
Efficient Rendering of Local Subsurface Scattering

Tom Mertens1 Jan Kautz2 Philippe Bekaert1 Frank Van Reeth1 Hans-Peter Seidel2

Limburgs Universitair Centrum1

Diepenbeek, Belgium
{tom.mertens,philippe.bekaert,frank.vanreeth}@luc.ac.be

MPI Informatik2

Saarbrücken, Germany
{jnkautz,hpseidel}@mpi-sb.mpg.de

Abstract

A novel approach is presented to efficiently render lo-
cal subsurface scattering effects. We introduce an impor-
tance sampling scheme for a practical subsurface scatter-
ing model. It leads to a simple and efficient rendering algo-
rithm, which operates in image-space, and which is even
amenable for implementation on graphics hardware. We
demonstrate the applicability of our technique to the prob-
lem of skin rendering, for which the subsurface transport
of light typically remains local. Our implementation shows
that plausible images can be rendered interactively using
hardware acceleration.

1. Introduction and Related Work

We frequently encounter translucent objects in our daily
lives, such as skin, milk, marble, wax, and so on. Translu-
cent objects have a distinct soft look due to light entering
the material and scattering inside it. This process is known
as subsurface scattering. The unique appearance of translu-
cent objects cannot be achieved with simple surface reflec-
tion models. Even for materials that do not seem to be very
translucent at first sight, such as skin for example, subsur-
face scattering is very important. Fine geometric detail, e.g.
small wrinkles and bumps, is smoothed out by subsurface
scattering and appears less prominent [7, 10].

Traditionally, subsurface scattering has been approxi-
mated with a Lambertian diffuse reflection. Obviously, this
approximation fails for any material that exhibits noticeable
translucency. For these materials, subsurface scattering ef-
fects can be rendered offline using a wide range of methods
proposed for participating media, including finite element
methods [21, 1, 22], (bidirectional) path tracing [4, 15], and
photon mapping [9, 3], to diffusion approximations [25].

Recently an analytical model for subsurface scattering
[10] was proposed, which eliminates the need for numeri-
cal simulation of subsurface light transport in homogeneous
highly scattering optically thick materials such as milk and

Figure 1. An interactive rendering of a bump-
mapped model on graphics hardware us-
ing measured BSSRDF parameters of human
skin [10]. The image is rendered at roughly 4
to 5 frames per second.

marble. A hierarchical integration techniques was proposed
in [8] in order to use this model in global illumination al-
gorithms. Unfortunately, this technique does not appear to
allow interactive rendering.

Our goal is to render deformable, translucent objects at
interactive rates under varying lighting and viewing condi-
tions (see figure 1 and color page for examples). Lensch et
al. [16] proposed a method, which is interactive, but only for
rigid objects with fixed, possibly inhomogeneous, subsur-
face scattering properties. The method by Hao et al. [5] ren-
ders translucent but rigid objects in real-time. Recent work
on real-time rendering with precomputed radiance trans-
fer [24] can be extended to subsurface scattering [23], but
also assumes static models. In comparison to our technique,
these methods all require a costly precomputation phase.

Our computations are done from scratch each frame, allow-
ing us to change virtually everything.

Real-time rendering with complex surface BRDFs
has been widely studied, e.g. [6, 12, 17]. Unfortunately,
these techniques cannot handle subsurface scattering be-
cause they assume that light is directly reflected and not
scattered inside the object.

In contrast to the above cited techniques, we propose
a method to interactively render arbitrary dynamic models
with local subsurface scattering. In many cases, the effect
of scattering remains local, depending on the material and
the scale of the geometry. For instance, human skin scaled
at 10 to 20cm does not exhibit much global response to the
incoming light. The local response however is more domi-
nant present in this case. If scaled large enough, other ma-
terials will behave in the same way.

