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Abstract. Existing work on object detection often relies on a single
form of annotation: the model is trained using either accurate yet costly
bounding boxes or cheaper but less expressive image-level tags. However,
real-world annotations are often diverse in form, which challenges these
existing works. In this paper, we present UFO2, a unified object detection
framework that can handle different forms of supervision simultaneously.
Specifically, UFO2 incorporates strong supervision (e.g ., boxes), various
forms of partial supervision (e.g ., class tags, points, and scribbles), and
unlabeled data. Through rigorous evaluations, we demonstrate that each
form of label can be utilized to either train a model from scratch or to
further improve a pre-trained model. We also use UFO2 to investigate
budget-aware omni-supervised learning, i.e., various annotation policies
are studied under a fixed annotation budget: we show that competitive
performance needs no strong labels for all data. Finally, we demonstrate
the generalization of UFO2, detecting more than 1,000 different objects
without bounding box annotations. Code, models, and more details are
available on the project page: https://github.com/NVlabs/wetectron.
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1 Introduction

State-of-the-art object detection methods benefit greatly from supervised data,
which comes in the form of bounding boxes on many datasets. However, anno-
tating images with bounding boxes is time-consuming and hence expensive. To
ease this dependence on expensive annotations, ‘omni-supervised learning ’ [40]
has been proposed: models should be trained via all types of available labeled
data plus internet-scale sources of unlabeled data.

Omni-supervised learning is particularly beneficial in practice. Compared to
the enormous amounts of visual data uploaded to the internet (e.g ., over 100
million photos uploaded to Instagram every day [1]; 300 hours of new video on
YouTube each minute [2]), fully-annotated training data remains a negligible
fraction. Most data is either unlabeled, or comes with a diverse set of weak
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Fig. 1. Illustrative example of the supervision hierarchy.

labels. Hence, directly leveraging web data often requires handling labels that
are incomplete, inexact, or even incorrect (noisy).

Towards the goal of handling real-world messy data, we aim to study omni-
supervised object detection where a plethora of unlabeled, partially labeled (with
image-level class tags, points, or scribbles), and strongly labeled (with bounding
boxes) images are utilized to train detection models. Examples of the considered
supervisions are shown in Fig. 1. Designing a framework for omni-supervised de-
tection is non-trivial. A big challenge is the conflict of the different architectures
that have been proposed for each annotation. To address this issue, prior work
either ensembles different networks trained from different annotations [25,55]
or uses iterative knowledge distillation [37,50]. However, the conflict between
different modules remains as it is largely addressed in a post-processing step.

In contrast, we propose UFO2, a unified omni-supervised object detection
framework that addresses the above challenges with a principled and computa-
tionally efficient solution. To the best of our knowledge, the proposed framework
is the first to simultaneously handle direct supervision, various forms of partial
supervision, and unlabeled data for object detection. UFO2 (1) integrates a uni-
fied task head which handles various forms of supervision (Sec. 3.1), and (2)
incorporates a proposal refinement module that utilizes the localization in-
formation contained in the labels to restrict the assignment of object candidates
to class labels (Sec. 3.2). Importantly, the model is end-to-end trainable.

We note that assessing the efficacy of the proposed approach is non-trivial.
Partial labels are hardly available in popular object detection data [30]. We thus
create a simulated set of partial annotations, whose labels are synthesized to
closely mimic human annotator behavior (Sec. 4). We then conduct rigorous
evaluations to show that: (1) each type of label can be effectively utilized to
either train a model from scratch or to boost the performance of an existing
model (Sec. 5.1); (2) a model trained on a small portion of strongly labeled data
combined with other weaker supervision can perform comparably to a fully-
supervised model under a fixed annotation budget, suggesting a better annota-
tion strategy in practice (Sec. 5.4); (3) the proposed model can be seamlessly
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e.g ., [13,17,43,41,31,27] e.g ., [6,53,62,45] [34,35] None [40,47,9] [22,42,14,59,55] UFO2(ours)

Table 1. Summary of related works for object detection using different labels. (B:
boxes, T: tags, P: points, S: scribbles, U: unlabeled.)

generalized to utilize large-scale classification (only tags are used) data. This per-
mits to scale the detection model to more than 1,000 categories (Appendix A).

