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Figure 1: Gaze tracking, an essential component of next generation displays, needs to deliver several qualities such as accurate 
gaze estimation, low latency, small form-factor, low cost, low computational complexity, and a low power budget. To provide solutions 
for next generation displays, we demonstrate two single-pixel detector based gaze tracking prototypes. While the one shown on the 
left uses photodiodes and LEDs, the one shown in the middle uses only LEDs for both sensing and emitting light. As depicted on the 
right hand-side, we evaluate our gaze trackers with a series of subjective experiments. 

ABSTRACT 

Gaze tracking is an essential component of next generation displays 
for virtual reality and augmented reality applications. Traditional 
camera-based gaze trackers used in next generation displays are 
known to be lacking in one or multiple of the following metrics: 
power consumption, cost, computational complexity, estimation ac-
curacy, latency, and form-factor. We propose the use of discrete 
photodiodes and light-emitting diodes (LEDs) as an alternative to 
traditional camera-based gaze tracking approaches while taking 
all of these metrics into consideration. We begin by developing a 
rendering-based simulation framework for understanding the rela-
tionship between light sources and a virtual model eyeball. Findings 
from this framework are used for the placement of LEDs and pho-
todiodes. Our frst prototype uses a neural network to obtain an 
average error rate of 2.67° at 400 Hz while demanding only 16 mW. 
By simplifying the implementation to using only LEDs, duplexed 
as light transceivers, and more minimal machine learning model, 
namely a light-weight supervised Gaussian process regression algo-
rithm, we show that our second prototype is capable of an average 
error rate of 1.57° at 250 Hz using 800 mW. 

Index Terms: Human-centered computing—Ubiquitous and mo-
bile computing—Ubiquitous and mobile devices——Computer 
systems organization—Embedded and cyber-physical systems— 
Sensors and actuators 

*First and second authors contributed equally. 

1 INTRODUCTION 

Next generation displays [27] for virtual reality (VR) and augmented 
reality (AR) applications promise to improve our daily lives and 
routines. Gaze tracking is an essential and required component of 
these next generation displays, enhancing and enabling multiple 
methods and applications such as varifocal near-eye displays [18], 
foveated near-eye displays [25], super-resolution displays [3], and 
foveated computer graphics [52]. 

While gaze tracking has largely remained a research tool, we 
believe that several factors have hindered the deployability of gaze 
tracking systems: accuracy, latency, power consumption, cost, com-
putational complexity, and form-factor. Improvements in gaze track-
ing hardware and software in one of these metrics often involves 
compromising other metrics. However, for gaze tracking technology 
to enable applications in next generation displays, such technology 
has to lead to a useful quality gaze tracker with a small form-factor, 
low latency, and low power consumption. 

In this paper, we explore means of designing a useful-quality 
gaze tracker that accounts for all of these metrics. Toward this end, 
we investigate techniques for simplifying both the hardware and 
software components of a gaze tracking system. Concerned with 
the use of power and computationally demanding imaging sensors 
generally used for gaze tracking, we begin with a rendering-based 
simulation framework for exploring the possibility of decompos-
ing cameras into individual single pixel sensors. Using fndings 
from these simulations, we place pairs of photodiodes and LEDs 
around a human subject’s eyes, modulating the light emission in 
a time multiplexed fashion and capturing the light refected off of 
the eyes. We then use a fully connected neural network to process 
the recorded signals and estimate a gaze orientation, constituting 
our frst standalone wearable gaze tracker prototype, NextGaze. To 
further minimize cost and increase fexibility in manufacturing, we 
remove the need for photodiodes in NextGaze by taking advantage 



of the bidirectional characteristics of LEDs to enable receiving and 
emitting light with a single component, reducing the number of 
components used and the number of signals processed. We show 
that this second prototype, LED2Gaze, can reduce the accuracy error 
by up to half using a Gaussian process regression (GPR) model. Our 
contributions are listed as the following: 

1. A rendering-based framework for simulating gaze tracking 
devices with arbitrary single-pixel sensors with new insights 
into the behavior of eye refections. 

2. NextGaze, a wearable gaze tracking prototype equipped with 
photodiodes and LEDs. Our device obtains an average error 
of 2.67° at 400 Hz while consuming only 16 mW using a 
fully-connected neural network. 

3. LED2Gaze, a standalone gaze tracking prototype that uses 
LEDs both for emitting and sensing light. Our device obtains 
an average error of 1.57° at 250 Hz consuming 800 mW using 
a lightweight GPR model. 

2 RELATED WORK 

Table 1: A comparison of six systems across four dimensions. We 
position our work, the last two rows, as an unexplored middle ground 
across each of these dimensions. 

Name Modality Rate Error Power 
Scleral Coil Magnetic 1000 Hz 0.1° 10+ W 
SR Research Camera 1000 Hz 0.33° 24 W 
Pupil Labs Camera 200 Hz 0.6° 1.5 mW 
Tobii Camera 100 Hz 0.5° 900 mW 
LiGaze Photodiode 128 Hz 6.1° 0.791 mW 
CIDER Photodiode 4 Hz 0.6° 7 mW 
NextGaze Photodiode 400 Hz 2.67° 16 mW 
LED2Gaze LED 250 Hz 1.57° 800 mW 

We report and discuss the relevant literature on gaze tracking, and 
focus on three primary metrics: accuracy, sample rate, and power 
consumption. 