To handle this case efficiently, we show that the model
for subsurface scattering by Jensen et al. [10] can be rewrit-
ten as an integral in image-space instead of a (hierarchical
[8]) integral over the object. We combine this with impor-
tance sampling of the BSSRDF, which allows for a very ef-
ficient computation of subsurface scattering. The new tech-
nique can be implemented in software as well as on graphics
hardware. When running on graphics hardware, we achieve
interactive frame rates for translucent, dynamic models. An
example is depicted in figure 1, where our method was ap-
plied to a head model.

In concurrent work, Dachsbacher et al. [2] presented
translucent shadow maps, which is the same in spirit as our
technique. They render an irradiance texture from the light
source view, which is filtered using mipmapping to perform
the integration. In contrast, our technique renders an irra-
diance map from the eye view, while importance sampling
acts as a filter.

2. Background

In this section, we first introduce the necessary back-
ground on subsurface scattering and the dipole source ap-
proximation [10, 8].

2.1. The Subsurface Reflection Equation

The following integral computes the shade of a surface
point xo on a translucent object (viewed from a direction
ωo):

Le(xo, ωo) =

∫

S

∫

Ω+(xi)

Li(xi, ωi)S(xi, ωi;xo, ωo) ·

(ωi · Ni)dωidxi, (1)

Le(xo, ωo) and Li(xi, ωi) denote exitant/incident radi-
ance respectively. S is the object’s surface, Ω+(xi) is
the hemisphere above xi in normal direction Ni, and

S(xi, ωi;xo, ωo) is the bidirectional surface scattering dis-
tribution function (BSSRDF). In general, the BSSRDF
is an eight-dimensional function, expressing what frac-
tion of (differential) light energy entering the object at a
location xi from a direction ωi leaves the object at a sec-
ond location xo into direction ωo. Because of its high di-
mensionality, it is infeasible to precompute and store this
term, especially since it depends on the object’s geome-
try.

It has been shown [4, 10] that subsurface scattering can
be modelled adequately using two components: single scat-
tering and multiple scattering. Single scattering accounts for
light that is scattered only once inside the medium. Only a
small fraction of the outgoing radiance of a highly scatter-
ing translucent material, such as marble, milk, . . . , is due to
single scattering. The dominating term is the multiple scat-
tering, which we are concerned with.

Multiple scattering diffuses the incident illumination,
such that there is almost no dependence on the incident and
outgoing direction anymore. Therefore it can be represented
at high accuracy as a four-dimensional function Rd(xi, xo),
which only depends on the incident and outgoing positions.
Additionally accounting for the Fresnel transmittance when
light enters and leaves the material, we get the following
subsurface scattering reflectance function:

S(xi, ωi;xo, ωo) =
1

π
Ft(η, ωo)Rd(xi, xo)Ft(η, ωi). (2)

Substituting this into Equation 1, we get:

Le(xo, ωo) =
1

π
Ft(η, ωo)B(xo) (3)

B(xo) =

∫

S

E(xi)Rd(xi, xo)dxi (4)

E(xi) =

∫

Ω+(xi)

Li(xi, ωi)Ft(η, ωi)(Ni · ωi)dωi (5)

In order to render translucent objects efficiently, one needs
an efficient way to solve for Le at every surface point.

2.2. Dipole Source Approximation

First, we need to choose a model for the BSSRDF, and
thus a model for Rd. This model has to fulfill two main
criteria: it should be adaptable to different materials and
should allow for importance sampling to speed up the com-
putation later on.

Rd(xi;xo) can be accurately determined using a full
simulation. Many different techniques have been proposed
(coming from the area of participating media), e.g. [4, 22,
15, 9]. While these techniques are effective, they do not ful-
fill the above criteria.