2 Related Work

In the following we first discuss related works for each single supervision type.
Afterwards we introduce prior works to jointly leverage multiple labels for visual
tasks. Training data usage of prior object detection works are given in Tab. 1.

Supervised Object Detection. Object detection has been one of the most
fundamental problems in computer vision research. Early works [13] focus on
designing hand-crafted features and multi-stage pipelines to solve the problem.
Recently, Deep Neural Nets (DNNs) have greatly improved the performance
and simplified the frameworks. Girshick et al . [16,17] leverage DNNs to clas-
sify and refine pre-computed object proposals. However, those methods are slow
during inference because the proposals need to be computed online using time-
consuming classical methods [56,65]. To alleviate this issue, researchers have
designed DNNs that learn to generate proposals [43,20] or one-shot object de-
tectors [31,41]. Recently, top-down solutions have emerged, re-formulating de-
tection as key-point estimation [27]. These methods achieve impressive results.
However, to train these methods, supervision in the form of accurate localization
information (bounding boxes) for each object is required. Collecting this super-
vision is not only costly in terms of time and money, but also prevents detectors
from generalizing to new environments with scarce labeled data.

Weakly-supervised Learning. Weak labels in the form of image-level cate-
gory tags are studied in various tasks [26,63,49,36]. For object detection, existing
works [6,53,60,45] formulate a multiple instance learning task: the input image
acts as a bag of pre-computed proposals [56,3,65] and several most represen-
tative proposals are picked as detections. Bilen and Vedaldi [6] are among the
first to implement the above idea in an end-to-end trainable DNN. Follow-up
works boost the performance by including extra information, such as spatial re-
lations [39,62,45] or context information [24,45]. In addition, better optimization
strategies like curriculum learning [61], self-taught learning [23], and iterative
refinement [39,48,15] have shown success. However, due to the limited represen-
tation ability of weak labels, these methods often suffer from two issues: (1) they
cannot differentiate multiple instances of the same class when instances are spa-
tially close; (2) they tend to focus on the most discriminative parts of an object
instead of its full extent. This suggests that training object detectors solely from
weak labels is not satisfactory and motivates to study a hybrid approach.
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Partially-supervised Learning. Points and scribbles are two user-friendly
ways of interacting with machines. Thus they are widely used in various visual
tasks such as semantic segmentation [58,29,4], instance segmentation [64], and
image synthesis [38]. From a data annotation perspective, these partial labels
are easier to acquire than labeling bounding boxes or masks [29]. However, par-
tial labels are in general understudied in object detection. A few examples on
this topic include Papadopouloset al. [34,35] which collect click annotation for
the VOC [12] dataset and train an object detector through iterative multiple
instance learning. Di�erent from their approach, however, we propose an end-
to-end trainable framework and evaluate on more challenging data [30,18].
Semi-supervised Learning. Semi-supervised learning [8,33,46] aims to aug-
ment the limited annotated training set with large-scale unlabeled data to boost
the performance. Recent approaches [5,32,54,57,67,66,46] on classi�cation of-
ten utilize unlabeled data through self-training combined with various regular-
ization techniques including consistency regularization through data augmenta-
tion [5,54,57], entropy minimization [32,28], and weight decay [5]. In this paper,
we adopt the entropy regularization [32] and pseudo-labeling [28] methods to
e�ciently utilize unlabeled data.

For object detection, Rosenberget al. [47] demonstrate that self-training is
still e�ective. Ensemble methods [40,5] and representation learning [9,19,11,44]
are shown to be useful. Nevertheless, these methods are heavily pipelined and
usually assume existence of a portion of strong labels to initialize the teacher
model. In contrast, our UFO2 learns from an arbitrary combination of either
strong or partial labels and unlabeled data, it is uni�ed and end-to-end trainable.
Omni-supervised Learning. Omni-supervised learning is a more general case
of semi-supervised learning in the sense that several types of available labels are
mixed to train visual models jointly. Xu et al. [58] develop a non-deep learning
method to jointly utilize image tags, partial supervision, and unlabeled data
for semantic segmentation and perform competitively. Ch�eronet al. [10] extend
this idea to video data by training an action localization network using various
labels. However, their method cannot deal with unlabeled data.

