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Abstract

This paper presents an algorithm to reconstruct temporally consistent 3D meshes of
deformable object instances from videos in the wild. Without requiring annotations
of 3D mesh, 2D keypoints, or camera pose for each video frame, we pose video-
based reconstruction as a self-supervised online adaptation problem applied to any
incoming test video. We first learn a category-specific 3D reconstruction model
from a collection of single-view images of the same category that jointly predicts
the shape, texture, and camera pose of an image. Then, at inference time, we adapt
the model to a test video over time using self-supervised regularization terms that
exploit temporal consistency of an object instance to enforce that all reconstructed
meshes share a common texture map, a base shape, as well as parts. We demonstrate
that our algorithm recovers temporally consistent and reliable 3D structures from
videos of non-rigid objects including those of animals captured in the wild – an
extremely challenging task rarely addressed before. Codes and other resources will
be released at https://sites.google.com/nvidia.com/vmr-2020.

1 Introduction
When we humans try to understand the object shown in Fig. 1(a), we instantly recognize it as a “duck”.
We also instantly perceive and imagine its shape in the 3D world, its viewpoint, and its appearance
from other views. Furthermore, when we see it in a video, its 3D structure and deformation become
even more apparent to us. Our ability to perceive the 3D structure of objects contributes vitally to our
rich understanding of them.

While 3D perception is easy for humans, 3D reconstruction of deformable objects remains a very
challenging problem in computer vision, especially for objects in the wild. For learning-based
algorithms, the key bottleneck is the lack of supervision. It is extremely challenging to collect 3D
annotations such as 3D shape and camera pose [4, 17]. Consequently, existing research mostly
focuses on limited domains (e.g., rigid objects [24], human bodies [14, 50] and faces [47]) for
which 3D annotations can be captured in constrained environments. However, these approaches
do not generalize well to non-rigid objects captured in naturalistic environments (e.g., animals). In
non-rigid structure from motion methods [2, 28], the 3D structure can be partially recovered from
correspondences between multiple viewpoints, which are also hard to label. Due to constrained
environments and limited annotations, it is nearly impossible to generalize these approaches to the
3D reconstruction of non-rigid objects (e.g., animals) from images and videos captured in the wild.

Instead of relying on 3D supervision, weakly supervised or self-supervised approaches have been
proposed for 3D mesh reconstruction. They use annotated 2D object keypoints [13], category-level
templates [21, 20] or silhouettes [22]. However, to scale up learning with 2D annotations to hundreds
of thousands of images is still non-trivial. This limits the generalization ability of current models
to new domains. For example, a 3D reconstruction model trained on single-view images, e.g., [13],
produces unstable and erratic predictions for video data. This is unsurprising, due to perturbations
over time. However, the temporal signal in videos should provide us an advantage instead of a
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Figure 1: By utilizing the consistency of texture, shape and object parts correspondences in videos (red box) as
self-supervision signals in (a), we learn a model that reconstructs temporally consistent meshes of deformable
object instances in videos in (b).

disadvantage, as recently shown on the task of optimizing a 3D rigid object mesh w.r.t. a particular
video [53, 24]. The question is, can we also take advantage of the redundancy in temporal sequences
as a form of self-supervision in order to improve the reconstruction of dynamic non-rigid objects?

In this work, we address this problem with two important innovations. First, we strike a balance
between model generalization and specialization. That is, we train an image-based network on a set
of images, while at test time we adapt it online to an input video of a particular instance. Test-time
training [38] is non-trivial since no labels are provided for the video. The key is to introduce self-
supervised objectives that can continuously improve the model. To do so, we exploit the UV texture
space, which provides a parameterization that is invariant to object deformation. We encourage the
sampled texture, as well as a group of object parts, to be consistent among all the individual frames
in the UV space, as shown in Fig. 1(a). Using this constraint of temporal consistency, the recovered
shape and camera pose are stabilized considerably and are adapted to the current video.

