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Abstract

Estimating a mesh from an unordered set of sparse, noisy

3D points is a challenging problem that requires to carefully

select priors. Existing hand-crafted priors, such as smooth-

ness regularizers, impose an undesirable trade-off between

attenuating noise and preserving local detail. Recent deep-

learning approaches produce impressive results by learn-

ing priors directly from the data. However, the priors are

learned at the object level, which makes these algorithms

class-specific, and even sensitive to the pose of the object.

We introduce meshlets, small patches of mesh that we use

to learn local shape priors. Meshlets act as a dictionary of

local features and thus allow to use learned priors to recon-

struct object meshes in any pose and from unseen classes,

even when the noise is large and the samples sparse.

1. Introduction

The ability to capture, represent, and digitally manipu-

late objects is crucial for a wide range of important appli-

cations, from content creation to animation, robotics, and

virtual reality. Among the different representations for 3D

objects (which also include depth maps, occupancy grids,

and point clouds), meshes are particularly appealing.

Estimating meshes of real-world objects, however, is not

straightforward since common capture strategies, such as

structured light [30] or multi-view stereo [14, 36], produce

point clouds or depth maps instead. These intermediate rep-

resentations are noisy, sparse, and, when used to estimate a

continuous surface, they introduce a trade-off between over-

fitting to the noise and over-smoothing. Traditional methods

require hand-crafted priors (e.g., local smoothness) to bal-

ance noise and details, as is the case for Laplacian recon-

struction [27]. Figure 1 shows that this balance is difficult

to strike when the point cloud is noisy (rows marked as N ).

Recent learning-based methods learn priors directly from a

large number of examples [16, 34, 15, 26, 29]. Because
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Figure 1: Mesh reconstructions for objects in pose (P) and out

of pose ( P ), under low (N) and moderate ( N ) noise, and for

objects in (T) and out ( T ) of training. GT+PC ground truth

mesh and the point cloud used by the various methods to esti-

mate the mesh. Traditional methods introduce a noise vs. smooth-

ness trade-off (Laplacian low/high [27]). State-of-the-art, deep-

learning methods (AtlasNet [11] and OccNet [26]) learn object-

level priors, which causes them to fail on objects not seen in train-

ing ( T ), or even on objects that are just rotated w.r.t. the training

set ( P ). Our method learns local priors and forces global consis-

tency with the point cloud.

of their ability to learn priors directly from the data, these

approaches can produce impressive results from both point

clouds and single images. However, they learn priors at the

object level, which limits their ability to reconstruct objects

from classes not seen during training (rows marked as T ).

They also struggle to disentangle the shape priors with the

object pose: state-of-the-art learning methods can fail com-

pletely on a rotated point cloud (rows marked as P ) even

though they can reconstruct the same point cloud when its

pose resembles that of the training set (rows marked as P).

Tatarchenko et al. suggest that many of these methods may
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actually learn a form of classification and nearest-neighbor

retrieval from the dataset, rather than a proper 3D recon-

struction [33]. In fact, even for rows P and T in Figure 1,

a closer look seems to indicate that AtlasNet [11] and Occ-

Net [26] are reconstructing a different couch and chair from

the training set.

We present a learning-based method to extract a 3D mesh

from a set of sparse, noisy, unordered points that bridges tra-

ditional and learning-based approaches. Our key intuition

is to learn geometric priors locally while enforcing their

consistency globally. To represent shape priors, we intro-

duce meshlets, small patches of mesh that, loosely speak-

ing, serve as a learned dictionary of local features. Specifi-

cally, we use a variational auto-encoder (VAE) [20] to learn

the latent space of meshlets that can be observed in natural

shapes. We call these natural meshlets. Learning these local

features offers two key advantages. First, it allows to recon-

struct objects from classes never seen in training: at some

scale, a couch exhibits similar local features to those of a

bunny. Second, it disentangles the global pose of the object

and the parametrization learned by the network, which al-

lows our algorithm to be robust to dramatic changes of the

object’s pose, see Figure 1.