2.1 Camera-Based Gaze Tracking 

Video oculography is the most commonly used method for eye track-
ing. Most video-based eye trackers rely on infrared illumination of 
the eye and an infrared-sensitive video camera that detects either the 
location of the pupil or glints on the cornea. A calibration procedure 
is used to construct a mapping between glint/pupil locations and 
gaze orientation. 

A high end commercial video eye tracking system, such as the 
SR Research EyeLink 1000 Plus [2], is capable of sampling at 
1000 Hz with an average accuracy of 0.33°. More portable and 
affordable systems such as those produced by Tobii, SMI, and Pupil 
Labs operate at an order of magnitude lower sample rate, while 
maintaining a similar sub-degree accuracy. However, the power 
consumption of these devices is generally on the order of multiple 
watts [1]. 

In academic settings, the use of low resolution cameras for re-
ducing the requirements of power consumption and computational 
resources needed for video oculography has seen promising results. 
Borsato et al. [6] was able to signifcantly reduce processing and 
power requirements by simply repurposing the optical fow sensor 
of a computer mouse for tracking the episcleral surface (the white 
part) of the eye. While they were able to obtain an error bound of 
2.1°, the tracking was lost each time the user blinked, rendering it 
impractical for real-life use cases. Tonsen et al. [49] improved upon 
this accuracy by frst simulating the different possible vantage points 
of cameras placed around a 3D model of the eye, eventually devel-
oping InvisibleEye, which leverages four millimeter-sized cameras 
of 5 x 5 pixels each to achieve a person-specifc gaze estimation 
accuracy of 1.79°. Finally, Mayberry et al. [36] developed CIDER 

to estimate the pupil location, but not the gaze orientation, hence 
we refrain from comparing their reported accuracy. However, we 
believe that CIDER was an exceptionally well-engineered system, 
with low power consumption (32 mW), high sampling rate (278 Hz), 
and detailed specifcations given per component: camera, digitiza-
tion, computation, and the near-infrared LEDs that were used for 
illumination. 

In this paper, we describe a simulation framework similar to 
the one used by Tonsen et al. [49] for exploring the possibility 
of removing the need for a camera altogether by using discrete 
single pixel detectors instead. Ultimately, we use fndings from 
these simulations to inform the design of a system that removes this 
signifcant component from CIDER’s bill of materials, saving power, 
cost, and computation. 

2.2 Novel Sensing for Gaze Tracking 

In addition to traditional camera-based gaze tracking techniques, a 
number of novel sensing techniques have been explored to leverage 
other properties of the eyes for tracking. On the high speed and 
invasive end, magnetic sensing has been employed to track scleral 
coils, wire coils embedded in a silicone ring that sits on the sclera of 
the eye [13, 45]. A voltage is induced in the wire coils when placed 
in a magnetic feld, and that voltage is measured with thin physical 
connections to the coils [45]. This technique has been shown to 
offer a sampling rate of almost 10 kHz with an accuracy better than 
0.1° [13]. This technique is generally used for lab-based studies and 
is not appropriate for consumer or mobile devices where power is a 
consideration. 

At the other end of the spectrum, electrical sensing has been 
used to measure the voltage potential generated by the rotation of 
the eyes, which have an electric dipole between the cornea and 
retina, in a technique called electrooculography (EOG). Although 
these signals are generally not robust enough for continuous gaze 
tracking, they can be used to detect movements such as blinks as 
well as relative direction of movement. For example, Bulling and 
colleagues demonstrated wearable EOG goggles capable of detecting 
a set of eye gestures [9]. Furthermore, the eyeglasses company 
Jins produces a commercial product called the Meme with EOG 
electrodes embedded in the nose pad, which has been used to detect 
reading patterns [28], to measure fatigue [48], and to recognize facial 
expressions [46]. 

Finally, our work falls under the category of spatially sparse op-
tical sensing. While the cameras described previously use image 
sensors with many pixels, sparse optical sensing approaches position 
single-pixel optical sensors sparsely around the region of interest. 
Such approaches have the primary potential advantage of requiring 
fewer pixel sensors, eliminating the capture of pixels that would be 
otherwise redundant and resulting in lower dimensional data that 
requires less computational power and bandwith. In the case of 
head-mounted displays, sparse optical sensing also enables the pos-
sibility of moving the sensors out of the feld of view for heightened 
immersion. For example, OLED-on-CMOS technology [54] has 
demonstrated the ability to capture images with single-pixel sensors 
placed in-line and alternating with single-pixel displays. While there 
is a recent ongoing effort to make a gaze tracker product at industry 
using single-pixel sensors with scanning micro electromechanical 
systems (MEMS) [57], usage of single-pixel sensors for gaze track-
ing largely remains in research. For greater sparsity, Topal et al. [50] 
developed EyeTouch, which consisted of only eight IR LED and 
sensor pairs around the lenses of a pair of glasses, but required the 
use of a bite bar or other means of stabilizing the head. LiGaze [33] 
showed that it was possible to use a solar cell indoors for harvest-
ing the power needed to perform eye tracking using photodiodes, 
achieving a sample rate of 128 Hz with 6.1° accuracy and consuming 
791 µW . A sequel improved the power consumption to 395 µW 
with a slightly reduced sample rate of 120 Hz [34]. 



