
Supplementary Material

In Section A, we provide more data from our linear SVM experiments (as outlined in Section 4.3) for classification
performance under limited supervision. In Section B we derive the theoretical relationship between fψ and ξ. In Section C,
we provide ablation experiments to validate our choice of J = 32 in the main paper.

A. Linear SVM with Limited Labels
In this section we provide additional information regarding the Linear SVM experiment from Section 4.3 for the case of

limited labeled data. Our setup matches the setup used in [42]: We use a DGCNN backbone pre-trained on ShapeNet. We
generate a set of smaller datasets given as a percentage of the original ModelNet40 training split. To generate a dataset, we
first randomly sample one labeled point cloud from each class (ensuring there is at least one label of each category). Then
we sample the labeled data uniformly randomly across the entire training set until the desired percentage of labeled data is
reached with respect to the original dataset size. Note that since ModelNet40 has 9843 training objects, training an SVM on
1% of labels would mean roughly 1-4 examples per class.

Figure 5. Linear SVM Performance with Limited Labels: With only 50% of the training data, our method outperforms Jigsaw3D [42]
trained on 100% of the data (90.9 vs. 90.6). Additionally, our method outperforms FoldingNet [52] while using 5 times fewer labels (88.6
vs. 88.4).

Figure 5 shows the test accuracy (best of 3 runs) of a Linear SVM trained with varying amounts of labels, from 1 −
100%, using the frozen features of a pre-trained DGCNN. Surprisingly, our method trained on 50% of the data outperforms
Jigsaw3D [42] trained on 100% of the data (90.9 vs. 90.6). In general, we gain a couple points in accuracy relative to
Jigsaw3D, for example, at 1% data (66.8 vs. 65.2) and 10% data (85.9 vs. 84.4). For reference, we also place FoldingNet’s
SVM accuracy trained on 100% of the data [52] on the same graph. Our method outperforms FoldingNet while using a fifth
as many labels (88.6 vs. 88.4).

B. Parametric Bottleneck as KL-Divergence Minimization
In this section, we provide more mathematical intuition for Equations 5, 6, and 7 in the main paper.
First, recall from Equation 1 that we redefined the logit matrix S of a segmentation network fψ in terms of a set of joint

log probabilities of points pi ∈ P and latent binary variables cij ∈ C. We restate this equation here but with added notation
showing the dependence on parameters ψ,

sij
def
= log p(pi, cij = 1;ψ) (12)



Under this interpretation, fψ defines the log joint distribution over observed 3D points and latent binary correspondence
variables (i.e. complete log likelihood), which we can marginalize over to compute the model evidence with respect to ψ,

p(P;ψ) =

N∏
i=1

p(pi;ψ) =

N∏
i=1

J∑
j=1

p(pi, cij = 1;ψ) =

N∏
i=1

J∑
j=1

exp(sij) (13)

Directly maximizing Equation 13 for ψ would not produce a meaningful result. Instead, we maximize the data likelihood
with respect to a parametric generative model (GMM) whose specific parameter set Θ can be analytically derived, as we will
show in this section, as the result of an optimization problem.

Let qψ
def
= p(p, c;ψ) = exp (fψ) and pΘ

def
= p(p, c; Θ). Our choice of ξ functionally minimizes the KL-Divergence

between qψ and pΘ with respect to Θ. Restating in mathematical form,

ξ(P,S) = argmin
Θ

DKL(qψ || pΘ) (14)

Equation 14 provides additional theoretical insight into the “parametric bottleneck” concept: given a neural network parame-
terized by ψ and a parametric model parameterized by Θ, the purpose of ξ is to squeeze ψ into the specific set of parameters
Θ of the parametric model such that the KL-Divergence between these two distributions is minimized. To prove that the
specific form of ξ solves the optimization in Equation 14, we first expand the KL-Divergence,

DKL(qψ || pΘ) = −
∫
p

∑
c
p(p, c;ψ) log

p(p, c; Θ)

p(p, c;ψ)
dp (15)

= −H(qψ)−
∫
p

∑
c
p(pi, c;ψ) log p(pi, c; Θ)dp (16)

= −H(qψ)−
∫
p

p(p)
∑

c
p(c|p;ψ) log p(pi, c; Θ)dp (17)

≈ −H(qψ)− 1

N

∑
pi∈P

∑
c
p(c|pi;ψ) log p(pi, c; Θ) (18)

H(·) denotes the entropy functional and the approximation sign is due to the summation over pi ∈ P . Since the entropy
term doesn’t depend on Θ, it can be ignored when minimizing the KL-Divergence. The posterior p(c|p;ψ) can be calculated
via Bayes’ rule (see Equations 2-4 in the main text). As in the main paper, we use the shorthand γij

def
= p(cij = 1|pi;ψ).

argmin
Θ

DKL(qψ || pΘ) = argmax
Θ

∑
pi∈P

∑
c
p(c|pi;ψ) log p(pi, c; Θ) (19)

= argmax
Θ

∑
pi∈P

J∑
j=1

γij log {p(pi|cij = 1; Θ)p(cij = 1; Θ)} (20)

= argmax
Θ

∑
pi∈P

J∑
j=1

γij
{

logN (pi;µj ,Σj) + log πj
}

(21)

The optimization problem in Equation 21 shares the general underlying form of the M Step in a traditional Expectation
Maximization (EM) algorithm [11] for optimizing the set of GMM parameters Θ given responsibilities γij computed in a
previous E Step. Using the method of Lagrange multipliers to ensure

∑J
j πj = 1, the gradient of Equation 21 with respect

to each µj , Σj , and πj can be easily computed, set to zero, and solved, yielding the following analytical expressions,



πj =
1

N

N∑
i=1

γij (22)

µj =
1

Nπj

N∑
i=1

γijpi (23)

Σj =
1

Nπj

N∑
i=1

γij(pi − µj)(pi − µj)T (24)

Noting that γij =
p(pi,cij=1;ψ)

p(pi;ψ) =
exp(sij)∑J
j′ exp(sij′ )

via Equations 2-4 in the main text, we can substitute the latter expression

for γij into Equations 22-24 to obtain the exact form of Equations 5, 6, and 7. Thus in computing these expressions, ξ
functionally maps the output of a point-wise classification network fψ to the minimum KL-Divergence GMM parameter set
Θ, under the interpretation that fψ’s output S comprises joint likelihoods of observed and latent data.

C. Ablation Experiments for J , the Number of Gaussian Components
On average, it seems that a larger J relative toN helps produce better representations. However, there are a few drawbacks:

numerical stability, computational cost, and memory consumption during pre-training. For our ablation, we pre-trained on
ShapeNet for various J , trained a linear SVM on the ModelNet40 training split using features learned during the pre-training
stage, and report accuracy on the ModelNet40 test split. Times and memory consumption are reported from a single NVIDIA
Titan RTX, with batch size equal to 32. Results are shown in Table 4. Larger J incurs larger compute and memory costs for
marginal downstream accuracy gains. We use J = 32 in the experiments in our paper as it performed the best while having
reasonable memory and compute costs.

Memory Time/Epoch Test Accuracy
J Consumption (MM:SS) (SVM)
2 2.1GB 1:48 88.51
4 2.1GB 2:09 89.00
8 2.1GB 2:15 89.20
16 2.2GB 2:21 89.37
32 2.2GB 3:30 90.30
64 2.3GB 3:36 90.27
128 2.4GB 5:01 89.89
256 3.4GB 9:10 90.14
512 4.5GB 16:32 89.04

Table 4. Ablation Study for Various J