To fit the meshlets to a point cloud we minimize their

distance to the points, while enforcing that they belong to

the latent space of natural meshlets. Therefore, the resulting

surface will locally satisfy the priors we learned. However,

because the meshlets are optimized independently of each

other, the mesh extracted from their union will not be wa-

tertight. Therefore, we define an auxiliary, watertight mesh

and propose to use it in an alternating optimization that en-

sures that the meshlets are consistent with each other and

with the observed point cloud.

We show with extensive comparisons that this iterative

method produces results that outperform the state-of-the-art

on challenging scenarios such as noisy points clouds in ar-

bitrary poses, as shown in Figure 1. In summary, our con-

tributions are:

• We present meshlets, a new way of representing local

shape priors in the latent space of a variational autoen-

coder that is trained on local patches form a dataset of

real-world objects.

• We propose an alternating optimization which fits

meshlets to the measured point samples (enforcing lo-

cal constraints) while maintaining global consistency

for the mesh.

• We demonstrate for the first time, to our knowledge,

successful reconstructions of 3D meshes from very

sparse, noisy point measurements with a category-

agnostic, learning-based method.

2. Related Work

Extracting a mesh from a point cloud is an important

problem that has been the focus of much research since the

early days of graphics. Traditional methods such as march-

ing cubes [24] or Ball-Pivoting [4] work well for cases

where the noise is small as compared to the density of the

point cloud.

In general, however, noise does pose issues. One tradi-

tional solution, then, is to use the points and their normals to

compute a signed-distance function whose zero crossing is

the desired surface [8, 13, 2, 17, 18]. An alternative is to use

hand-crafted priors, such as smoothness of the vertices and

normals of the estimated mesh [27]. However, these pri-

ors introduce a trade-off between suppressing the noise and

preserving sharp features that becomes increasingly brittle

for sparser and noisier point clouds, see Figure 1.

Priors can be more effectively learned from data with

neural networks. Deep learning methods, for instance, have

shown great success in estimating depth maps from images,

whether from multiple views [14, 36], stereo [19], or even

single-image [9, 10, 39, 21]. Even meshes can be directly

extracted from a single image, provided that the class of the

object is known [16, 34, 15].

Rather than requiring to manually tinker with the tradi-

tional noise/sharpness trade-off, methods that learn priors

to extract meshes from point clouds introduce a new one:

generally speaking, the lower the quality of the observa-

tions (e.g., strong noise or sparsity of the point cloud), the

stronger the priors need to be, thus affecting the algorithm’s

ability to generalize to different and unseen classes. For

instance, methods that learn local priors are class-agnostic

but tend to need dense point clouds with low levels of

noise [12, 38, 37, 35]. The recent works or Park et al. [29],

Groueix et al. [11], and Mesheder et al. [26] produce im-

pressive results even with sparser and potentially noisier

data, but fail to generalize to completely new classes of ob-

jects. Often they even struggle when the point cloud is in

a pose that differs significantly from the training pose, as

show in Figure 1, rows P . This issue is due, in part, to

the fact that these methods lack a mechanism to enforce ge-

ometric constraints at inference time. Our method is class-

agnostic thanks to its ability to learn and enforce local priors

while minimizing the error with respect to the point cloud

at inference time.

The idea of learning priors from data and enforcing

geometric constraints at inference time was recently ex-

plored for depth map [5], point cloud [40] and surface es-

timation [23, 22, 29]. These approaches use low dimen-

sional representations that allow inference time optimiza-

tion. However, approaches that learn priors at the object

level tend to be category specific. Our meshlet priors di-

rectly encode the (local) shape of the surface instead of a

viewer centric depth [5]. Meshlets are class agnostic and



can be used to learn and enforce priors at different scales.

