-like BRDFsPhong-like BRDFs

• If BRDF is circularly symmetric w.r.t. the 
reflected viewing direction, can use spherical 
convolution w/ SH coefficients 
[Ramamoorthi01]
– used by Sloan et al. [2002]

– must fold cosine into transfer matrix

– only valid for some BRDFs

This is what was used by Sloan and others in 2002, but the method has limited 
applicability because it cannot support all BRDFs.
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Outgoing Radiance in New 
Basis
Outgoing Radiance in New 
Basis

• M has dimension N x n
– N is the dimension of the outgoing radiance basis

– n is the dimension of the lighting basis

– E.g., 25 x 25 (large!)

( ) lTRBCu ppppTpL )()( outoutout ωω =→

pM=:

Let’s walk through the whole chain of transformations:

First we have the incident lighting, that is, its basis coefficients l.

My multiplication by T^p, the incident lighting is turned into transferred incident 
radiance, i.e., an approximation to what point p sees when the scene is lit using the 
lighting environment specified by l.

Multiplied by R^p, the transferred incident radiance is rotated into the tangent frame 
at point p.

Finally, it is turned into outgoing radiance coefficients by multiplication with the 
compound BRDF + basis change matrix CB.

To get the radiance from p to the viewing direction, the basis functions u are 
evaluated in the viewing direction and modulated using the outgoing radiance 
coefficients. Done!

M is a compound radiance transfer operator; it maps the distant, incident 
illumination into the outgoing radiance from point p, i.e., its “appearance”.
For instance, using 4th order (25-term) SH for incident radiance, and the same 
basis for outgoing radiance, we have a 25x25 matrix per point p.
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Bi-Scale Radiance TransferBi-Scale Radiance Transfer

• Sloan et al. [2003] used Bidirectional Texture 
Functions (BTF) whose light-dependence was 
projected into SH very complex appearance with 
less simulation

• Can do normal mapping, too

( ) lTRBCu ppppTpL )()( outoutout ωω =→

Sample at a higher rate, re-use for many p

Sample at a lower rate, 
interpolate

The simulation and storage of transfer is expensive, and often the radiance incident 
onto the surfaces of the scene varies much more slowly than the outgoing radiance.

This motivates splitting the general equation into two parts.

The transfer part we sample sparsely and interpolate, while the operator that maps 
transferred incident radiance into outgoing radiance we sample more densely. Since 
it is defined only locally, we can re-use the same C*B for many points on the 
surface.
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Bi-Scale Radiance Transfer 
(example)
Bi-Scale Radiance Transfer 
(example)

[Sloan et al. 2003]

Notice the fine texture on the surface, and how the weave patterns shadow and 
mask each other.

Simulation of similar quality this without the bi-scale factorization would result in an 
excessive amount of data. Much of it would be unnecessary too; the small, scale 
effects usually do not affect the macro-scale transfer (large shadows and 
interreflections) too much.
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Summary: Chain of 
Transformations
Summary: Chain of 
Transformations

• Distant light expressed in basis {yi} by

• Transfer matrix         maps distant light to 
transferred incident light at p, expressed in 
basis {zj} by     

• Final rotation and reflection maps transferred 
incident radiance to outgoing radiance, 
expressed in basis {uk} by 

• Compound         maps     to        directlyl

pl

p
outl

p
outl

l

pM

pT
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Outgoing Radiance by Direct 
Simulation
Outgoing Radiance by Direct 
Simulation

• All the previous methods are based on a 
factored (2-stage) representation:

1. Incident light transferred incident radiance

2. Transferred incident radiance outgoing light

• Useful, but not necessary…

The two-stage method that we’ve presented here is not the only possible way.
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Outgoing Radiance by Direct 
Simulation
Outgoing Radiance by Direct 
Simulation

• Can also project outgoing radiance directly
– Directly estimate the compound matrices

– Good: No bandlimiting due to factorization
– Bad: More costly

• Columns of all matrices Mp are completely independent

– Used e.g., in [Ng03] for image relighting (single 
outgoing DOF M has one row only) and 
original diffuse PRT [Sloan02]

ppppp TRBCM =:

In this case each column of M directly answers the question: “What does point p 
look like when the scene is illuminated by basis light i?”