SynthesEyes [56] and UnityEyes [55] explored the possibility of 
using synthetic 3D models of human eyes for training models that 
can be applied to previously released, real-world datasets. Our work 
adopts a similar methodology of leveraging simulation fndings 
for informing the design of our prototypes, with which we then 
implement and use to collect our own datasets for validation. Our 
functional prototypes gaze trackers are robust to head movement, 
removing the need for a bite bar, while improving the accuracy 
and sample rates given by LiGaze. We position our work at the 
intersection of high performance (accuracy and sample rate) and low 
power consumption. 

3 SPARSE OPTICAL GAZE TRACKING 

The idea of sparse optical gaze tracking is to use single pixel emit-
ters and receivers, spread out in physical space, to detect the gaze 
orientation of the user’s eye. Depending on the orientation of the 
eye, the sensor will capture light directly refected from the cornea 
(referred to as a ”glint”) and scattered from the iris, sclera, and skin. 

Figure 2: Left: one camera’s view of a simulated eye with corneal refection. Center: the simulated output of a single-pixel detector as a function of 
gaze angle, obtained by rotating the model shown in the left panel. Right: real-life signal acquired by an actual photodiode as the eye rotated 
along the horizontal axis while staying constant vertically, verifying the distinct spike seen in the simulation shown in the center panel. The signal 
in the right panel matches one row of the center panel (horizontal sweep, vertical constant). 

Figure 3: The simulation pipeline takes a rendered image from the 
point of view of a single-pixel detector, applies a windowing function to 
simulate the single-pixel detector lens, and sums the resulting image 
to simulate sensor output. 

3.1 Rendering-Based Simulation Framework 

In order to inform the design of our sparse optical gaze tracking 
systems, namely the placement of the optical sensors and emitters, 
we constructed a framework to simulate how a gaze tracker would 
perform under different confgurations. This framework uses a 
realistic 3D model of a human face with a parametrically-defned 
eyeball from the work by Kim et al. [26]. The eyeball can be rotated 
to any horizontal and vertical gaze direction and the pupil size can be 
adjusted from 2 mm to 8 mm. Moreover, the top and bottom eyelids 

can be adjusted from fully open to fully closed. The textures were 
adjusted to match the properties of skin under infrared illumination. 

We place virtual cameras at the position and orientation of dif-
ferent proposed single-pixel sensor confgurations following the 
guidance of Rigas et al. [44]. We use point light sources to simulate 
infrared emitters such as LEDs. For a given facial confguration 
(eye gaze in x and y, pupil size, eyelid position), we render an image 
from the viewpoint of each of the cameras. Because the sensitivity 
of a single-pixel sensor varies with the angle of incidence, we use a 
Gaussian distribution to represent sensitivity in accordance with the 
datasheet of a sensor. For each image, we transform all pixels in the 
image using the following Gaussian window function: 

−((x−x0)
2+(y−y0)

2) 

g(x,y) = e 2σ 2 , 

where x and y represent the pixel coordinates, x0 and y0 represent 
the image centers, and σ is the standard deviation of the Gaussian 
distribution that represents angular sensitivity of a single-pixel sen-
sor. Figure 3 summarizes the effect of this angular sensitivity of a 
single-pixel sensor. Finally, to simulate the accumulation of light at 
a single-pixel sensor, all pixels in the transformed image are summed 
as follows, where i(x,y) represents a pixel from the original rendered 
image: 

s = ∑∑ i(x,y) ∗ g(x,y), 
x y 

An important observation from this process is the importance of 
using 16-bit rendering and taking care not to saturate the image. The 
images in Figure 3 have been artifcially brightened, for clarity, but 
note that the glints in these brightened images consist of saturated 
white pixels. If these images were used for the simulation, the signal 
due to the glint would be artifcially weakened. To achieve a high-
fdelity simulation, the simulated illumination must be decreased so 
that there are no clipped pixels from the direct refections. Similar 
simulation techniques that either use rendered images [43, 44, 58] or 
images captured from a camera [22] could be prone to this issue. 

A second observation concerns the interaction of the glints with 
the edge of the cornea as the eye changes concavity. As the eye 
moves and a glint approaches the edge of the cornea, the glint 
becomes stretched and the received signal strength at the sensor 
increases as depicted in Figure 2. The eye orientation at which 
this effect occurs depends on the position of both an emitter and a 
single-pixel sensor. Figure 2 shows the output of a single simulated 
single-pixel detector as a function of gaze directions, where the 



relatively smooth gradient along the lower left portion of the image 
is due to the pupil and glint moving within the sensitive region. The 
circular edge along the outsides of the image corresponds to gaze 
locations where the glint is positioned at the edge of the corneal 
bump. Within this bright edge, the glint is positioned on the cornea; 
outside of this edge, the glint is located on the sclera. 