We chose to use a recently introduced model for the
BSSRDF in homogeneous media as the basis for our work

Rd(xi, xo) =
α′

4π

[

zr(1 + σsr)
e−σsr

s3
r

+ zv(1 + σsv)
e−σsv

s3
v

]

zr = 1/σ′

t, zv = zr + 4AD

sr = ‖xr − xo‖, with xr = xi − zr · Ni

sv = ‖xv − xo‖, with xv = xi + zv · Ni

A =
1 + Fdr

1 − Fdr

Fdr = −
1.440

η2
+

0.710

η
+ 0.668 + 0.0636η

D = 1/3σ′

t, σ =
√

3σaσ′

t

σ′

t = σa + σ′

s, α′ = σ′

s/σ′

t

σ′

s = reduced scattering coefficient (given)
σa = absorption coefficient (given)
η = relative refraction index (given)

Ft(η, ω) = Fresnel transmittance factor

Table 1. The dipole source BSSRDF model.
This paper presents an efficient importance
sampling strategy for computing integrals of
this model.

[10]. This model is based on a dipole source approximation
for the solution of a diffusion equation [7, 25] that mod-
els light transport in densely scattering media. We shall see
that it fulfills the above requirements.

The key idea behind the dipole source approximation for
Rd(xi, xo) [10], is elegant and simple. An incoming ray at
position xi on a homogeneous, planar, and infinitely large
and thick medium is converted into a dipole source (i.e. two
sources) at the same position. One source of the dipole is
placed at a distance zv above the surface and the second
source at a distance zr below the surface at xi. Rd(xi, xo)
is then obtained by summing a sort of illumination contri-
bution at xo, due to the two sources near xi. The result is a
function of the distance r (between xi and xo) only; see Ta-
ble 1.

Although the dipole source approximation is only valid
for planar surfaces [7, 14], using it for curved surfaces
yields highly plausible renderings, as has been shown in
several complex examples by Jensen et al. [10, 8]. We will
use it in the same spirit. The model is also inherently lim-
ited to homogeneous materials. The appearance of hetero-
geneous materials was simulated by means of texture map-
ping techniques in previous work and is done in the work
presented here too.

3. Overview

The most expensive part of computing the shading con-
tribution due to subsurface scattering is the evaluation of
equation 4. One has to integrate over the whole surface of

an object and sum up all the contributions due to subsur-
face scattering.

A straightforward implementation simply performs stan-
dard Monte Carlo integration using randomly (and uni-
formly) distributed samples over the object. A speed-up can
be achieved by building a spatial hierarchy on the samples
[8]; samples higher up in the hierarchy are taken, if they are
far away. The drawback of this method is, that one has to
build the hierarchy first.

A more efficient integration can be performed using im-
portance sampling [11]. Importance sampling distributes
the samples according to the function to be integrated, in
our case Rd. To this end, we propose a method for generat-
ing such importance samples in section 4.

importance
samples

n

random samples

tangent plane

Figure 2. Overview of the proposed tech-
nique: we locally sampling incoming lighting
in the tangent plane, according to the impor-
tance of the BSSRDF function.

In order to further speed up the computation, we do not
(locally) integrate over the surface of the object, but instead
integrate the irradiances in image-space (see section 5). The
basic algorithm is depicted in figure 2. Importance samples
are generated on the tangent plane at xo. These are then pro-
jected on the object (in case of a perspective viewer with a
perspective projection), and the irradiances from there are
summed up. This makes the new algorithm amenable for
implementation on graphics hardware.

In section 6, we detail how the new algorithm can be im-
plemented using graphics hardware. Section 7 shows vari-
ous results, that can be achieved with this method. Finally,
we will conclude in section 8.

4. Importance Sampling of the BSSRDF

In this section we derive an exact importance sampling
scheme for the BSSRDF model presented by Jensen et al.
[10] (see table 1), which allows us to evaluate equation 4
more efficiently. The goal is to find sample distances ri,
which are distributed according to Rd(r)r (this will become

clear in the following section), with Rd(r) defined as:

Rd(r) =
α′

4π
[Rr

d(r) + Rv
d(r)] ,

Rr
d(r) = zr(1 + σsr)

e−σsr

s3
r

,

Rv
d(r) = zv(1 + σsv)

e−σsv

s3
v

.