One bottleneck of existing image-based 3D mesh reconstruction methods [13, 22] is that the predicted
shapes are assumed to be symmetric. This assumption does not hold for most non-rigid animals, e.g.,
birds tilting their heads, or walking horses, etc. Our second innovation is to remove this assumption
and to allow the reconstructed meshes to fit more complex, non-rigid poses via an as-rigid-as-possible
(ARAP) constraint. As another constraint that does not require any labels, we enforce ARAP during
test-time training as well, to substantially improve shape prediction. We use two image-based 3D
reconstruction models for training (i) a weakly supervised one (i.e., with object silhouettes and 2D
keypoints provided), and (ii) a self-supervised one where only object silhouettes are available. The
image-based models are then adapted to in-the-wild bird and zebra videos collected from the internet.
We show that for both models, our innovations lead to an effective and robust approach to deformable,
dynamic 3D object reconstruction of non-rigid objects captured in the wild.

2 Related Work

3D object reconstruction from images. A triangular mesh has long been used for object recon-
struction [13, 17, 25, 15, 44, 29, 45]. It is a memory-efficient representation with vertices and faces,
and is amenable to differentiable rendering techniques [17, 25]. The task of 3D reconstruction
entails the simultaneous recovery of the 3D shape, texture, and camera pose of objects from 2D
images. It is highly ill-posed due to the inherent ambiguity of correctly estimating both the shape
and camera pose together. A major trend of recent works is to gradually reduce supervision from 3D
vertices [4, 45, 44], shading [10], or multi-view images [49, 17, 46, 33, 24] and move towards weakly
supervised methods that instead use 2D semantic keypoints [13], or a category-level 3D template [21].
This progress makes the reconstruction of objects, e.g., birds, captured in the wild possible. More
recently, self-supervised methods [22, 47, 16] have been developed to further remove the need for
annotations. Our method exploits different levels of supervision: weak supervision (i.e., using 2D
semantic keypoints) and self-supervision to learn an image-based 3D reconstruction network from a
collection of images of a category (Sec. 3.1).
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Non-rigid structure from motion (NR-SFM). NR-SFM aims to recover the pose and 3D structure
of a non-rigid object, or object deforming non-rigidly over time, solely from 2D landmarks without
3D supervision [2]. It is a highly ill-posed problem and needs to be regularized by additional shape
priors [2, 54]. Recently, deep networks [19, 28] have been developed that serve as more powerful
priors than the traditional approaches. However, obtaining reliable landmarks or correspondences
for videos is still a bottleneck. Our method bears resemblances to deep NR-SFM [28], which jointly
predicts camera pose and shape deformation. Differently from them, we reconstruct dense meshes
instead of sparse keypoints, without requiring labeled correspondences from videos.

3D object reconstruction from videos. Existing video-based object reconstruction methods mostly
focus on specific domains, e.g., videos of faces [6, 39] or human bodies [40, 1, 5, 14, 50], where
dense labelling is possible [41]. To augment video labels, [14] formulates dynamic human mesh
reconstruction as an omni-supervision task, where a combination of labeled images and videos
with pseudo-ground truth are used for training. For human video-based 3D pose estimation, [30]
introduces semi-supervised learning to leverage unlabeled videos with a self-supervised component.
Dealing with specific application domains, all the aforementioned works rely on predefined shape
priors, such as a parametric body model (e.g., SMPL [26]) or a morphable face model. While our
work also exploits unlabeled videos, we do not assume any predefined shape prior, which, practically,
is hard to obtain for the majority of objects captured in the wild.

Optimization-based methods. Optimization-based methods have also been extensively explored
for scene or object reconstruction from videos. Several works [52, 43, 34, 31] first obtain a single-
view 3D reconstruction and then optimize the mesh and skeletal parameters. Another line of methods
is developed to optimize the weights of deep models instead, to render more robust results for a
video of a particular instance [40, 24, 27, 36]. Our method falls into this category. While [40]
enforces consistency between observed 2D and a re-projection from 3D, [24, 27] take a further step
and encourage consistency between frames via a network that inherently encodes an entire video
into an invariant representation. In this work, instead of limiting to rigid objects as [24], or depth
estimation as [27], we recover dynamic meshes from videos captured in the wild – a much more
challenging problem that is rarely explored.