Center portion of Figure 2 shows an artifcially brightened ren-
dering corresponding to the gaze orientation of 27° horizontal and 
−20° vertical. The smearing of the glint along the edge of the cornea 
causes more light to enter the single-pixel detector. Compare these 
simulated results to actual collected data as the eye pursues a tar-
get along a horizontal line from −20° to 20° as shown in Figure 
2 (right). We hypothesize that the spike around 10° corresponds 
to the glint aligning with the edge of the cornea. This effect has 
not been demonstrated or accounted for in prior work that relies on 
simulated data [24, 43, 44, 58]. A practical implication of this result 
is that it is best to minimize the number of point light sources active 
at a time. Multiple light sources will result in multiple glints that 
only complicate the tracking problem. Fewer light sources would 
maximize the smoothness of the transfer function. On the other 
hand, future work could consider using these direct refections as a 
feature to model the geometry of the eye. 

In addition to these two fndings, a co-design process between 
simulated experiments and implementation iterations revealed that 
real life human faces varied so signifcantly that determining specifc 
LED locations based on a simulation was not practical. We show 
some of the intermediate designs in Figure 4, and this iterative 
process helped reveal a number of design guidelines for working 
with spatially-sparse detectors: 

• As mentioned previously, minimize the number of emitters on 
simultaneously to avoid saturated receivers. 

• Co-locating emitters and receivers generally provides the best 
signal. 

• For maximum information gain with sparse sensors, the more 
diversity in perspective the better. 

• However, staying below the eye is recommended to avoid 
eyelash interference. 

We used these guidelines as we iterated through a number of 
designs, two of which we have selected to describe in this paper. 

Figure 4: Examples of intermediate steps in our iterative co-design process between simulation and implementation. From left to right: 1. 
Sensors placed directly in front of the eye, 2. sensors placed around the eye enabling looking through the lens, 3. increasing the feld of view by 
experimentally moving all the sensors to the bottom, 4. adding a camera and some sensors along the vertical axis, and 5. streamlining the design. 

Figure 5: Different LED modes: (1) applying a forward voltage of VDC, 
in which the LED emits light with a wavelength of λout and an emission 
cone angle, ΘFOV ; (2) applying a reverse voltage pulse, Vreverse, for 
a short time duration, discharging LED with incoming light that has 
a wavelength of λin for a specifc time, Δtexp, with an reception cone 
angle of ΘFOV ; and (3) measuring a voltage, Vmeasurement , from the LED. 

3.2 Single-Pixel Sensing Hardware 

In order to leverage the fndings from the simulation framework 
for our hardware implementation, we consider the use of LED and 
photodiode pairs and duplexed LEDs as single-pixel sensors. In 
the LED-photodiode pairs case, the LEDs are used to illuminate 
the eye and may be modulated to provide a more strategic image 
of the eye. LEDs with infrared light emission are typically used in 
gaze tracking hardware for NEDs, since humans are insensitive to 
IR illumination [14]. A human eye’s cornea has similar absorption 
and refection characteristics in the near IR spectrum as in visible 
light [15]. Furthermore, IR LEDs have a narrow bandwidth (typically 
around 50 nm), avoiding cross-talk with other wavelengths. The 
photodiodes are used to capture signals related to gaze direction. 

In the latter case, we also propose the use of LEDs to both illumi-
nate the eye and capture light. LEDs provide illumination when a 



forward voltage is applied to their two electrical terminals. However, 
LEDs can also act as photodetectors [17]. This duplexing can be ac-
complished with three steps that are depicted in Figure 5. Typically, 
LEDs are most sensitive to wavelengths λin that are shorter than their 
emission spectrum (so λin < λout ) [30]. Thus, larger exposure times 
are required if LEDs with the same emission spectrum are used. To 
achieve the lowest possible latency with a given confguration, we 
select different LEDs that have intersecting emission and sensing 
spectra in the IR range. 

Eye safety is a very important aspect when a user is exposed 
to infrared radiation; Δ texp and maximum irradiance of an LED 
must be considered according to safety regulations for infrared light 
sources . In our implementation, we followed a commonly accepted 
guideline [7], accordingly. 

4 PROTOTYPES 

Based on learnings from the simulations and described sensing 
approaches, we developed our frst prototype, NextGaze. Then, by 
simplifying both the software and hardware components, we arrived 
at our second prototype, LED2Gaze, which demonstrated improved 
accuracy while using fewer physical hardware components and a 
simplifed estimation algorithm. 

Figure 6: System architecture of NextGaze. Left: a Zemax optical simulation of six photodiode placements and their projected regions of sensitivity. 
Right: the arrangement of optical and electrical components within the prototype, confgured according to fndings from the simulation. 

4.1 Gaze tracking photodiodes 

Our frst system consists of a ring of LEDs and photodiodes around 
each eye. The system is designed to be used as a standalone gaze 
tracker with an external display, therefore it was constructed as part 
of a face mask. The mask attaches to the face using an elastic band. 
An external display is used to calibrate the gaze tracker prototype. 

The full design is shown in Figure 6. The eye is illuminated by 
three LEDs embedded within the frame of the device. Two or three 
photodiodes are clustered around each LED. In total, there are eight 
photodiodes, placed strategically such that for a typical user, they 
will cover different parts of the eye. Figure 6 shows the results of 
a Zemax optical simulation for a subset of six photodiodes. The 
images highlight the intended sensitive region for each photodiode. 

To facilitate development and proper placement of the optical 
elements, a Pupil Labs infrared camera is placed just outside the 
user’s feld of view. A hot mirror in front of the eyes refects infrared 
light from the eyes into the camera lens. The camera is used only for 
debugging purposes and is not part of the fnal sensing pipeline. No 
experiments were conducted using the camera since we can compare 
against the baselines already reported by camera-based gaze trackers 
as discussed in section 2.1, or specifcally the specifcations of the 
Pupil Labs camera [23]. 