We now integrate one of the two last terms over the 2D
plane. By substituting s with

√
r2 + z2 we obtain:

∫

∞

0

z(1 + σs)
e−σs

d3
r dr = zσ

[

− 1

u
e−u

]u=∞

u=σz

(6)

= e−σz, (7)

with z either zr or zv and s either sr or sv. The reflectance
thus is [10]:

ρ =
α′

2

[

e−σzr + e−σzv
]

Exact sampling is performed as follows. Draw a uniform
random number ξ from the unit interval. We must find a dis-
tance r(ξ) such that the probability of finding r(ξ) in an in-
terval [a, b] equals 2π

ρ

∫ b

a
Rd(r)r dr, i.e. the probability den-

sity function is defined as: p(r) := 2π
ρ

Rd(r)r dr.
Now, pick one of the two terms Rr

d or Rv
d by testing

whether

ξ <
e−σzr

e−σzr + e−σzv
.

This threshold corresponds with the magnitude of each in-
tegrated term (see equation 7). The chosen term is called
R?

d.
We continue with inverting its cumulative distribution

function:
∫ r(ξ)

0

R?
d(r)r dr = ξ

∫

∞

0

R?
d(r)r dr.

Using equation 6 and 7, we obtain:

(1 − ξ)e−σz =
1

√

1 +
(

r
z

)2
e−σz

√

1+(r
z)

2

.

Substituting u =

√

1 +
(

r
z

)2
gives us the following

equality:

σz(u − 1) + log u + log(1 − ξ) = 0,

which can be solved numerically for u. Note that this func-
tion is a smooth, monotonically increasing function for
which we can find its root rapidly with Newton’s method
for instance. Finally, we get an importance sample distance
r with:

r = z
√

u2 − 1.

5. Integration Over the Surface

In this section we describe how we employ the impor-
tance sampling scheme.

Two problems arise in this context. Firstly, for a given
importance sampling distance at a point on the surface, it is
not trivial to construct a location at this distance directly on
the surface. This would require access to the local geome-
try, as well as a complex search routine. Therefore we sim-
ply construct the samples in the tangent plane of that point.

The second problem is the acquisition of irradiance in-
formation over the surface. To this end, we render the ir-
radiance once for one (or possibly more) reference views
into a 2D image or texture map. In our implementation,
we take the camera view to generate this irradiance tex-
ture. Another possibility might be to use the light view, sim-
ilar to shadow mapping [27]. However, this can cause arti-
facts at locations which are oriented perpendicularly to the
light due to severe undersampling. Also, rendering irradi-
ance once for the camera view enables us to efficiently han-
dle more lights without much extra cost, or more complex
lighting (e.g. from an environment map).

The resulting integration procedure is simple: for each
point to shade, construct a set of samples in the tangent
plane, project this point on the surface w.r.t. the center of
projection of our irradiance texture (see figure 3). Essen-
tially, the integral is solved in image space.

Consider the local scattering integral (equation 4):

I =

∫

A

Rd(r)E(p)dAp

=

∫

A′

Rd(r)E(p′)

∣

∣

∣

∣

dAp

dAp′

∣

∣

∣

∣

dAp′ (8)

For each sample point we can then easily look up the irradi-
ance E(p′) in the irradiance texture. Since we assume local
scattering, we take A to be a fraction of the surface S, and
A′ the corresponding area on the tangent plane. For simplic-
ity, A′ is considered to be a disc of radius R′.