3 Approach
Our goal is to recover coherent sequences of mesh shapes, texture maps and camera poses from
unlabeled videos, with a two-stage learning approach: (i) first, we learn a 3D mesh reconstruction
model on a collection of single-view images of a category, described in Sec. 3.1; (ii) at inference
time, we adapt the model to fit the sequence via temporal consistency constraints, as described in
Sec. 3.2. We focus on the weakly-supervised setting in Sec. 3.1 and 3.2, where both silhouettes and
keypoints are annotated in the image dataset. We then describe how to generalize the approach to a
self-supervised setting, where only silhouettes are available in the image dataset in Sec. 3.3.

Notations. We represent a textured mesh with |V | vertices (V ∈ R|V |×3), |F | faces (F ∈ R|F |×3)
and a UV texture image (Iuv ∈ RHuv×Wuv×3) of height Huv and width Wuv. Similarly to [13], we
use a weak perspective transformation to represent the camera pose θ ∈ R7 of an input image. We
denote R(·) as a general projection, which can represent (i) a differentiable renderer [25, 17] to
render a mesh to a 2D silhouette as R(V, θ), or a textured mesh to an RGB image as R(V, θ, Iuv)
(we omit mesh faces F for conciseness); (ii) or a projection of a 3D point v to the image space as
R(v, θ). The Soft Rasterizer [25] is used as the differentiable renderer in this work.

3.1 Single-view Mesh Reconstruction

In the first stage, we train a network with a collection of category-specific images that jointly estimates
the shape, texture, and camera pose of an input image. Similarly to [13], we predict a texture flow
Iflow ∈ RHuv×Wuv×2 that maps pixels from the input image to the UV space. A predefined UV
mapping function Φ [11, 13] is then used to map these pixels from the UV space to the mesh surface.
With a differentiable renderer [25], we train the network with supervision from object silhouettes,
texture, and the Laplacian objectives as in [13, 22]. More details of learning texture and camera pose
can be found in [13]. An overview of our reconstruction framework is shown in Fig. 2(a).
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Figure 2: Overview. We show the single-view image reconstruction network on the left and the test-time
training procedure to adapt it to a video on the right. Bold red arrows indicate invariance constraints in Sec. 3.2.

Recovering asymmetric shapes. We propose a novel shape reconstruction module as shown in
Fig. 2(a). The key idea is to remove the symmetry requirement of object shapes, which is employed by
many prior works [13, 22]. This is particularly important for recovering dynamic meshes in sequences,
e.g., when a bird rotates its head as shown in Fig. 4, its mesh is no longer mirror-symmetric. Prior
works [13, 22] model object shape by predicting vertex offsets from a jointly learned 3D template.
Simply removing the symmetry assumption for the predicted vertex offsets leads to excessive freedom
in shape deformation, e.g., see Fig. 4(f). To resolve this, we learn a group of Nb shape bases {Vi}Nb

i=1,
and replace the template by a weighted combination of them, denoted as the base shape Vbase.
Compared to a single mesh template, the base shape Vbase is more powerful in capturing the object’s
identity and saves the model from predicting large motion deformation, e.g., of deforming a standing
bird template to a flying bird. The full shape reconstruction can be obtained by:

V = Vbase + ∆V, Vbase =

Nb∑
i=1

βiVi, (1)

where the ∆V encodes the object’s asymmetric non-rigid motion and {βi}Nb
i=1 are learned coefficients.

The computation of our shape bases is inspired by parametric models [26, 55, 56], where the basis
shapes are extracted from an existing mesh dataset [35] or toy scans [56]. However, we make our
model completely free of 3D supervision and obtain the bases by applying K-Means clustering to all
meshes reconstructed by CMR [13]. We use each cluster center as a basis shape in our model.
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Figure 3: 3D canonical keypoints computation: (a) annotated
2D keypoints and their location heatmaps; (b) keypoint heatmaps
mapped to the UV space using learned texture flows; (c) aggregated
canonical keypoint heatmaps in the UV space; (d) canonical key-
points on different instance mesh surface. Φ(·) is the UV mapping
function discussed in Sec. 3.1.