The LEDs and photodiodes selected for our prototype are both 
optimized for 940 nm infrared light, which rejects most ambient 
illumination at other frequencies. In order to further improve signal 
robustness, modulated illumination is used to reject any ambient 

light, even environmental 940 nm light (i.e. sunlight). The device 
uses an analog front-end (ADPD103) to synchronously modulate 
the LEDs and sample the photodiodes. Each LED is illuminated 
for 3 µ seconds every 24 µ seconds. The photodiode response 
is bandpass fltered and synchronously integrated. The result is a 
photodiode signal sensitive to changes in refected light from the 
LEDs, but not from other light sources. 

To minimize the effect of direct refections of the cornea, only 
one LED is illuminated at a time. In this implementation, only 
two LEDs are used in a particular session; each LED is associated 
with the four nearest photodiodes. For a single frame of data, the 
frst LED pulses four times while the four nearest photodiodes are 
integrated and sampled. This process repeats for the second LED 
and remaining photodiodes. The overall data rate is determined 
by the number of LED pulses and delay between LEDs. In this 
prototype, the output data rate was confgured to be 400 Hz. The 
electrical current consumed by the LED is also confgurable and 
determines the signal-to-noise ratio. In this prototype, it was set to 
67 mA. Note that this is instantaneous current through the LEDs. 
At this current setting, the overall power consumption of the analog 
front-end and LEDs is only 16 mW. 

4.2 Gaze tracking LEDs 

Our second prototype consists of 6 LEDs per eye, with each LED 
functioning as both light sources and sensors, and an Arduino Nano 
microcontroller per eye for controlling those LEDs. We designed 
our second prototype to be a standalone platform to remove the need 
for a chin rest in our subjective experimentation, so we inserted a 2K 
resolution HDMI display (TopFoison) into an off-the-shelf mobile 
VR headset (Samsung Gear VR), in which the sensing electronics 
were housed. LEDs are placed around the VR headset’s magnifer 
lenses. 

The anodes of LEDs were attached to digital IO pins of a micro-
controller, while their cathodes were attached to analog-to-digital 
converter (ADC) pins of the same microcontroller. Each time an 
LED is to be used in sensor mode, it follows the three steps described 
in Figure 5. LEDs have a soft-coded mechanism that adjusts expo-
sure times, Δ texp, on a per LED basis, so that saturation caused by 
varying light conditions can be avoided for each LED. The LEDs are 
sampled in a round-robin fashion, such that one LED records mea-
surements while the remaining LEDs serve as emitters. In contrast 
to NextGaze, we chose to use the remaining LEDs as emitters to 
minimize the sensing time of an LED, and in turn minimize system 
latency. 

The microcontroller communicates with the user interface appli-
cation over a USB connection. This user interface application is 
developed using Kivy library [53]. Our user interface application 
handles a number of tasks: (1) collecting measurements from each 
LED by requesting them from the two microcontrollers used for 



each eye, (2) updating the user interface, (3) estimating the gaze 
orientation, and (4) keeping logs related to captured data such as 
event timestamps, raw signals, estimations. 

5 EVALUATION 

5.1 Evaluating NextGaze 

5.1.1 Procedure 

Figure 7: The calibration process requires a user to wear the prototype and follow a moving stimulus shown on an external computer screen with 
their gaze. Left: the user rests their chin in a head rest 18 inches from a fxed display. Right: the user is asked to follow a moving target that moves 
along multiple line segments with their gaze. 

We invited six participants (4 male, 2 female) to help us collect 
a dataset for evaluating the performance of NextGaze. Due to 
NextGaze’s design as a standalone device with no display, an exter-
nal monitor was used to show the visual stimulus. Participants that 
wore glasses were asked to remove them, however, contact lenses 
were allowed to be worn. Participants were then asked to place their 
head in a desk mounted chin rest, putting his or her face 18 inches 
away from the monitor, as shown in Figure 7 (left). A circular gaze 
target with a radius of 10 pixels (1.2 mm) is placed on the screen 
for calibration. The x and y coordinates of the target in screen-space 
can be computed from the screen distance and desired angular gaze 
coordinates. 

Participants frst engaged in a smooth pursuit task, following the 
guidelines outlined by Pfeuffer et al. [41]. The gaze target travels 
in a series of linear paths over ±20° vertical and horizontal feld of 
view as outlined in Figure 7 (right). For each segment, the target 
smoothly accelerates from rest over 1 second, up to a max speed 
of 6° per second and then decelerates over 1 second back to rest at 
the end of the segment. This produces a dense sample of the gaze 
space. Particular care was taken to optimize the display pipeline 
to minimize any jitter of the target as it moved, as this could cause 
undesired saccades during the pursuit. 

Following the smooth pursuit task, participants were then asked 
to visually fxate on 25 static targets displayed on a grid within ±20° 
horizontal and vertical. The saccadic nature of this task helped to 
diversify the dataset collected. The frst twenty segments of the 
smooth pursuit data were used for training. The last four segments 
as well as the 25 fxation targets were used for testing. 