The transformation implies multiplying with a Jacobian
∣

∣

∣

dAp

dAp′

∣

∣

∣
. We derive it based on the notion that the solid an-

gles occupied by the differential areas surrounding p and p′

w.r.t. e (the center of projection), are equal:

δAp

cosα

d2
= δAp′

cos α′

d′2
,

with d = ‖e − p‖ and d′ = ‖e − p′‖. Substituting this in
equation 8 yields:

I =

∫

A′

Rd(r)E(p′)
cosα

cos α′

d′2

d2
dAp′

=

∫ 2π

0

∫ R′

0

Rd(r)E(p′)
cos α

cos α′

d′2

d2
r dr dφ

p'

p

e

n

α'

α

S

P
r'

r

E(p')
T

Figure 3. Left: geometry for sampling the irra-
diance in the tangent plane. The irradiance at
the projected sample point p can be retrieved
in the irradiance texture T . Right: combined
sampling of importance samples (dots) and
uniform samples (squares) for a point (circle)
near a shadow border. Almost none of the im-
portance samples will get a non-zero contri-
bution. The uniform samples have a higher
chance of getting a significant contribution.

The last step results from a transformation to polar coor-
dinates, which stems with the distribution importance sam-
pling routine.

The integral is solved numerically using a set of N sam-
ples pi = (φi, ri), where ri is generated as described in sec-
tion 4 and φi is uniform:

I =
ρ

2πN

N
∑

i

Rd(ri)

Rd(r′i)
E(p′i)

cos αi

cos α′

i

d′i
2

di
2 . (9)

Since the importance samples are generated in tan-
gent space, i.e., we generate r′i, but we actually take sam-
ples with distances ri, the samples are weighted by
Rd(ri)/Rd(r

′

i).
Final exit radiance is computed by multiplying I with

the Fresnel transmittance for the current viewing direction,
see equation 3.

6. Implementation

6.1. Variance Reduction

Artifacts caused by variance are inherent to Monte Carlo
techniques. Some measures can be taken to alleviate this:

Stratified Sampling We employ a deterministic pseudo ran-
dom sampling pattern as input for our importance sampling
algorithm. Interleaved sampling [13] is used to avoid band-
ing artifacts, and gracefully transforms noise into a dither-
like pattern. Also, it is more amenable for a hardware im-
plementation.

Combined Sampling The importance sampling algorithm
behaves well as long as irradiance does not vary quickly.
This is not a safe assumption. For instance, figure 3 de-
picts how in unlit regions near shadow borders, few impor-
tance samples will ever have a non-zero contribution. Uni-
form samples will perform better in this case.

To combat this, we generate a set of uniform samples to-
gether with the importance sample set. Using the balance
heuristic proposed in [26], we can safely combine the two
sets in an unbiased fashion.

6.2. Using Graphics Hardware

Our algorithm can be implemented on modern consumer
graphics hardware. Current graphics technology offers a
high degree of programmability at the fragment level, and
provides full floating point precision throughout its render
pipeline. These features make the implementation of our al-
gorithm feasible in hardware.

Before rendering, we first compute a set of importance
sampled distances ri and then precompute an offset vec-
tor for each importance sample, which is used to quickly
construct a sample from the tangent basis vectors at each
pixel. Also the inverse probability density function is pre-
computed as a weight for each sample, as well as the weight
for the balance heuristic [26].

On an ATI Radeon 9700Pro, which have used for our im-
plementation, the algorithm requires N + 2 passes, where
N is the number of samples. The first pass renders an irra-
diance texture in an off-screen buffer for the camera view.
Aside from the radiance, the depth buffer from this view is
also stored in a separate texture. An additional depth buffer
is employed to perform shadow mapping [27].

The accumulation of the N samples requires two float-
ing point buffers. In one of the passes, one acts as render tar-
get and the other as temporary storage of previous passes. In
a subsequent pass, the roles are switched in order to avoid a
costly texture copy. The alpha channel is used as a counter
for the number of samples. It is only incremented if a valid
irradiance sample is found, i.e., if the depth of the fetched ir-
radiance pixel is closer than the far plane. The components
of the summation in equation 9 are computed as follows in
the fragment shader:

• The sample weights are passed as a single (global) pa-
rameter to the fragment shader.

• The irradiance E(p′i) is retrieved using a projective
texture fetch.