Keypoint re-projection. In the
weakly-supervised setting, the 2D
keypoints are provided that seman-
tically associate different instances.
When projected onto the mesh
surface, the same semantic keypoint
(e.g., the tail keypoint in the orange
circle in Fig. 3(a)) for different
object instances should be matched
to the same face on the mesh (the
tail keypoint in the orange circle in
Fig. 3(d)). To model the mapping
between the 3D mesh surface and
the 2D keypoints, prior work [13]
learns an affinity matrix that describes
the probability of each 2D keypoint
mapping to each vertex on the mesh.
The affinity matrix is shared among
all instances and is independent of
individual shape variations. However,
this approach is sub-optimal because: (i) Mesh vertices are a subset of discrete points on a continuous
mesh surface and so their weighted combination defined by the affinity matrix may not lie on it,
leading to inaccurate mappings of 2D keypoints. (ii) The mapping from the image space to the mesh
surface described by the affinity matrix, in our case, however, is already modeled by the texture flow.
Hence, it is potentially redundant to learn both of them independently.
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In this work, we re-utilize texture flow to map 2D keypoints from each image to the mesh surface.
We first map each 2D keypoint to the UV space that is independent of shape deformation (Fig. 3(b)).
Ideally, each semantic keypoint from different instances should map to the same point in the UV
space as discussed above. In practice, this does not hold due to inaccurate texture flow prediction. To
accurately map each keypoint to the UV space, we compute a canonical keypoint UV map as shown
in Fig. 3(c) by: (i) mapping the keypoint heat map in Fig. 3(a) for each instance to the UV space
via its predicted texture flow, and (ii) aggregating these keypoint UV maps in Fig. 3(b) across all
instances to eliminate outliers caused by incorrect texture flow prediction.

We further utilize the pre-defined UV mapping function Φ discussed above to map each semantic
keypoint from the UV space to the mesh surface. Given the 3D correspondence (denoted as Ki

3D)
of each 2D semantic keypoint Ki

2D, the keypoint re-projection loss enforces the projection of the
former to be consistent with the latter by:

Lkp =
1

Nk

Nk∑
i=1

∥∥R(Ki
3D, θ)−Ki

2D

∥∥, (2)

where Nk is the number of keypoints.

As-rigid-as-possible (ARAP) constraint. Without any pose-related regularization, the predicted
motion deformation ∆V often leads to erroneous random deformations and spikes as shown in
Fig. 4(f), which do not faithfully describe the motion of a non-rigid object. Therefore, we introduce
an as-rigid-as-possible (ARAP) constraint [37, 8] to encourage rigidity of local transformations
and the preservation of the local mesh structure. Instead of solving the optimization in [37, 8], we
reformulate it as an objective that ensures that the predicted shape V is a locally rigid transformation
from the predicted base shape Vbase by:

Larap(Vbase, V ) =

|V |∑
i=1

∑
j∈N (i)

wij

∥∥∥(V i − V j)−Ri(V
i
base − V

j
base)

∥∥∥, (3)

where N (i) represents the neighboring vertices of a vertex i, wij and Ri are the cotangent weight
and the best approximating rotation matrix, respectively, as described in [37].

3.2 Online Adaptation for Videos

Applying the image-based model developed in Sec. 3.1 independently to each frame of an unseen
video usually results in inconsistent mesh reconstruction (Fig. 5(a)), mainly due to the domain
differences in video quality, lighting conditions, etc. In this section, we propose to perform online
adaptation to fit the model to individual test video, which contains a single object instance that moves
over time. Inspired by the keypoint re-projection constraint described in Sec. 3.1, we resort to the
UV space, where the (i) RGB texture, and (ii) object parts of an instance should be constant when
mapped from 2D via the predicted texture flow, and invariant to shape deformation. By enforcing the
predicted values for (i) and (ii) to be consistent in the UV space across different frames, the adapted
network is regularized to generate coherent reconstructions over time. In the following, we describe
how to exploit the aforementioned temporal invariances as self-supervisory signals to tune the model.