For evaluation, we report error on a per-frame basis, taking the 
difference in angle between the target’s position and the angle pre-
dicted by our modeling algorithm at every frame. Although this 
protocol is limited by the strong assumption that the participant’s 

gaze really is locked on the target, it is nonetheless standard proce-
dure and we adopted it to produce results that can be compared with 
the related work. 

5.1.2 Modeling and Results 

Table 2: Performance of the gaze model on different test sets. The 
model performs best on the smooth pursuit task. 

Task Mean 
Error 

Standard 
Deviation 

Smooth Pursuit Validation 1.68° 0.56° 
Fixation Validation (±20°) 2.67° 0.98° 

Central Fixation Validation (±10°) 2.35° 0.58° 

First, a preprocessing step removes blinks from the signal by per-
forming a Savitzky-Golay flter and removing areas where the fl-
tered signal is different by more than a given threshold. The re-
maining signal is then downsampled to 100 points along each line 
segment to avoid overftting to points along the line. 

The gaze model maps the photodiode output to gaze coordinates 
in degrees. Because the mapping is highly nonlinear, we leverage 
a neural network model to map the eight photodiode signals to 2D 
gaze. We frst scale all photodiode outputs to 0 to 1 and then apply 
Principal Component Analysis (PCA) to reproject the data. The 
transformed signals are input to a network with 4 hidden layers of 
64 nodes each and tanh activation functions. The model uses scikit-
learn’s implementation of a multi-layer perceptron neural network 
with a batch size of 4, up to 500 epochs, and an adaptive learning 
rate starting at 0.001, as depicted in Figure 8. 

After calibration, the gaze is estimated and shown on screen in 
real time. Inferences from the model are post-processed using an 
exponential weighted moving average (EWMA) flter (α = 0.2) to 
smooth the estimation results. This flter was designed empirically 
to improve the real-time experience provided to the user. 

In addition to using the real-time inferences for supporting the 
interactive system, we also ran an offine evaluation producing the 
results shown in Table 2. Mean error on the last four segments of the 
smooth pursuit task was 1.68°. The error increased to 2.67° on the 



fxation task, but is slightly better when limiting the data to ±10°. 
Among the six trials, the best error on the ±20° fxation task was 
1.1° and the worst was 4.2°. 

Figure 8: NextGaze Network. Measurements from photodiodes are 
passed through a normalization and activation step before going 
through a full connected neural network. Result is a two-dimensional 
output that represents gaze estimation along vertical and horizontal 
axes. To avoid temporal fickering or sudden variations in the results 
over the time, inputs of NextGaze network is fltered temporally using a 
Savitzky-Golay flter, while outputs of NextGaze network is temporally 
averaged using exponential weights. 

5.2 Evaluating LED2Gaze 

5.2.1 Procedure 
We invited fourteen participants (10 male, 4 female) to help us collect 
a dataset for evaluating LED2Gaze. Since LED2Gaze featured its 
own built-in display, no chin rest was necessary for this study. Again, 
glasses were asked to be removed while contact lenses were allowed 
to be used. Participants were seated in an offce chair and asked to 
wear the headset. Then they are engaged in a series of tasks similar 
to the procedure used in Study 1, again driven by a moving target. 
First, participants performed a smooth pursuit task consisting of 9 
segments. The target guided the participant through two sessions 
of fxating on each of 16 targets forming a grid over the entire 
feld of view of the headset (101°). Finally, 66 random points were 
presented for the participant to fxate on. In total, 9 segments of 
smooth pursuit and 98 saccadic fxation points were collected per 
participant. For evaluation, the dataset was split such that the smooth 
pursuit, one session of 16 grid points, and 66 random points were 
used for training the model, and the second session of 16 grid were 
used for testing. 

5.2.2 Modeling and Results 
In our previous prototype, we employed a fully-connected neural 
network to address the nonlinearity of the mapping from photodiode 
readings to gaze orientation. While the results were adequate, the 
complexity and abstract nature of neural networks can be tricky to 
interpret for humans and in turn diffcult to improve the results of. 
For our second prototype, we explored the use of a simpler, more 

Table 3: LED2Gaze’s performance on the fourteen participant dataset. 

Participant Mean 
Error 

Median 
Error 

Standard 
Deviation 

Average 1.57° 1.12° 2.00° 

interpretable approach, namely a GPR model. Such models take the 
following general form: � � T ex ux = kTC−1 

ey uy 

� �
⎡ ⎤ 

κ(s(t), c̄1) 
k = ... ⎣ ⎦ 

κ(s(t), c̄  p) ⎡ ⎤ 
κ(c̄0, c̄0) ... κ(c̄0, c̄  p) 

C = ... ⎣ ⎦ 
κ(c̄  p, c̄0) ... κ(c̄  p, c̄  p) 

Where ex and ey represents estimated gaze orientation along the 
x and y axes, respectively, kT represents a vector that contains the 
similarity measures between the captured s(t), and the calibration 
vectors c̄  p. Finally, ux and uy represent vectors that correspond to 
the x and y position of each c̄  p. 

Comparing a vector with another vector can be accomplished in 
multiple ways. In evaluating multiple different distance measures 
(Cosine, Minkowski, Manhattan, Canberra) [8, 29, 42], we found 
that the Minkowski distance measure to be the most effective when 
used with the GPR algorithm. 