For object detection, prior works [42,22,14,59,55] have studied to combine
bounding boxes and image tags. However, these methods are either pipelined and
iterative [14,22,55] or require extra activity labels and human bounding boxes
to guide the detection [59]. Compared to those works, the proposed framework
can handle more types of labels and, importantly, our proposed approach is
end-to-end trainable.

3 UFO 2

We aim to solve omni-supervised object detection: a single object detector is
learned jointly from various forms of labeled and unlabeled data. Formally, the
training dataset contains two parts: an unlabeled setU = ( ui ; i 2 f 1; : : : ; jUjg)
and a labeled setX = ( x i ; i 2 f 1; : : : ; jX jg). Each x i is associated with one
annotated label coming in one of the following four forms: (1) accurate bounding
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Fig. 2. The UFO 2 framework: green modules are newly proposed in this paper.

boxes, (2) a single point on the object, (3) a scribble overlaying the object in some
form, or (4) image-level class tags. Note, for the �rst three forms of annotations
we also know the semantic class. In this paper, we makeno assumptions on
labels : every form of label can make up any fraction of the training data. This is
in contrast to most prior work on mixed supervision [14,55,42,59] which assumes
a certain amount of strongly labeled data (bounding boxes) is always available.

Since each form of annotation has been separately studied in prior work,
di�erent frameworks have been speci�cally tailored for each annotation. In con-
trast, we present a novel uni�ed framework UFO2 which inherits merits of prior
single supervision methods and permits to exploit arbitrary combinations of la-
beled and unlabeled data as shown in Fig. 2. We introduce the speci�c solution
to handle each supervision in Sec. 3.1. We further devise an improved proposal
re�nement module [16,43] so as to incorporate localization information in partial
labels (see Sec. 3.2).

3.1 Uni�ed Model

As shown in Fig. 2, for a labeled input imagex 2 X or an unlabeled u 2 U,
convolutional layers from an ImageNet pre-trained neural network are used to
extract image features. A set of pre-computed object proposalsR is re�ned to
the set R0 and then used to generate ROI features through ROI-Pooling [20].
Note that not all the proposals are used since they are usually redundant. We
discuss our re�nement technique in Sec. 3.2. In our proposed model, the ROI
features are processed via several intermediate layers followed by a new task
head as shown in Fig. 2 (center, green), which di�ers from classical methods.

Classical Methods. In strongly supervised frameworks [16,43], the task head
consists of two fully-connected layers to produce the classi�cation logitsss(r; c) 2
R for every regionr 2 R0 and classc 2 C, and the region coordinatessr (r ) 2 R4

for every region r 2 R0 for bounding box regression. This is highlighted via a
blue box in Fig. 2.

In weakly-supervised frameworks [6,53,45] which handle image-level tags, the
task head contains three fully-connected layers to produce a class con�dence
scoresc(r; c) 2 R, an objectness scoresd(r; c) 2 R, and similarly, classi�cation
logits ss(r; c) 2 R for every regionr 2 R0 and classc 2 C (Fig. 2 yellow box). The
class con�dence scoresc(r; c) and objectness scoresd(r; c) are �rst normalized
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Fig. 3. Task head behavior for training (w/ partial, strong, or no labels), and inference.

via:

sc(r; c) =
expsc(r; c)P

c2 C expsc(r; c)
; and sd (r; c) =

expsd (r; c)P
r 2 R expsd (r; c)

: (1)

They are then used for image-level classi�cation. Also,ss(r; c) is used similarly
for region classi�cation using online-computed pseudo-labels.

UFO 2 Loss. We propose to fuse both heads into a uni�ed task head to produce
the four aforementioned scores simultaneously as shown in Fig. 2 (center green
box). A joint objective is optimized via

L joint = L I +
1

jR0j

X

r 2 R 0;c 2 C

L R (sr (r ); t (r )) + L C (ss (r; c); y(r; c)) ; (2)

where L I subsumes di�erent losses for di�erent labels andL C ; L R are standard
cross-entropy loss and smooth-L1 loss for region classi�cation and regression
respectively. Moreover, y(r; c) 2 f 0; 1g and t(r ) 2 R4 are either ground-truth
region labels and regression targets from strong labels, or pseudo labels and
pseudo targets generated online for partial labels and unlabeled data. We provide
detailed explanations forL I and how to generate pseudo labelsy(r; c) and pseudo
targets t(r ) in the following. We discuss each form of annotation separately.