Key to solving the mesh estimation problem is how to

represent it. Different representations for meshes exist that

are amenable to use with neural networks, but they tend to

also be class specific [31, 3]. One key ingredient of our

method is the use of small mesh patches, called meshlets,

which simplify the processing of the mesh, among other

things. A related approach is the work of Groueix et al.

who also represent the mesh as a collection of large parts,

which they call charts [11]. However, their method does not

offer a mechanism to enforce global consistency and does

not leverage local shape priors.

3. Method

Our goal is to estimate a mesh from a set of unordered,

non-oriented points. The task is easy when the point cloud

is dense and the noise is low. However, when the quality

of the observations degrades, e.g., sparser or noisier points,

the choice of priors and heuristics becomes central. Hand-

crafted priors, such as smoothness, introduce a trade-off be-

tween overly smooth and noisy reconstructions, as shown

in Figure 1 (Lap-low/high). On the other hand, neural net-

works can learn priors directly from data, but they intro-

duce other challenges. First, capturing the distribution of

generic objects requires training on a large number of ex-

amples, possibly larger than what existing datasets can sup-

ply. Moreover, generalization can be an issue: the perfor-

mance of existing learning-based methods quickly degrades

when the test objects differ from the ones used in training,

as shown in the rows marked as T in Figure 1. Finally, it

is not straightforward to disentangle object-level priors and

the pose of the object. Figure 1 shows that OccNet [26]

and AtlasNet [11], both recent state-of-the-art works, fail

for classes never seen in training T , or even when the pose

of the object is significantly different from the poses seen in

training P .

To overcome these issues, we propose to learn priors lo-

cally: even if the Stanford Bunny in Figure 1 was never

seen in training, its local features are similar to those found

in more common objects from the training set. We intro-

duce meshlets, which can be regarded as small patches of

a mesh, see Figure 2. Loosely speaking, meshlets act as a

dictionary of basic shape features. Meshlets are local and

of limited size, and thus offer a simple mechanism to disen-

tangle the (local) priors from the object’s pose. If meshlets

are adapted to the point cloud independently of each other,

however, they may not result in a watertight surface. There-

fore, we explicitly enforce their consistency globally. In

the following we describe these two stages, and the overall

process to extract a mesh.

Meshlet A Interpolation Meshlets Meshlet B

Figure 2: Smoothness of the latent space. We can progressively

deform one mesh onto another by interpolating between the corre-

sponding points in latent space (see Section 3.1).

3.1. Local Shape Priors with Meshlets

In this section we introduce meshlets, and describe how

we leverage them to enforce local shape priors. Intuitively,

a meshlet m is a small patch of mesh deformed to adhere to

a region of another, larger mesh, see Figure 2 and 7(a). To

extract meshlet m at vertex v of mesh M, we first compute

a local geodesic parametrization [25] that maps the 3D coor-

dinates of the vertices in a neighborhood of v to coordinates

on πT , the plane tangent to M at v. We then re-sample the

geodesic distance function πT at integer coordinates (µ, ν).
This gives us the correspondence between a vertex on the

meshlet at (µ, ν), and a vertex on the mesh in the neighbor-

hood of v.

Because they only require a local parametrization com-

puted with respect to the center vertex v, meshlets work well

even for objects with large, varying curvature. Because they

are local, they can learn shape priors that are independent of

the pose and class of the object.

Learning local shape priors with meshlets. We want to

learn the distribution of “natural meshlets,” i.e., those mesh-

lets that capture the local features of real-world objects. In-

spired by recent methods [40, 5], we use a variational auto-

encoder (VAE). By training the VAE to reconstruct a large

number of meshlets, we force its bottleneck to learn the la-

tent space of natural meshlets. Differently put, vectors sam-

pled on this manifold and fed into the decoder result in nat-

ural meshlets. We extract meshlets from objects from the

ShapeNet dataset [6] and we feed their 3D coordinates for

training. However, we first roto-translate the meshlets to

bring them into a canonical pose. This transformation is

necessary to make sure that similar meshlets sampled from

different 3D locations and orientations map to similar re-

gions in the VAE’s latent space. More specifically, given a



meshlet mi, we first translate and rotate it so that its center

ci is at the origin, and the normal at ci is aligned with the

z-axis, then we rotate it around the z axis so that the local

(µ, ν) coordinates of the meshlet are aligned with the x and

y axes. We call this the canonical pose. A meshlet, then,

is completely defined by Pi, the transformation from global

to canonical pose, and li, the latent vector corresponding to

the meshlet in canonical pose:

mi = {li, Pi}. (1)

Section 4.2 details the network’s architecture. Since we

disentangle pose and shape, smoothly traversing the latent

space will smoothly vary the shape of the reconstructed

meshlet as shown in Figure 2, where we take the latent vec-

tors lA and lB corresponding to meshlets A and B, and we

progressively interpolate between them to get vectors lI ’s.

The meshlets reconstructed from the lI ’s smoothly interpo-

late between the shape of meshlets A and B.

Fitting a meshlet to 3D points. Assume now that we are

given a set of 3D points roughly corresponding to the size

of a meshlet (we will generalize this to a complete point

cloud in Section 3.2). Deforming a natural meshlet to fit it

is now straightforward: we simply traverse the latent space

learned by the VAE to minimize the distance between the

meshlet and the points. Specifically, we take mi(t0), an ini-

tialization of the meshlet, and run it through the encoder to

find the corresponding latent vector li(t0). This is the start-

ing point of our optimization. We then freeze the weights

of the VAE, compute the error between the meshlet and

the points, and take a gradient descent step through the de-

coder. This brings us to a new point in latent space, li(t1),
and the corresponding meshlet mi(t1). Meshlet mi(t1) is

a natural meshlet that is closer to the given 3D points. We

iterate until convergence, see Figure 3. We note that, al-

though other approaches have also proposed to optimize the

latent vector of a VAE to match some measured samples

(e.g., [29, 5, 1, 23]), they do so at the object (or scene) level.

Because our method learns local surface patches, and there-

fore reuse surface priors across different object categories,

it can better generalize.

3.2. Overall Optimization

Having explained how our meshlets can be used to learn

local priors, and can be fit to a set of 3D points, we can de-

scribe the overall algorithm, which is fairly straightforward

at its core. We start with M(t0), an initial, rough approxi-

mation of the complete mesh. This could be a sphere, or any

other surface that satisfies our meshlet priors, i.e., mesh-

lets extracted from M(t0) lie on the manifold learned by

the VAE. From M(t0) we extract N overlapping meshlets

mi(t0)’s and find the corresponding li(t0)’s and Pi(t0)’s,

low-dim manifold 
of real meshlets

K2-dim space of all 
possible meshlets

ite
r. 0

ite
r. 1

ite
r. T

trained
encoder

latent
vector

trained
decoder

initial
meshlet

final
meshlet

iter. 0

measured point samples

iter. 1

iter. T

backprop to 
update latent vector compute error

Figure 3: Optimization of our meshlets using the learned latent-

space as a prior. By backpropagating the error with respect to the

measured points and using it to update the meshlet’s latent vector,

we are effectively moving along the low-dimensional manifold of

real meshlets while fitting the points.

Figure 5. We select N so that each vertex on M(t0) is cov-

ered by at least 3 meshlets. Generally, this results in 500 to

1, 500 meshlets. We also find the distance between M(t0)
and the point cloud, whose gradient we can propagate to

the meshlets since we have the correspondences between

mesh and meshlets by construction. This allows us to up-

date the meshlets to adapt to the points points (Section 3.1).

However, this optimization is performed on each meshlet

independently, so it results in small gaps between the mesh-

lets, see Figure 4(a). Therefore, we enforce and maintain

global consistency by adding a step in which we deform M
to match the meshlets and update the meshlets to match M.