Part correspondence constraint. We propose a part correspondence constraint that utilizes corre-
sponding parts of each video frame to facilitate camera pose learning. The idea bears resemblance to
NR-SFM methods [28, 19], but in contrast, we do not know the ground truth correspondence between
frames. Instead, we resort to an unsupervised video correspondence (UVC) method [23]. The UVC
model learns an affinity matrix that captures pixel-level correspondences among video frames. It can
be used to propagate any annotation (e.g, segmentation labels, keypoints, part labels, etc.), from an
annotated keyframe to the other unannotated frames. In this work, we generate part correspondence
within a clip: we "paint" a group of random parts on the object, e.g., the vertical stripes in Fig. 2(f),
on the first frame and propagate them to the rest of the video using the UVC model.

Given the propagated part correspondences in all the frames, we map them to the UV space via the
texture flow, similar to our approach for the canonical keypoint map ( Sec. 3.1). We then average all
part UV maps to obtain a video-level part UV map (“UV parts” in Fig. 1(a)) for the object depicted
in the video. We map the part UV map to each individually reconstructed mesh, and render it via the
predicted camera pose of each frame (see Fig. 1(a), bottom). Finally, we penalize the discrepancy

5



between the parts being rendered back to the 2D space, and the propagated part maps, for each frame.
As the propagated part maps are usually temporally smooth and continuous, this loss implicitly
regularizes the network to predict coherent camera pose and shape over time. In practice, instead of
minimizing the discrepancy between the rendered part map and the propagation part map of a frame,
we found that it is more robust to penalize the geometric distance between the projections of vertices
assigned to each part with 2D points sampled from the corresponding part as:

Lc =

Nf∑
j=1

Np∑
i=1

1

|V j
i |

Chamfer(R(V j
i , θ

j), Y j
i ), (4)

where Nf is the number of frames in the video, Np = 6 is the number of parts and V j
i are vertices

assigned to part i. Here we utilize the Chamfer distance because the vertex projectionsR(V j
i , θ

j)

do not strictly correspond one-to-one to the sampled 2D points Y j
i .

Texture invariance constraint. Based on the observation that object texture mapped to the UV
space should be invariant to shape deformation and stay constant over time, we propose a texture
invariance constraint to encourage consistent texture reconstruction from all frames. However, naively
aggregating the UV texture maps from all the frames via a scheme similar to the one described for
keypoints and parts, leads to a blurry video-level texture map. We instead enforce texture consistency
between random pairs of frames, via a swap loss. Given two randomly sampled frames Ii and Ij , we
swap their texture maps I iuv and Ijuv, and combine them with the original mesh reconstructions V i

and V j as:

Lt = dist(R(V i, θi, Ijuv)� Si, Ii � Si) + dist(R(V j , θj , I iuv)� Sj , Ij � Sj), (5)

where Si and Sj are the silhouettes of frame i and j, respectively and dist(·, ·) is the perceptual
metric used in [51, 13, 22].

Base shape invariance constraint. As discussed in Sec. 3.1, our shape model is represented by a
base shape Vbase and a deformation term ∆V , in which the base shape Vbase intuitively corresponds
to the “identity” of the instance, e.g., a duck, or a flying bird, etc. During online adaptation, we
enforce the network to predict consistent Vbase to preserve the identity, via a swapping loss function:

Ls = niou(R(V j
base + ∆V i, θi), Si) + niou(R(V i

base + ∆V j , θj), Sj), (6)

where V i
base and V j

base are the base shapes for frame i and j; ∆V i and ∆V j are the motion de-
formations for frame i and j; and niou(·, ·) denotes the negative intersection over union (IoU)
objective [15, 22]. All other notations are defined in Eq. 5.

As-rigid-as-possible (ARAP) constraint. Besides the consistency constraints, we keep the ARAP
objective, as discussed in Sec. 3.1, during online adaptation since it also does not require any form of
supervision. We found that the ARAP constraint can obviously improve the qualitative results, as
visualized for the online adaptation procedure in Fig. 6.