Tags. As illustrated in Fig. 3 left, when input images x come with image-level
class tagsq(c) 2 f 0; 1g for class c 2 C, we neither know the exact assignment
of class labels to each proposal nor the exact target location. Therefore, we �rst
compute the image scores vias(r; c) = sc(r; c) � sd(r; c), i.e., as a product of the
class con�dence scoresc and the objectness scoresd. Then image level evidence
� is obtained by summing ups(r; c) across all regions:� (c) =

P
r 2 R 0 s(r; c). We

then compute L Tags as an image-level binary cross-entropy loss for multi-label
classi�cation:

L Tags (�; q ) = �
X

c2 C

q(c) log � (c):

For samples with image-level tags we setL I = L Tags in Eq. (2) during training.
This yields semantically meaningful ROI scoress(c; r), which can then be used
to generate pseudo ROI-level ground-truth to augment the training via the two
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region-level lossesL C and L R as detailed in Eq. (2). We follow Renet al. [45] to
generate pseudo ground-truth, taking one or few diverse con�dent predictions.

Points & Scribbles. Similar to image-level tags, points and scribbles also
don't contain the exact region-level ground-truth. However, they provide some
level of localization information (e.g., scribbles can be very rough or accurate
depending on the annotator). Therefore, we employ the same loss developed for
`Tags,' (illustrated in Fig. 3 left) but introduce extra constraints to restrict the
assignment of ROIs to class labels based on the labels. Speci�cally, pseudo label
y(r; c) = 1 if and only if region r contains the given point or scribble, and class
c is the same as the category label of this point or scribble. These constraints
�lter out a lot of false-positives during training and help the framework select
high quality candidate regions.

Boxes. When the input image is annotated with bounding boxes, the most na•�ve
solution is to directly train the network using L C and L R losses: the real label
and target are given and the scoresss and sr will be used for inference. Most
supervised work [16,43] follows the above procedure and impressive results are
achieved. Importantly, only applying these two losses in our framework will not
optimize the scoressc and sd when learning from strong labels. However, these
two scores are used as a `teacher' to compute pseudo ground-truth for optimizing
ss and sr when partial labels are given, as described in the previous two sections.
Hence, when training with mixed annotations, we found the `student' to be
stronger than the `teacher,' rendering weakly labeled data useless.

To address this concern,i.e., to enable training with mixed annotations, we
found a balanced teacher-student modelto be crucial. Speci�cally, for any fully
labeled sample we introduce three extra losses on the latent modules,i.e., on
sc; sd; � , as shown in Fig. 3 second column:

L I = L Tags (�; q ) +
1

jRj

X

r 2 R

(L T 1(sc; y; r ) + L T 2(sd;  ; r )) : (3)

These three losses provide a signal to the `teacher' when using strong labels.
Speci�cally, since sc is normalized across all classes via a softmax, as mentioned
in Eq. (1), we can naturally apply as the �rst strong-teacher loss a standard
cross-entropy onsc for region classi�cation:

L T 1(sc; y; r ) = �
X

c2 C

y0(c; r) log sc(c; r):

Herebyy0(c; r) = 1 for all regions r which overlap with any ground-truth boxes in
classc by more than a threshold. In practice, we set this threshold to 0:5 and we
use the class of the biggest overlapping ground-truth as the label if assignment
con
icts occur. The second strong-teacher loss encourages the latent distribution
sd to approach the real objectness distribution. Hence we use a KL-divergence
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applied on sd:

L T 2(sd;  ; r ) =
X

c2 C

 (c; r) log
 (c; r)
sd(c; r)

:

Here,  (c; r) is constructed to represent the objectness of each ROI. is zero
initialized and  (c; r) = IoU( r; r 0) for ground-truth region r 0 with class c. We
then normalize  across allr 2 R0, following sd(c; r) normalization in Eq. (1).

In addition, we also construct an image-level class labelq from the ground-
truth annotations and compute the image-level classi�cation lossL Tags following
the `Tags' setting. This loss term improves network consistency when switching
between partial labels and strong labels.