Deforming M brings it closer to the point cloud, deforming

the meshlets forces them to be globally consistent. Finally

we iterate:

1. Optimize meshlets to fit the point cloud (3.2.1).

2. Optimize meshlets and mesh to match each other (3.2.2).

At convergence, the auxiliary variable M, watertight by

construction, is our estimation of the mesh. We now explain

the two steps in detail.

3.2.1 Enforcing Local Shape Priors

To optimize the N meshlets {mi(t0)}i=1:N with respect to

the point cloud we need to define an error. Unfortunately,

the correspondences between the point cloud and the ver-

tices of the meshlets are not readily available. A Chamfer

distance, then, is not straightforward to use because without

correspondences all the points in the point cloud would con-

tribute to the error of all the meshlets—even if they are on

opposite sides of the object. However, we do have the cor-

respondences between the vertices of M(t0) and the mesh-
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Figure 4: Alternating optimization used in our algorithm. The first

stage updates the meshlets based on the errors between the un-

derlying mesh and the measured point cloud. However, because

meshlets are localized representations, optimizing them individu-

ally causes inconsistencies across the object. Hence, in the second

stage we enforce global consistency across all meshlets to recon-

struct an updated version of the mesh which is used in the next

iteration of the algorithm.

meshlets on mesh meshletmesh mi
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pose
estimation

meshlet in
canonical pose

global pose info

l i
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trained
encoder

Figure 5: Encoding of meshlets on a given mesh, M. Each mesh-

let is represented by a latent vector li in the low-dimensional

manifold as well as its global pose Pi (composed of rotation Ri

and translation Ti between the canonical space and global coordi-

nates).

lets. Therefore, we compute the Chamfer distance between

the point cloud and the mesh instead:

CPC =
∑

vj∈M(t0)

min
p∈PC

||vj−p||22+
∑

p∈PC

min
vj∈M(t0)

||vj−p||22,

(2)

where p is a 3D point in the input point cloud, PC. Equa-

tion 2 gives us per-vertex error on the mesh, which we can

propagate to the corresponding meshlets. We then update

the meshlets to minimize CPC as explained in Section 3.1,

and get a new set of natural meshlets {mi(t1)}i=1:N .

3.2.2 Enforcing Global Consistency

To enforce that meshlets {mi(t1)}i=1:N are globally con-

sistent, i.e., that their union is a watertight mesh, we use,

once again, M. Specifically, we compute the Chamfer dis-

tance between the vertices of M and the vertices of all the

meshlets as

Cm =
∑

vj∈M

min
vk∈{mi}i=1:N

||vj − vk||
2
2

+
∑

vk∈{mi}i=1:N

min
vj∈M

||vj − vk||
2
2. (3)

First we keep the meshlets fixed and deform M(t0) to mini-

mize Cm. Then we fix the resulting mesh M(t1) and adjust

the meshlets with the algorithm described in Section 3.1,

but this time to minimize Cm. We iterate until Equation 3

is minimized. At this point the meshlets will be consistent

with the mesh and, in turn, globally. This process corre-

sponds to the block “global consistency” in Figure 4.

4. Implementation Details

4.1. Optimization

We start by describing a few details that improve the ef-

ficiency of the optimization procedure or the quality of the

resulting meshes.

Mesh initialization. The auxiliary mesh M(t0) can be

any genus-zero mesh that satisfies the meshlets’ priors (see

Section 3.2). The actual choice, however, does have a

bearing on the number of iterations required to converge.

We initialize our approach with an overly-smoothed Lapla-

cian reconstruction. Empirically, we have observed that the

results of our algorithm initialized in this way are effec-

tively indistinguishable from the results obtained by using a

sphere as an initialization; convergence, however, does take

a fraction of the time. For reference, we show a few exam-

ples of M(t0) in the Supplementary.