The results from this evaluation are shown in Table 3. Mean error 
was improved to 1.57° when compared to our previous prototype. 
Among the fourteen participants, the best per-participant error was 
1.1° (equal to the best performance of NextGaze) and the worst 
was 2.1° (improving the worst performance of NextGaze by half). 
Furthermore, we empirically found that the output was suffciently 
smooth such that no post-processing such as the EWMA flter used 
by NextGaze was needed. 

6 DISCUSSION 

6.1 Towards Deploying Sparse Optical Gaze Trackers 

We discuss some practical considerations needed for spatially-sparse 
optical gaze trackers to be deployed in devices to be used in natural 
conditions. 

User and Session Dependence. In this work, our modeling and 
analysis reported per-session and per-user accuracy results. On the 
other hand, in practice, gaze trackers are ideally session and user in-
dependent, such that the system can be put on and immediately used. 
Further investigations are required to understand how much, if any, 
per-user or per-session calibration is required. For example, it might 
be only necessary that the user follows a calibration procedure the 
very frst time they use the system (i.e. user registration), or briefy 
calibrate the system with a few points (i.e. session registration). 

Synthetic Data Although our experiments only used real sensor 
data collected from participants for training and testing, there is 
an opportunity for making use of the synthetic data generated by 
the simulation framework to produce more robust models. For 
example, the synthetic data could be used in a Bayesian framework 
for augmenting the signals recorded from participants, increasing 
the size of the training set [51]. Alternatively, recent advances in 
neural network research have shown the potential for directly using 
synthetic data in the training procedure for more robust models. [47] 



Wearable Accessories. Factors such as prescription glasses, contact 
lenses, eye color, eyelashes, and mascara infuence data quality [39]. 
A common practice for avoiding usage of prescription glasses and 
contact lenses in VR/AR near-eye displays comes in the form of 
an add-on inset lens in the optical path of a near-eye display. On 
the other hand, next generation computational displays promises 
algorithmic approaches to the problem of eye prescriptions by using 
active components that can support various focus levels [11]. 

In our studies, participants were asked to remove prescription 
glasses. However, there were subjects that wore contact lenses and 
mascara during experiments. Contact lenses are known to form air 
bubbles in between the cornea of an eye and a contact lens result-
ing in unintended dynamic refections, and mascara can create a 
false glint, introducing noise into our sensor signals and causing 
robustness issues in camera based gaze tracking hardware [39]. Al-
though our experiments did not reveal any particular robustness 
issues against wearing contact lenses or mascara, we also did not 
specifcally control for it, and this issue remains not only an open 
research question but also a major challenge for deploying gaze 
tracking systems. 

Compensating for Slippage. In addition to per-session and per-user 
calibration, wearable devices also often face the additional challenge 
of within-session changes. Sparse optical gaze trackers are partic-
ularly sensitive to slippage of the device. Small millimeter-level 
shifts can cause signifcant changes in the observed sensor values. 
We conducted some initial experiments to explore the feasibility of 
compensating for slippage. We added four additional photodiodes 
in the device oriented toward the nose bridge and side of the face 
to collect signals corresponding to the position of the device on the 
face. Preliminary results suggest that a monolithic model that incor-
porates both eye-tracking sensors and face-tracking sensors may be 
capable of gaze tracking that is invariant to sensor shifts. Further 
investigation and additional training data is needed to demonstrate a 
full implementation. 

6.2 Opportunities in Gaze-Based Interfaces 

Gaze tracking has the potential to enable signifcant advances in 
interacting with mixed reality. While gaze tracking research has 
traditionally optimized for greater tracking accuracy, we suggest 
that other facets of gaze tracking can be just as important to the user 
experience. This subsection describes human perception and device 
interaction opportunities for gaze-based interfaces that span the 
spectrum of power, speed and latency, and accuracy requirements. 

6.2.1 Human Perception 
Virtual Social Avatars. Mixed reality offers the possibility of im-
mersive telepresence through virtual avatars, or digital represen-
tations of oneself. Literature in psychology has shown that the 
eyes convey a signifcant amount of information in the interaction 
between two people. To improve the quality and immersiveness 
of telepresence interactions, gaze tracking is needed to drive the 
avatar [20]. As social cues, it is important to achieve a high sam-
ple rate and low latency for the animated avatar to seem respon-
sive [35, 37]. In addition, low power consumption is needed as the 
networking requirements of a video call already consume signifcant 
amounts of power. 

Foveated Rendering. Human eyes have maximum visual acuity in 
the fovea, a region in the retina of the eyes. Areas outside of the fovea 
are perceived with less clarity. Research in HMDs has explored the 
concept of “foveated rendering”, in which only the region the user 
is visually attending to is rendered with full quality, and has shown 
signifcant savings in computational requirements [21,40]. However, 
foveated rendering requires understanding the gaze direction of 
the eye to begin with. As a technique for reducing computational 
requirements, it is natural that the sensing technique it relies on 

should similarly use low computation and low power. Similar to 
animating avatars, the latency required of gaze tracking for foveated 
rendering needs to be low (less than 50 ms) [4]. 

6.2.2 Device Interaction 
Activity Recognition. Related work has shown that both camera-
based and EOG-based gaze trackers can be used for recognizing 
activities of daily living, such as detecting reading and counting how 
many words have been read [28]. Such signals can be indicators of 
visual attention, passively disabling distractions such as notifcations 
or automatically turning pages. The use of EOG glasses in this 
related work exemplifes the notion that high accuracy is not needed 
to create a useful interface. 