Online adaption. During inference, we fine-tune the model on a particular video with the invariance
constraints discussed above, along with a silhouette and a texture objective, a Laplacian term as
in [13, 22], and the ARAP constraint discussed in Sec. 3.1. The foreground masks used for the
silhouette and texture objective are obtained by a segmentation model [3] trained with the ground
truth foreground masks available for the image collection. More details of the objectives used for
online adaptation can be found in the supplementary material.

To obtain accurate part propagation of object parts by the UVC [23] model, we employ two strategies.
Firstly, we fine-tune all parameters in the reconstruction model on sliding windows instead of all
video frames. Each sliding window includes Nw = 50 consecutive frames and the sliding stride is
set to Ns = 10. We tune the reconstruction model for Nt = 40 iterations with frames in each sliding
window. Secondly, instead of "painting" random parts onto the first frame and propagating them to
the rest of the frames sequentially in a window, we "paint" random parts onto the middle frame (i.e.
the Nw

2 th frame) in the window and propagate the parts backward to the first frame as well as forward
to the last frame in the window. This strategy improves the propagation quality by decreasing the
propagation range to half of the window size.
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(a) Input (b) Base shape (c) Ours (d) View1 (e) View2 (g) CMR [13](f) No ARAP

Figure 4: Mesh reconstructions from single-view images. All meshes are visualized from the predicted camera
pose except for (d) and (e), where the reconstructions in (c) are visualized from two extra views. Meshes in (f)
are reconstructed by a model trained without the ARAP constraint.

3.3 Self-supervised Setting

Our model can also be easily generalized to a self-supervised setting in which keypoints are not
provided for the image datasets. In this setting, the template prior as well as camera poses in the
CMR method [13] computed from the keypoints are no longer available. This self-supervised setting
is trained differently from the weakly-supervised one in the following: (i) The first stage still assumes
shape symmetry to ensure stability when training without keypoints. (ii) It learns a single template
from scratch via the progressive training in [22]. (iii) We train this model without the keypoints
re-projection and the ARAP constraints in Sec. 3.1. (iv) Without the shape bases, the base shape
invariance constraint is thus removed in the online adaptation procedure. Other structure and training
settings in the self-supervised model are the same as in the weakly-supervised model discussed in
Sec. 3.1 and 3.2.

4 Experiments
We conduct experiments on animals, i.e., birds and zebras. We evaluate our contributions in two
aspects: (i) the improvement of single-view mesh reconstruction, and (ii) the reconstruction of a
sequence of frames via online adaptation. Due to the lack of ground truth meshes for images and
videos captured in the wild, we evaluate the reconstruction results via mask and keypoint re-projection
accuracy, e.g., we follow, and compare against [13] to evaluate the model trained on the image dataset.
We also describe a new bird video dataset that we curate and evaluate the test-time tuned model on it
in the following. We focus on evaluations on the bird category in the paper and leave evaluations on
the zebra category to the supplementary.

4.1 Experimental Settings

Datasets. We first train image reconstruction models, discussed in Sec. 3.1, for the CUB bird [42]
and the synthetic zebra [55] datasets. For test-time adaptation on videos, we collect a new bird video
dataset for quantitative evaluation. Specifically, we collect 19 slow-motion, high-resolution bird
videos from YoutTube, and 3 bird videos from the DAVIS dataset [18]. For each slow-motion video
collected from the Internet, we apply a segmentation model [3] trained on the CUB bird dataset [42]
to obtain its foreground segmentation for online adaptation.

Evaluation metrics. We evaluate the image-based model on the testing split of the CUB dataset.
Note that for keypoint re-projection, instead of using the keypoint assignment matrix in [13], we
apply the canonical keypoint UV map to obtain the 3D keypoints (Sec. 3.1). For the video dataset,
we annotate frame-level object masks and keypoints via a semi-automatic procedure. We train a
segmentation model and a keypoint detector [7] on the CUB dataset. Then, we manually adjust and
filter out inaccurate predictions to ensure the correctness of the ground-truth labels. To evaluate the
accuracy of mask re-projection, we compute the Jacaard index J (IoU) and contour-based accuracy
F proposed in [32], between the rendered masks and the ground truth silhouettes of all annotated
frames. Evaluations on keypoint re-projection can be found in the supplementary documents.