Meshlets re-sampling. As the optimization progresses,

the shape and the size of the auxiliary mesh M may change

significantly. On the one hand, this is a desirable behavior:

if the mesh can scale to arbitrary sizes, it can properly match

the size of the underlying mesh, even when the initialization

is far from it. On the other, it results in a sparser meshlet

coverage and, potentially, no coverage in some areas. More-

over, it could cause meshlets to be overly-stretched. There-

fore, every 20 iterations of enforcing local shape priors and

global consistency (blue arrow in Figure 4), we re-sample

the meshlets on the current mesh.

Re-meshing. Large changes from the initialization may

also cause issues to the mesh itself, which may stretch in

some regions or become otherwise irregular. One way to

prevent this is to use strong smoothness priors when enforc-

ing global consistency, but that would hinder our ability to

reconstruct sharp features. At the end of every iteration, we

re-mesh M using Screened Poisson Reconstruction [18] to

encourage smoothness while respecting the priors enforced

by our approach, i.e., preserving the sharpness of local fea-

tures. We provide more details in the Supplementary.

4.2. Meshlet training

To train the meshlets network, we sample 2.2 × 106

meshlets from the ShapeNet dataset [6]. We extract mesh-

lets by randomly selecting objects across several classes.



We then apply three different scales to each object and ex-

tract 256 meshlets for each scale, so that our meshlet dataset

captures both fine and coarse details. Note that we disre-

gard meshlets that are problematic. Specifically, we use the

geodesic distance algorithm by Melvær et al. [25] and reject

those meshlets for which the geodesic distance calculation

results in a large anisotropic stretch, or fails altogether. The

network, then, is trained to reconstruct these meshlets using

ℓ2 as a loss. In all of our experiments we use meshlets of

size 31×31×3. To exploit the latent space of natural mesh-

lets, we use a fully-connected encoder decoder network that

takes as input a (31·31)×3 vector (i.e., a vectorized version

of the meshlet). The encoder and the decoder are symmetric

with 6 layers each, and the latent code vector is one third of

the input dimension.

5. Experiments

Comparisons. In this section we evaluate our method

against state-of-the-art approaches. Then, we compare our

meshlets to other local shape priors to validate their impor-

tance.

We compare our method with several state-of-the-art

mesh reconstruction approaches. The first is Screened Pois-

son [18], a widely used, traditional technique that cre-

ates watertight surfaces from oriented point clouds. Be-

cause our input is a raw point cloud, then, we need to

estimate normals. We use two methods to estimate nor-

mals. One is MeshLab’s normal estimation, which fits local

planes and uses them to estimate normals [7]. The other

is a recently published, learning-based method called PCP-

Net [12]. The second mesh reconstruction approach is the

method by Öztireli et al. [28], which also requires oriented

points. They propose a recent variant of marching cubes

that preserves sharp features using non-linear regression

In addition, we compare against Laplacian mesh optimiza-

tion [27]. Leveraging the fact that the norm of the mesh’s

Laplacian captures the local mean curvature, this mesh op-

timization algorithm optimizes the Laplacian at the vertices

in a weighted least-square sense. The algorithm has a free

parameter that regulates the smoothness of the resulting sur-

face. After a parameter sweep we found that no single pa-

rameter would yield the best results over the whole dataset.

Therefore we settled for two values, each offering a dif-

ferent compromise between denoising and over-smoothing.

We also compare with Deep Geometric Prior (DGP) [35],

OccNet [26], and AtlasNet [11], all of which are deep learn-

ing methods. The last two approaches learn priors at the

object level.