Because the computation is not split anywhere, all the matrices must be computed 
separately by for instance Monte Carlo path tracing.

Note! All image relighting methods basically do this, but with a single DOF for the 
outgoing radiance (only light towards the camera in a fixed position)

Because all results are path traced, we can represent arbitrarily complex transport 
paths regardless of the sampling on surfaces.
But because of the this, cannot utilize a Neumann series and intermediate results 
for other points, and thus must compute all bounces for all points separetely.

While all this is certainly possible, this method is computationally heavier than the 
methods we’ve presented before, and it doesn’t allow for the decoupling of the 
sampling rates for transfer and final reflection.
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ConnectionsConnections

• PRT:

• Fix the lighting

• = surface light fields
[Miller98] [Nishino99] [Wood00]

[Chen02] [Matusik02]

lMu pTpL )()( outoutout ωω =→

p
outoutoutout )()( lu ⋅=→ ωωpL

p
outl=

Fixed appearance vector

[Chen02]

We can ask: What if we fix the lighting? Then for each p, the product M^p l can be 
precomputed; this vector directly encodes the appearance of point p.

This is a surface light field. Note that we cannot rotate the object w.r.t. the lighting 
environment any more, but we can look at it from any viewpoint.
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ConnectionsConnections

• PRT:

• Fix the view

• = image relighting or diffuse PRT
[Airey90] [Dorsey91] [Nimeroff94]

[Teo97] [Sloan02] [Ng03]

lMu pTpL )()( outoutout ωω =→

lu ⋅= p
outout, )(

out
pL ω

p
outu=

Transfer vector, not a matrix

[Sloan02]

And what if we fix the view? This means, for instance, fixing the camera so that it 
cannot move; we are rendering a fixed picture of the object.

Then the basis function vector u is fixed, and its product with M^p can be 
precomputed as before.

Now the lighting may vary, but the view not – this is image relighting.

Also, if all surfaces are diffuse, their appearance is captured by a single vector, not 
matrix; i.e., diffuse PRT (what was described earlier) may be seen as a special case 
of this.
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Triple Products: Another 
Way for Direct Lighting
Triple Products: Another 
Way for Direct Lighting

• If interreflections are not needed, can 
expand all factors of the reflectance equation 
in an orthonormal basis
– Incident lighting, visibility, BRDF*cos

• Compute outgoing radiance using tripling 
coefficients and light / vis / BRDF coefficients
– Clebsch-Gordan coefficients for SH

– Haar tripling coefficients given by [Ng04]

Here we assume that the lighting environment, visibility and BRDF*cos are all 
projected into the same function space, although that is not strictly necessary, as 
triple products can be defined also for mixed bases.



Precomputed Radiance Transfer: 
Theory and Practice

77

Triple ProductsTriple Products

• Cijk = tripling coefficients
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The outgoing radiance from point p (without interreflections) is a tri-linear function 
of the lighting environment, visibility and BRDF*cos, i.e., the resulting value is 
linear separately in each of these functions.

All the basis expansion sums and coefficients can be moved out of the reflectance 
integral, and so we are left with a trilinear expression with the vectors l, v, and b and 
the tripling coefficients C_ijk.

The tripling coefficients are actually a 3D tensor, as can be seen from the triple sum 
expression. Note that the tensor has high symmetry, since the indices i,j,k can be 
freely permuted and the tripling coefficients remain the same – this is obvious from 
their definition. Note that if we used different basis sets for the three functions, this 
symmetry would be lost.
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Triple Products in SHTriple Products in SH

• In SH, if lighting environment has order n
and BRDF*cos has order o, visibility needs 
to be projected using order n + o
– easy to see by remembering that the SH functions 

are polynomials of the Cartesian coordinates on 
the sphere

∑=→
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p
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Triple Products in SHTriple Products in SH

• Can also compute direct-lighting-only 
transfer matrices with triple products
– Project visibility separately for each p, then use Cijk

for computing the elements

– Again, need order n + o for visibility

p
jiT
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Properties of Different Basis SetsProperties of Different Basis Sets
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Choices to be madeChoices to be made

• Lighting basis {yi}

• Outgoing basis {uk}

• (Transfer basis {zj})
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Choice of Light BasisChoice of Light Basis