User Interfaces. With clever design of an user interface, varying de-
grees of gaze tracking error can be useful and effective. Bubble Gaze 
Cursor and Bubble Gaze Lens lessens the required gaze tracking 
accuracy by implementing an area cursor with a magnifying glass 
feature, essentially dynamically increasing the effective selection 
region [12]. Orbits further reduces the accuracy needed by present-
ing different moving visual stimuli, and simply confrming selection 
by measuring correlation between the gaze tracking results and the 
movements of the stimuli [19]. A similar system, implemented us-
ing EOG glasses, show how the lower accuracy requirements can 
also alleviate the power consumption of a system with an effective 
interface [16]. Naugle and Hoskinson [38] demonstrated that the 
coarsest gaze tracker, only recognizing whether a user is visually 
attending to a display or not, can be used to quickly interact with a 
head-mounted display while saving up to 75% of the head-mounted 
display’s normal power consumption. 

6.3 Future Work 

Exploring Multimodal Sensing. In this paper, we have explored 
the use of photodiodes and reverse-driven LEDs for sensing gaze 
as an alternative to camera-based approaches. While NextGaze 
featured two cameras, and videos were recorded, that data was never 
used for gaze inference. In the future, we plan to explore how sensor 
fusion might help leverage the camera data in conjunction with the 
signals from our single-pixel detectors. For example, the camera data 
might be used for periodic self-calibration, or as a higher accuracy 
fall-back when needed. We are also interested in exploring how the 
single-pixel signals can be used to fll in the gaps between camera 
frames, such as a way of informing an interpolation function. 

In addition to cameras, other sensors could potentially be used in 
tandem with our single-pixel detectors. For example, strain gauges 
have been previously used to measure facial movements [31], and 
electrode arrays have been used to capture a variety of biosignals 
from the face [5]. 

Beyond Gaze Tracking. To make a compelling case of including a 
given sensor in future devices, such a technique should be able to 
serve multiple purposes. There has been prior work using single-
pixel detectors for facial action tracking and recognition [32] and for 
vital sign monitoring, such as heart-rate and blood oxygenation [10]. 
We will explore such opportunities with our technique beyond gaze 
tracking in the future. 

7 CONCLUSION 

In this paper, we explore the design space of gaze trackers that lever-
age sparse single-pixel optical sensing techniques. Our rendering-
based simulation framework enables accurate and rapid exploration 
of this design space. We present two wearable gaze tracking devices 
built on these techniques with designs grounded in insights gained 
from simulation results. NextGaze explores the use of infrared LEDs 
and photodiodes to estimate gaze in a low-power wearable device, 
while LED2Gaze builds on these ideas and introduces a path to fur-
ther form-factor improvements by leveraging LEDs as both emitters 



and sensors. These prototypes demonstrate the feasibility of us-
ing discrete optical elements to realize high-speed, low-power gaze 
tracking devices suitable for wearable use in virtual and augmented 
reality devices. 
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[10] G. Cennini, J. Arguel, K. Akşit, and A. van Leest. Heart rate monitor-
ing via remote photoplethysmography with motion artifacts reduction. 
Optics express, 18(5):4867–4875, 2010. 

[11] P. Chakravarthula, D. Dunn, K. Akşit, and H. Fuchs. Focusar: Auto-
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K. Myszkowski, D. Luebke, and H. Fuchs. Wide feld of view varifocal 
near-eye display using see-through deformable membrane mirrors. 
IEEE transactions on visualization and computer graphics, 23(4):1322– 
1331, 2017. 

[19] A. Esteves, E. Velloso, A. Bulling, and H. Gellersen. Orbits: Gaze 
interaction for smart watches using smooth pursuit eye movements. In 
Proceedings of the 28th Annual ACM Symposium on User Interface 
Software & Technology, pp. 457–466, 2015. 

[20] M. Garau, M. Slater, S. Bee, and M. A. Sasse. The impact of eye 
gaze on communication using humanoid avatars. In Proceedings of 
the SIGCHI conference on Human factors in computing systems, pp. 
309–316, 2001. 

[21] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d 
graphics. ACM Transactions on Graphics (TOG), 31(6):1–10, 2012. 

[22] K. Irie, B. A. Wilson, R. D. Jones, P. J. Bones, and T. J. Anderson. A 
laser-based eye-tracking system. Behavior Research Methods, Instru-
ments, & Computers, 34(4):561–572, 2002. 

[23] M. Kassner, W. Patera, and A. Bulling. Pupil: An open source plat-
form for pervasive eye tracking and mobile gaze-based interaction. 
In Proceedings of the 2014 ACM International Joint Conference on 
Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 
’14 Adjunct, p. 1151–1160. Association for Computing Machinery, 
New York, NY, USA, 2014. doi: 10.1145/2638728.2641695 

[24] D. Katrychuk, H. K. Griffth, and O. V. Komogortsev. Power-effcient 
and shift-robust eye-tracking sensor for portable vr headsets. In Pro-
ceedings of the 11th ACM Symposium on Eye Tracking Research & 
Applications, pp. 1–8, 2019. 

[25] J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, 
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