Data. We test all the methods on 20 objects. To vali-

date that our method generalizes well, we also include four

objects that are commonly used by the graphics commu-

nity (Suzanne, the Stanford Bunny, Armadillo, and the Utah

Chamfer-ℓ1 Hausdorff

Meshlab [7] +
Scr.Pois. [18] 0.0285 / 0.0112 0.339 / 0.102

RILMS [28] 0.0177 / 0.0166 0.149 / 0.148

PCPNet [12] +
Scr.Pois. [18] 0.0122 / 0.0109 0.147 / 0.140

RILMS [28] 0.0181 / 0.0176 0.151 / 0.153

Laplacian [27]
Low 0.0104 / 0.0103 0.100 / 0.065

High 0.0096 / 0.0094 0.103 / 0.069

Deep Geometric Prior [35] 0.0128 / 0.0130 0.147 / 0.148

AtlasNet [11] 0.0415 / 0.0377 0.293 / 0.263

OccNet [26] 0.0630 / 0.0627 0.304 / 0.285

Ours 0.0090 / 0.0092 0.054 / 0.047

Table 1: We compare our method with state-of-the-art approaches,

both traditional and learning-based, using two metrics. For each

metric we report mean/median values over all of the objects re-

constructed, and across multiple levels of noise. Green and Red

indicate the best and second best method respectively.

Teapot). We select the rest of the meshes from the test set

of ShapeNet dataset [6]. We show all the objects in the Sup-

plementary. However, because the ShapeNet meshes are not

always watertight, we pre-process them with the algorithm

proposed by Stutz and Geiger [32]. Given the watertight

meshes we randomly decimate the number of vertices by

different factors, obtaining three different sparsity levels.

For each sparsity level we also add an increasingly large

amount of Gaussian noise. We describe the parameters we

use, and offer visualization of the different levels of noise

in the Supplementary.

Numerical evaluation. For our numerical evaluation we

use the symmetric Hausdorff distance, which reports the

largest vertex reconstruction error for each mesh, and the

Chamfer-ℓ1 distance, which computes the distance between

two meshes after assigning correspondences based on clos-

est vertices. Table 1 shows that our method performs con-

sistently better than all the competitors. The gap is most

apparent when comparing with deep-learning methods that

learn priors at the object level, further suggesting that our

strategy to learn local priors is a promising direction. We

list the numbers for each object across the different noise

settings in the Supplementary.

Qualitative evaluation. In Figure 7 we show both the

meshlets at the end of our optimization (a) and the quality

of the final mesh reconstructed by our algorithm (b). Note

that, thanks to the re-meshing steps during our optimiza-

tion procedure (Section 4.1), our output is a high-quality,

regular mesh. We also show a subset of the objects used

in the numerical evaluation in Figures 1 and 6 for differ-

ent levels of sparsity and noise. Additional results are in

the Supplementary. Competing methods are significantly

impacted by noise and produce overly smooth results to at-

tenuate its effect. For example, the Laplacian reconstruc-

tions obtained with low regularization (Lap-low) are still
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Figure 6: Qualitative comparison of several reconstruction methods and our approach. On the left is the input, the ground-truth (GT)

mesh overlaid with the sparse, noisy point cloud (PC). We show results with normals estimated with Meshlab [7] and PCPNet [12]. We

reconstruct the resulting point clouds with both RILMS [28] and Screened Poisson [18]. Laplacian regularizer [27] is shown for two levels

of smoothing. We also show three recent deep learning approaches: Deep Geometric Prior (DGP) [35], AtlasNet [11] and OccNet [26].

All of these methods struggle to cope with noise, classes not seen in training, or both.

(a) (b)

Figure 7: Our final meshlets are globally consistent and capture

the local shape of the mesh (a). The resulting mesh is regular over

the whole reconstructed object (b).

noisy, while those for which we used high regularization

(Lap-high) are over-smoothed. Even Screened Poisson re-

construction [18], the de facto standard among traditional

methods, used in conjunction with PCPNet [12] to estimate

the normals, produces visibly noisy results. Finally, as also

shown in Figure 1, state-of-the-art deep learning methods

only work on objects seen in training and for low levels of

noise. Our results, on the other hand, offer the best trade-off

between detail and noise by recovering locally sharp fea-

tures and small details, despite the sparsity and noise of the

point clouds.