• The function Rd itself is stored as a 1D floating point
texture for a certain range. Using the information in
the depth texture (projective fetch), the location pi on
the surface is computed, in order to derive ri. Now we
weight the irradiance sample appropriately (see equa-
tion 9).

• We omit the Jacobian for simplicity. For most cases
this is a safe assumption, since the tangent plane ap-
proximates the surface for a small area A.

The resulting fragment shader contains 37 instructions.
The final pass consists of normalizing the resulting pixels
with the sample counter in the alpha channel, multiplying
with the Fresnel coefficient, and applying the simple tone
mapping operator from [20].

On future hardware, such as ATI’s Radeon 9800, it will
be possible to implement this algorithm in a single pass,
since an infinite number of instructions is allowed. This will
make the accumulation approach unnecessary, thereby sav-
ing a lot of memory access overhead.

7. Results

The quality of our algorithm can be judged from the im-
age in figure 1. A head model scaled to 10cm was rendered
using the scattering parameters for human skin [10]. A
closeup can be seen in figure 4. The used irradiance map can
be seen in the same figure. A bump map was applied when
computing the irradiances. Subsurface scattering smoothes
out these bump considerably, as has been noted before [10].
The renderings in figure 1 and 4 have an additionally ap-
plied base map (e.g., for the eye brows) and a gloss map.

Rendering speed is about 4 to 5 frames per second for a
500 by 500 image on an ATI Radeon 9700Pro. Our imple-
mentation was also tested on an NVIDIA GeForceFX 5800
board, for which we obtained similar timings. Rendering
speed degrades roughly linearly with the number of pixels
rendered. We expect that our inefficient proof-of-concept
implementation can be further optimized for faster render-
ing.

Closeups of the head model can be found in figure 4.
The irradiance texture used in the first rendering can be seen
next to it. The bottom-left image shows the shadow bound-
ary from the neck region. The original shadow has actually
a sharp boundary, as seen in the irradiance image. Subsur-
face scattering causes the shadow boundary to be diffused
over a larger area. The dithering structure comes from in-
terleaved sampling [13]. The two top-right images show the
region on the forehead under different illumination condi-
tions. The typical reddish color shifts are very prominent in
this example. More complex lighting can be applied: in the
bottom row a rendering is shown using a projective stained
glass texture.

Also in figure 4, example renderings of two other materi-
als can be seen. The left image was rendered with milk and
the right image with marble. Here we did not apply any base
or gloss map for the renderings. Even the very translucent
milk is rendered without obvious artifacts. All the shadow
regions show considerable subsurface scattering (brownish
tint).

Figure 5 shows a comparison of Jensen et al.’s method
[8] with our method. The results are virtually the same,
apart from some small scaling factor. This is due to the
global undershoot from not taking the whole surface into
account in the integration. Small differences can be seen at
sharp boundaries. E.g., the boundary of the lower lip is not
as smooth as with Jensen et al.’s method. This is because
no contributions can be gathered from underneath the lip as
this part not visible in the irradiance image. Noise at graz-
ing angles of the head is hardly noticeable due to the use of
interleaved sampling.

The appearance of spatially varying materials can be
simulated by altering the BSSRDF parameters per pixel ac-
cording to a texture function. In figure 5 we demonstrate
this by lighting a marble plane with a checkered irradiance
pattern. Subtle lighting effects suggest the idea of some in-
ternal structure. Even temporal variation in the texture can
be rendered at interactive rates. We precompute a set of im-
portance sample offsets, which are generated for an inter-
polated set of BSSRDF parameters, and are stored in tex-
ture memory. Note that we cannot interpolate the offsets
themselves, due to the non-linear effect of altering the BSS-
RDF parameters. Since the importance sampling algorithm
is simple enough, the offsets might also be generated on the
GPU.

7.1. Discussion

Our method allows a full rendering at interactive rates,
i.e., one can alter the viewpoint, lighting, material proper-
ties, geometry and even topology.

The whole procedure is executed entirely on the GPU,
and virtually no precomputation is required on the host
CPU, except for the marginal cost of generating importance
samples and the Rd texture.