In addition, to further quantitatively evaluate shape reconstruction quality, we animate a synthetic 3D
bird model and create a video with 520 frames in various poses such as flying, landing, walking etc.,
as shown in Fig. 7. We then compare the predicted mesh with the ground truth mesh using Chamfer
distance every 10 frames.
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(a)

(d)

(c)

(b)

Figure 5: Mesh reconstruction from video frames. (a) Input video frames. (b) Reconstruction from the model
trained only on single-view images. (c) Reconstruction from the model test-time trained on the video without
the invariance constraints in Sec. 3.2. (d) Reconstruction from the proposed video reconstruction model.

Network architecture. For fair comparisons to the baseline method [13], we train our model using
the same network as [13], i.e., ResNet18 [9] with batch normalization layers [12] as the encoder,
we call this model “ACMR” in the following, which is short for “asymmetric CMR”. However,
ACMR cannot be well adapted to test videos due to the batch normalization layers and the domain
gap between images and videos (see Table 2(d)). Thus, we train a variant model where we use
ResNet50 [9] as our encoder and replace all the batch normalization layers in the network with group
normalization layers [48]. We call this variant model “ACMR-vid”. All test-time training is carried
out on the ACMR-vid model unless otherwise specified.

Network training. Taking the weakly-supervised setting as an example, to train the image recon-
struction model, we first warm up the model without the motion deformation branch, the keypoint
re-projection objective, or the ARAP constraint for 200 epochs. This warm-up process effectively
avoids the trivial solution where the model solely depends on the motion deformation branch for shape
deformation while ignoring the base shape branch. We then train the full image reconstruction net-
work with all objectives for another 200 epochs. Other training details, including the self-supervised
setting, and the illustration of our network architecture can be found in the supplementary material.

4.2 Qualitative Results

Mesh reconstruction from images. In Fig. 4, we show visualizations of reconstructed bird meshes
from single-view images. Thanks to the “motion deformation branch” discussed in Sec. 3.1, the
proposed ACMR model is able to capture asymmetric motion of the bird such as head rotation
(Fig. 4(c)), which cannot be modeled by the baseline method [13] (Fig. 4(g)).

Without
ARAP

Full 
model

Input frame Observed view Unobserved view Input frame Observed view Unobserved view

Figure 6: Qualitative comparison of online adaptation with/without the ARAP constraint.

Online adaptation on a video. We visualize the reconstructed meshes by our ACMR-vid model
for video frames in Fig. 5. Without online adaptation, the ACMR-vid model independently applied
to each frame suffers from a domain gap and shows instability over time (Fig. 5(b)). With online
adaption as discussed in Sec. 3.2, the ACMR-vid model reconstructs plausible meshes for each video
frame as shown in Fig. 5(c) and (d). Specifically, to demonstrate the effectiveness of the proposed
invariance constraints, we also show reconstructions of an ACMR-vid model trained without all the
invariance constraints in Fig. 5(c), which predicts less reliable shape, camera pose as well as texture
compared to our full ACMR-vid model. Finally, we visualize the effectiveness of ARAP for online
adaptation in Fig. 6. Without this constraint, the reconstructed meshes are less plausible, especially
from unobserved views. More video examples can be found in the supplementary.
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4.3 Quantitative Results

Table 1: Quantitative evaluation of mask IoU and keypoint re-projection (PCK@0.1) on the CUB dataset [42].

(a) Metric (b) CMR [13] (c) ACMR (d) ACMR,
no ∆V

(e) ACMR,
no ARAP (f) ACMR-vid

Mask IoU ↑ 0.706 0.708 0.647 0.758 0.773
PCK@0.1 ↑ 0.810 0.855 0.790 0.857 0.895

Evaluations on the image dataset. As shown in Table 1(b) vs. (c), our ACMR model achieves com-
parable mask IoU and higher keypoints re-projection accuracy compared to the baseline model [13]
with the same network architecture. This confirms the correctness of both the reconstructed meshes
as well as that of the predicted camera poses. In addition, our ACMR-vid model achieves even better
performance as shown in Table 1(f). We note that our full ACMR model does not quantitatively
outperform the model trained without the ARAP constraint, because the motion deformation ∆V
freely over-fits to the mask and keypoint supervision without any regularization. However, the model
without the ARAP constraint visually shows spikes and unnatural deformations as shown in Fig. 4(f)
and in the supplementary.

