Supplementary Material
Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the Wild

Umar Iqbal Pavlo Molchanov Jan Kautz
NVIDIA
{uiqbal, pmolchanov, jkautz}@nvidia.com

We provide implementation details to reproduce the results in the paper.

1. Implementation Details

We adopt HRNet-w32 [1] as the back-bone of our network architecture. We pre-train the model for 2D pose estimation before introducing weakly-supervised losses. This ensures that the 2D pose estimates are sufficiently good to enforce multi-view consistency \mathcal{L}_{MC}. We use MPII dataset for pre-training. The additional weights for latent depth-maps are not pre-trained. We use a maximum of four camera views $C_n=4$ to calculate \mathcal{L}_{MC}. If a sample contains more than four views, we randomly sample four views from it in each epoch. We train the model with a batch size of 256, where each batch consists of 128 images with 2D pose annotations and 32 unlabeled multi-view samples ($32 \times 4 = 128$ images). For pre-processing, we use a person bounding-box to crop the person into a 256×256 image such that the person is centered and covers roughly 75% of the image. The training data is augmented by random scaling ($\pm 20\%$) and rotation ($\pm 30\%$ degrees). We found that the training converges after 60k iterations. The learning rate is set to 5×10^{-4}, which drops to 5×10^{-5} at 50k iterations following the Adam optimization algorithm. We use $\lambda=50$. Since the training objectives (6) and (7) consist of multiple loss terms, we balance their contributions by empirically choosing $\psi=5$, $\alpha=10$, and $\beta=100$. Since our pose estimation model estimates absolute 3D pose up to a scaling factor, during inference, we approximate the scale using mean bone-lengths from the training data:

$$s = \arg\min_s \sum_{j,j' \in \mathcal{E}} (s \cdot \| \hat{p}_{j} - \hat{p}_{j'} \| - \mu_{j,j'}^{L})^2,$$

where $\mu_{j,j'}^{L}$ is the mean length of the limb formed by joint pair (j, j'). In all of our experiments, we use mean lengths from the training set of H36M dataset.

References