Unlabeled. For unlabeled data, we employ a simple yet e�ective strategy as
shown in Fig. 3 third column. We use a single threshold� on � (c) to �rst pick
out a set of con�dent classes ^q(c). This set of classes is used as tags to train
the framework as descried in the `Tags' section. In addition, we apply entropy
regularization on ss to encourage the model to output con�dent predictions on
unlabeled data. The overall loss is:

L I = L Tags (�; q̂) + H (ss) = �
X

c2 C

q̂(c) log � (c) �
X

r 2 R 0;c2 C

ss(r; c) log ss(r; c);

where q̂(c) = � (� (c) > � ) and � (�) is the delta function. As pointed out in
[53,60,40], self-ensembling is helpful when utilizing unlabeled data. We thus stack
multiple ROI-classi�cation and regression layers. Pseudo ground-truth will be
computed from the ROI-classi�cation logits of one layer to supervise another
one. For inference, the average prediction is adopted.

3.2 Proposal Re�nement

Given strong labels, it's a standard technique [16,43] to reject most false posi-
tive proposals and re-balance the training batch using the ground-truth boxes.
However, proposal re�nement using partial labels has not been studied before.
Speci�cally, we keep a speci�c positive and negative proposal ratio in each mini-
batch. Positive proposals satisfy two requirements: (1) one of the ground-truth
points or scribbles should be contained in each positive ROI; (2) all the selected
positive ROIs together need to cover all the annotations. Negative proposals
from the ROIs contain no labels. When generating a training batch we sample
according to a pre-de�ned ratio. This practice dramatically decreases the num-
ber of proposals and thus simpli�es subsequent optimization. We refer to the
proposal set after sampling and re-balancing usingR0, as shown in Fig. 2 left.

4 Partial Labels Simulation

Partial labels (e.g., points and scribbles) are much easier and natural to annotate
than bounding boxes. They also provide much stronger localization information
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Fig. 4. Top row: labels for single instance (suitcase and person). Bottom row: labels
for all the objects (see appendix for more).

compared to tags. However, these types of annotations are either incomplete
(e.g., part of the VOC images are labeled with points [35,34]) or missing (e.g.,
no partial labels have been annotated for COCO or LVIS) for object detection.

As a proof-of-concept for the proposed framework, we therefore develop an
approach to synthesize partial labels when ground-truth instance masks are avail-
able. It is our goal to mimic practical human labeling behavior. We are aware
that the quality of the generated labels is suboptimal. Yet these labels provide
a surrogate to test and demonstrate the e�ectiveness of UFO2. In this work,
we generate the semantic partial labels for every object in the scene, and leave
manual collection of labels to future work.

Points. When annotating points, humans tend to click close to the center of
the objects [34]. However, di�erent objects di�er in shapes and poses. Hence,
their center usually does not coincide with the bounding box center. To mimic
human behavior, we �rst apply a distance transform on each instance mask.
The obtained intensity maps represent the distance between the points inside the
body region and the closest boundary. This distance transform usually generates
a `ridge' inside the object. We thus further normalize it and multiply with a
Gaussian probability restricted to the bounding box. The �nal probabilistic maps
are used to randomly sample one point as the annotation.

Scribbles. Scribbles are harder to simulate since human annotators generate
very diverse labels. Here we provide a way to generate relatively simple scrib-
bles. The obtained labels likely don't perfectly mimic human annotations, yet
they serve as a proof-of-concept to show the e�ectiveness of the proposed frame-
work. Given the instance mask, we �rst compute the topological skeleton,i.e.,
a connected graph, using OpenCV's [7] skeleton function. Using this graph, we
start from a random point and seek a long path by extending in both directions.
At intersections we randomly choose. We post-process the paths to avoid that
their ends are close to the boundary. This latter constraint is inspired by the
observation that humans usually don't draw scribbles close to the boundary.

Representative generated labels are visualized in Fig. 4, where the top row
shows examples for a single object (i.e., suitcase and rider) and the bottom row
shows the labels for all objects in the scene. We observe the partial labels to be
correctly located within each object. They also exhibit great diversity in terms
of location and length across di�erent instances.


