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In this supplementary material, we provide additional
details and explanations to help readers gain a better un-
derstanding of our technique.

1. Point Cloud Density Normalization
BCL has a normalization scheme to deal with uneven

point density, or more specifically, the fact that some lattice
vertices are supported by more data points than others. In-
put signals are filtered directly with the learnable filter ker-
nels, and are also filtered in a separate second round with
their values replaced by 1s with a Gaussian kernel. The
filter responses in the second round are then used for nor-
malizing responses from the first round. This is similar to
using homogeneous coordinates, which are widely adopted
in bilateral filtering implementations such as [1].

2. RueMonge2014 Facade Segmentation
Network architecture of SPLATNet3D. We use 5 BCLs
(T = 5) followed by 2 1× 1 CONV layers in SPLATNet3D
for the facade segmentation task. We omit the initial 1 × 1
CONV layer since we find it has no effect on the overall
performance. The number of output channels in each layer
are: B64-B128-B128-B128-B64-C64-C7. Note that
although written as a linear structure, the network has skip
connections from all BCLs (layers start with ‘B’) to the
penultimate 1 × 1 CONV layer. We use an initial scale
Λ0 = 32I3 for scaling lattice features XY Z, and divide
the scale in half after each BCL: (32I3, 16I3, 8I3, 4I3, 2I3).
The unit of raw input features XY Z is meter, with Y
(aligned with gravity axis) having a range of 7.1 meters. For
all the BCLs, we use filters operating on one-ring neighbor-
hoods on the lattice.

Network architecture of SPLATNet2D-3D. We use
SPLATNet3D as described above as the 3D component of
our 2D-3D joint model. The ‘2D-3D Fusion’ component
has 2 1× 1 CONV layers: C64-C7. DeepLab [2] segmen-
tation architecture is used as CNN1. CNN2 is a small net-

work with 2 CONV layers: C32-C7, where the first layer
has 3× 3 filters and 32 output channels, and the second one
has 1×1 filters and 7 output channels. We use Λa = 64 and
Λb = 1000 for 2D↔3D projections with BCLs. Note that
the dataset provides one-to-many mappings from 3D points
to pixels. By using a very large scale (i.e., Λb = 1000), 3D
unaries are directly mapped to the corresponding 2D pixel
locations without any interpolation.

Training. We randomly sample facade segments of 60k
points and use a batch size of 4 when training SPLATNet3D.
CNN1 is initialized with Pascal VOC [3] pre-trained
weights and fine-tuned for 2D facade segmentation. Adam
optimizer [4] with an initial learning rate of 0.0001 is used
for training both SPLATNet3D and SPLATNet2D-3D. Since
the training data is small, we augment point cloud train-
ing data with random rotations, translations, and small color
perturbations. We also augment 2D image data with small
color perturbations during training.

3. ShapeNet Part Segmentation
Network architecture of SPLATNet3D. We use a 1 ×
1 CONV layer in the beginning, followed by 5 BCLs
(T = 5), and then 2 1 × 1 CONV layers in
SPLATNet3D for the ShapeNet part segmentation task.
The number of output channels in each layer are:
C32-B64-B128-B256-B256-B256-C128-Cx. ‘x’ in
the last CONV layer denotes the number of part categories,
and ranges from 2-6 for different object categories. We
use an initial scale Λ0 = 64I3 for scaling lattice fea-
tures XY Z, and divide the scale in half after each BCL:
(64I3, 32I3, 16I3, 8I3, 4I3).

Network architecture of SPLATNet2D-3D. We use
SPLATNet3D as described above as the 3D component of
the joint model. The ‘2D-3D Fusion’ component has 2 1×1
CONV layers: C128-Cx. The same DeepLab architecture
is used for CNN1. We use Λa = 32 in BCL2D→3D. Since 2D
prediction is not needed, CNN2 and BCL3D→2D are omitted.
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(a) Incorrect labels
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(b) Incomplete labels
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(c) Inconsistent labels
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(d) Confusing labels

Figure 1: Labeling issues in the ShapeNet Part dataset. Four types of labeling issues are shown here. Two examples
from the test set are given for each type, where the first row shows the ground-truth labels and the second row shows our
predictions with SPLATNet2D-3D. Our predictions appear to be more accurate than the ground truth in some cases (see the
skateboard axles in 1a and the rocket fins in 1b).

Training. We train separate models for each object cat-
egory. CNN1 is initialized the same way as in the facade
experiment. Adam optimizer with an initial learning rate of
0.0001 is used. We augment point cloud data with random
rotations, translations, and scalings during training.

We train our networks until validation loss plateaus.
Training SPLATNet3D and SPLATNet2D-3D take about 2.5
and 3 days respectively. With default settings, training
PointNet++ takes 3.5 days on the same hardware.

Dataset labeling issues. We observed a few types of la-
beling issues in the ShapeNet Part dataset:

• Some object part categories are frequently labeled in-
correctly. E.g., skateboard axles are often mistakenly
labeled as ‘deck’ or ‘wheel’ (Figure 1a).

• Some object parts, e.g. ‘fin’ of some rockets, have in-
complete range or coverage (Figure 1b).

• Some object part categories are labeled inconsistently
between shapes. E.g., airplane landing gears are seen
labeled as ‘body’, ‘engine’, or ‘wings’ (Figure 1c).

• Some categories have parts that are labeled as ‘other’,
which can be confusing for the classifier as these parts
do not have clear semantic meanings or structures.
E.g., in the case of earphones, anything that is not
‘headband’ or ‘earphone’ are given the same label
(‘other’) (Figure 1d).

The first two issues make evaluations and comparisons
on the benchmark less reliable, while the other two make
learning ill-posed or unnecessarily hard for the networks.
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