In a situation where the object is lit from behind, light
can scatter through thin geometry (e.g. the ears on a head),
but the irradiance necessary to compute this may not be
available in the irradiance image. A simple solution to this
problem is to sample multiple irradiance images and com-
bining them (e.g. using the balance heuristic [26]). This also
means that the rendering cost will be multiplied by the num-
ber of irradiance images, roughly. In the case of a point
source, a combination of the eye view and the light source
view should cover every contribution sufficiently.

Also, in certain cases banding and ghosting artifacts may
occur due to undersampling. Especially when a too translu-
cent material is chosen and the integration area A is too
large, variance causes disturbing artifacts. In any case, the
response should be limited. Contrary to the method pro-
posed in this paper, the interactive technique in [18] handles
the global response efficiently, but does not compute the lo-
cal response very accurately. In other words, the two meth-

ods are perfectly complementary, and a combination would
be able to render a wide variety of scattering effects.

We noted that the performance of our method is pri-
marily bandwidth limited, since many texture lookups and
memory writes need to be performed. Future hardware will
have faster and wider memory interfaces, which will be ben-
eficial to our method.

8. Conclusions and Future Work

We have presented a simple but efficient algorithm to
render the local effect of subsurface scattering. It is based
on an exact importance sampling scheme for the BSSRDF.
Local integration over the surface is performed in the tan-
gent plane for each pixel. The associated irradiance for each
sample in the tangent plane is looked up from a precom-
puted texture for the camera view. Our algorithm is sim-
ple enough to be implemented on modern consumer graph-
ics hardware. Results show that plausible subsurface scat-
tering can be rendered interactively for varying viewpoint
and lighting. Also, material properties, geometry and even
topology can be changed without any additional cost.

We would like to investigate more sophisticated variance
reduction techniques in order to reduce the number of inte-
gration passes, possibly achieving real-time rates.

A single scattering term, as well as realistic local reflec-
tion similar to the demonstration software of NVIDIA [19],
can be added to further improve realism.

Acknowledgements

The head model in figures 1 and 4 is courtesy of
NVIDIA. This work is partly funded by the Euro-
pean Commission (European Regional Development Fund)
and the Flemish Government (IWT).

References

[1] P. Blasi, B. L. Saëc, and C. Schlick. A Rendering Algorithm
for Discrete Volume Density Objects. Computer Graphics
Forum, 12(3):201–210, 1993.

[2] C. Dachsbacher and M. Stamminger. Translucent shadow
maps. In Proceedings of Eurographics Symposium on Ren-
dering, pages 197–201, jun 2003.

[3] J. Dorsey, A. Edelman, J. Legakis, H. W. Jensen, and H. K.
Pedersen. Modeling and Rendering of Weathered Stone. In
Proceedings of SIGGRAPH 99, pages 225–234, 1999.

[4] P. Hanrahan and W. Krueger. Reflection from layered sur-
faces due to subsurface scattering. In Proceedings of SIG-
GRAPH 93, pages 165–174, 1993.

[5] X. Hao, T. Baby, and A. Varshney. Interactive Subsurface
Scattering for Translucent Meshes. In Proceedings 2003
ACM Symposium on Interactive 3D Graphics, page to ap-
pear, april 2003.

[6] W. Heidrich and H.-P. Seidel. Realistic, Hardware-
accelerated Shading and Lighting. In Proceedings of SIG-
GRAPH 99, pages 171–178, Aug. 1999.

[7] A. Ishimaru. ”Wave Propagation and Scattering in Random
Media”, volume 1. Academic Press, 1978.

[8] H. W. Jensen and J. Buhler. A Rapid Hierarchical Rendering
Technique for Translucent Materials. ACM Transactions on
Graphics, 21(3):576–581, July 2002.

[9] H. W. Jensen and P. H. Christensen. Efficient Simulation
of Light Transport in Scenes With Participating Media Us-
ing Photon Maps. In Proceedings of SIGGRAPH 98, pages
311–320, 1998.