Table 2: Quantitative evaluation of mask re-projection accuracy on the bird video dataset. “(T)” indicates the
model is test-time trained on the given video., Lc, Lt, Ls are defined in Eq. 4, 5, 6 respectively.

(a) Metric (b) CMR [13] (c) ACMR (d) ACMR (T) (e) ACMR-vid (T),
no Lc, Lt, Ls

(f) ACMR-vid (T)

J (Mean) ↑ 0.554 0.686 0.706 0.836 0.868
F(Mean) ↑ 0.209 0.363 0.406 0.666 0.756

Ref. parametric model any video label? controlled consistency

[3] DAM GT cam Yes texture

[4] kinematics GT cam Yes keypoints

[5] SMPL large-scale videos (unlabeled) No shape

[6] SMPL 3D GT Yes supervised

ours none one video (unlabeled) No texture, shape, parts

Table 2: Comparisons of settings with [3-4] in R4’s review. “cam” for camera, “GT” for ground truth.

Input

Base

Full

Time

Figure 1: Reconstruction of animated synthetic 3D bird video. 
Figure 7: Reconstructions of an animated video clip.

Evaluations on the video dataset. As shown
in Table 2(b) and (c) vs. (e), by using the pro-
posed online adaptation method discussed in
Sec. 3.2, the model tuned on videos achieves
higher J and F scores compared to the model
trained only on images. This indicates that the
test-time trained model successfully adapts to
unlabeled videos and can reconstruct meshes
that conform well to the frames. The perfor-
mance of the model is further improved by
adding the correspondence, texture, and shape
invariance constraints discussed in Sec. 3.2 during online adaptation, as shown in Table 2(f).

Evaluation on animated sequences. We apply the proposed model to an animated video clip and
compare the predicted mesh with the ground truth mesh using Chamfer distance every 10 frames.
We show the qualitative reconstructions in Fig. 7 and quantitative evaluation results in Table 3. The
proposed ACMR method outperforms the baseline CMR [13] model and is further improved via the
proposed online adaptation strategy discussed in Sec. 3.2.

Metric CMR [13] ACMR ACMR (T)
Chamfer↓ 0.016 0.015 0.012

Table 3: Evaluation on synthetic data.

Evaluations for self-supervised setting
(Sec. 3.3). After online adaptation, this
model too, achieves both a higher J score (0.843
vs. 0.582) and F score (0.678 vs. 0.256) compared
to the model pre-trained on the image dataset, i.e., our method reconstructs promising dynamic 3D
meshes without annotating any keypoint for training.

5 Conclusions
We propose a method to reconstruct temporally consistent 3D meshes of deformable objects from
videos captured in the wild. We learn a category-specific 3D mesh reconstruction model that jointly
predicts the shape, texture, and camera pose from single-view images, which is capable of capturing
asymmetric non-rigid motion deformation of objects. We then adapt this model to any unlabeled
video by exploiting self-supervised signals in videos, including those of shape, texture, and part
consistency. Experimental results demonstrate the superiority of the proposed method compared to
state-of-the-art works, both qualitatively and quantitatively.

9



Broader Impact

The developed method will make significant contributions to both the 3D vision and endangered
species research. The method provides a way to study animals that can only be captured in the wild
as 2D videos, e.g., endangered animal species of birds and zebras. The broader impact includes
enhancing our understanding of such endangered animals simply from videos, as they can be
reconstructed and viewed in 3D. The method can also be applied to tasks such as bird watching,
motion analysis, shape analysis, to name a few. Furthermore, another important application is to
simplify an artists workflow, as an initial animated and textured 3D shape can be directly derived
from a video.
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