• Spherical Harmonics
– [Sloan02] [Kautz02]

• Haar wavelets
– [Ng02] [Ng03] [Liu04] [Wang04]

• “Directional” or “compact”
– [Hao03]

• Steerable
– [Nimeroff94] [Ashikhmin02]

• Custom
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Light Basis — SHLight Basis — SH

• Low-frequency
– Good: Can represent large area sources 

efficiently

– Bad: Can’t represent small sources 
efficiently

• Good: Closed under rotation (no 
wobbling)

• Bad: Global support (all functions 
non-zero over whole sphere)

• Bad: Noticeable ringing if not careful [Sloan02]
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Light Basis — HaarLight Basis — Haar

• Good: Efficient decorrelator, “all-
frequency”
– Can represent many env.maps with only 

few coefficients (non-linear 
approximation)

– Bad: Still need to pre-compute transfer 
for all basis functions

• Bad: Not closed under rotation, and 
no analytic rotation formulae

• Bad: Non-linear approximation 
causes temporal “flickering”

[Ng03]

Non-linear approximation means only using those basis functions whose projection 
coefficients are sufficiently far from zero. The basis functions that carry significant 
energy for an environment map change for each environment; thus, if we want to 
render using arbitrary lighting, the transfer must be computed for each basis 
function, even if only a small subset of them would be required for rendering with 
any given fixed environment.

This is a lot of work if we want to support all-frequency lighting, but if the price can 
be paid, results are very convincing.
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Light Basis – SH vs. HaarLight Basis – SH vs. Haar

[Ng03]
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Light Basis — “directional” 
or “compact”
Light Basis — “directional” 
or “compact”

• Good: Compact support, easy to understand
~ “directional lights” in different directions

• Bad: Inefficient approximation (almost all 
env.maps need many coefficients)

• Bad: Not closed under rotation (projection 
wobbles)

All the bad sides of Haar wavelets, but not the good one (do not project to sparse 
vectors).
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Light Basis — SteerableLight Basis — Steerable

• Steerable bases are closed under rotation 
Good: rotation does not alias

• Bad: Not good decorrelators (inefficient 
approximation)
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Light Basis — CustomLight Basis — Custom

• Can always take advantage of prior 
knowledge of the possible set of lighting 
environments tailor a basis
– Example: Few bright, small lights and the rest low-

frequency include small lights as directional 
basis functions, use SH for the rest
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Choice of BRDF & Outgoing 
Basis
Choice of BRDF & Outgoing 
Basis

• Spherical Harmonics
– Either in their usual form [Sloan02] or least-

squares optimal hemispherical [Sloan03CPC]

• Compact / directional [Lehtinen03, Sloan03]

• Specialized basis from separable BRDF 
approximation [Liu04] [Wang04]

• Hemispherical [Gautron04]

lMu pTpL )(),( outoutout ωω =

These are not all of the possibilities. For instance, wavelet bases could be 
employed here. The simplest case, the Haar wavelet, is not well suited for direct 
visualization of outgoing radiance, however; its expressive power corresponds to a 
piecewise constant directional basis!
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BRDF & Outgoing Basis —
SH
BRDF & Outgoing Basis —
SH

• Bad: Global support always 
need all coefficients for any 
outgoing direction

• Good: No aliasing, smooth results

• Bad: Ringing
– can trade for blurriness by windowing

• “Least-squares optimal 
hemispherical SH” [Sloan03CPC]
– Good: Can use less basis functions

[Sloan02]
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BRDF & Outgoing Basis —
Directional / compact
BRDF & Outgoing Basis —
Directional / compact

• Good: Compact support Need 
only few coefficients for any single 
outgoing direction

• Need many functions 
bloats (bad), unless doing bi-scale 
transfer (good)

• Bad: May see banding (functions 
not necessarily smooth enough)

pM
[Sloan03]
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BRDF & Outgoing Radiance 
— Specialized
BRDF & Outgoing Radiance 
— Specialized

• Basis is built optimally from 
BRDF by SVD

• Good: Need few terms only 
has only few rows

• Bad: Harder to support 
spatially-varying BRDFs
– Need many SVD factorizations 

storage problem

pM

[Liu04]
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The EndThe End

Questions?
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