[10] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan.
A Practical Model for Subsurface Light Transport. In Pro-
ceedings of SIGGRAPH 2001, pages 511–518, August 2001.

[11] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods, Vol-
ume 1: Basics. Wiley, 1986.

[12] J. Kautz and M. D. McCool. Interactive Rendering with
Arbitrary BRDFs using Separable Approximations. In
D. Lischinski and G. W. Larson, editors, Tenth Eurograph-
ics Rendering Workshop 1999, pages 281–292, June 1999.

[13] A. Keller and W. Heidrich. Interleaved sampling. In Render-
ing Techniques 2001: 12th Eurographics Workshop on Ren-
dering, pages 269–276, June 2001.

[14] J. J. Koenderink and A. J. van Doorn. Shading in the Case of
Translucent Objects. In Human Vision and Electronic Imag-
ing VI, pages 312–320. SPIE, 2001.

[15] E. P. Lafortune and Y. D. Willems. Rendering Participat-
ing Media with Bidirectional Path Tracing. In Eurographics
Rendering Workshop 1996, pages 91–100, 1996.

[16] H. P. A. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A.
Magnor, J. Lang, and H.-P. Seidel. Interactive Rendering
of Translucent Objects. In Proceedings of Pacific Graphics
2002, pages 214–224, October 2002.

[17] D. McAllister, A. Lastra, and W. Heidrich. Efficient Render-
ing of Spatial Bi-directional Reflectance Distribution Func-
tions. In Proceedings of Graphics Hardware 2002, pages
79–88, September 2002.

[18] T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Sei-
del. Interactive rendering of translucent deformable objects.
In Proceedings of Eurographics Symposium on Rendering,
pages 130–140, jun 2003.

[19] Nvidia home page. http://www.nvidia.com.

[20] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photo-
graphic tone reproduction for digital images. ACM Transac-
tions on Graphics, 21(3):267–276, July 2002.

[21] H. E. Rushmeier and K. E. Torrance. Extending the Radios-
ity Method to Include Specularly Reflecting and Translucent
Materials. ACM Transactions on Graphics, 9(1):1–27, 1990.

[22] F. X. Sillion. A unified hierarchical algorithm for global
illumination with scattering volumes and object clusters.
IEEE Transactions on Visualization and Computer Graph-
ics, 1(3):240–254, 1995.

[23] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered Princi-
pal Components for Precomputed Radiance Transfer. In Pro-
ceedings of SIGGRAPH 2003, page to appear, July 2003.

Figure 4. Top row (from left to right): closeup of the head model with the corresponding irradiance
map next to it. Notice how the roughness of the surface is washed away due to the subsurface scat-
tering. Next two: forehead lit from above and forehead lit from the side. Note the obvious color shifts
due to scattering. Bottom row: shadow region on neck. Next: the same model with skin lit by a
stained glass texture. Last two: milk and marble materials applied to the model.

Figure 5. Comparison of Jensen et al.’s method (left) with our method (middle). The results are virtu-
ally the same, apart from a small scaling factor which we accounted for here. Right: rendering with
spatially and temporally varying BSSRDF parameters.

[24] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed Radi-
ance Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments. In Proceedings of SIG-
GRAPH 2002, pages 527–536, July 2002.

[25] J. Stam. Multiple scattering as a diffusion process. In Euro-
graphics Rendering Workshop 1995, pages 41–50, 1995.

[26] E. Veach and L. J. Guibas. Optimally combining sampling
techniques for monte carlo rendering. In Proceedings of SIG-

GRAPH 95, Computer Graphics Proceedings, Annual Con-
ference Series, pages 419–428, Aug. 1995.

[27] L. Williams. Casting curved shadows on curved surfaces.
In Computer Graphics (SIGGRAPH ’78 Proceedings), vol-
ume 12, pages 270–274, Aug. 1978.