On the importance of natural meshlets. Our meshlet

priors are the core of our method. Here we compare our

natural meshlets with other shape priors to isolate their con-

tribution to the overall quality of the result. The first is

a Laplacian regularizer, which is a standard smoothness

prior [27]. The second, is the recent work by Williams et

al., which suggests that a neural network is also, in itself,

a prior for local geometry [35]. We use these priors and

(a) GT+PC (b) Laplacian (c) DGP (d) Meshlets

Figure 8: Meshlets reconstruct local features more accurately than

other priors. Input point clouds shown on the GT mesh in (a).

our natural meshlet prior to optimize small patches of mesh

to small point clouds extracted from real objects. Figure 8

shows two representative examples. Despite the complexity

of the local shape, and the level of noise, the optimization

that uses our strategy (Section 3.1) is able to correctly esti-

mate the underlying meshlet. On the contrary, Deep Geo-

metric Prior over-fits to the noise, and the Laplacian regular-

izer over-smooths the surface. On 105 meshlets, the average

symmetric Hausdorff distance is 0.027 for DGP, 0.029 for

Laplacian, and 0.024 for our method.

To further validate the importance of our natural mesh-

let priors towards our overall optimization procedure, we

swap our latent space search with a Laplacian prior, and

leave the rest of the algorithm untouched. As shown in Fig-

ure 9, using meshlet priors allows to better smooth noise,

while still reconstructing sharp features, such as edges and

corners. However, we also note that enforcing global con-

sistency (GC) is an important step of our method, without

which the quality of the final reconstruction degrades sig-
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Figure 9: Replacing our meshlet priors with Laplacian priors leads

to overly-smoothed results. However, using our meshlet priors

without using global consistency (GC) produces irregular meshes.

nificantly, as shown in Figure 9.

6. Discussion and Limitations

Our approach optimizes a mesh and a number of mesh-

lets based on the gradients available at mesh vertexes, while

enforcing the meshlets priors. In this paper, the gradients

for the mesh were obtained by computing the distance of

the mesh to the point cloud. However, our method can take

gradients from any source, including a differentiable ren-

derer [16]. This adds to the flexibility of our approach.

In our work we learn and enforce priors for mesh esti-

mation using meshlets, which have an intrinsic scale and

resolution. Our current approach uses a single fixed scale

of the meshlet for all the object reconstructions, although

we effectively learn meshlets at multiple scales (see Sec-

tion 4.2). This poses limitations on the level of details we

can reconstruct: they cannot be smaller than the resolution

of the meshlet. When this happens, the fine details may

not be reconstructed, as shown in Figure 10(a). Using a

meshlet at a single scale throughout the mesh deformation

process may also lead to local minima, a particularly press-

ing problem if the initial mesh is significantly far from the

target. Figure 10(b) shows a reconstruction that fell in a lo-

cal minimum. A natural extension, then, would be to use

a coarse-to-fine approach. Finally, our approach may fail

for objects that present very thin structures, such as those

shown in Figure 10(c).

To ensure that our auxiliary mesh stays regular through-

out the optimization process, we perform Poisson recon-

struction (see Section 4.1). As a by-product, we inherit its

ability to deal with different topologies as can be seen for

(a) (b) (c)

Figure 10: Our reconstruction method may yield poor reconstruc-

tions if when the object features are smaller than the resolution of

the meshlets (a), when the optimization falls in a local minimum

(b), or for thin structures (c).

the Stanford Teacup in Figure 6, which is genus-one.

Our current approach is computationally expensive and

not optimized for speed. Hence, it can take from hours

to dozens of hours, depending on the initialization to run

the full optimization. The Chamfer distance computation

in Equations 2 and 3, which has quadratic complexity in

the number of points, is the bottleneck. In the current im-

plementation, we consider all the points in the point cloud

every time we compute the distance. Limiting the search to

a local neighborhood would help. Improving the efficiency

of the meshlets extraction is another obvious venue to speed

up the algorithm.

7. Conclusions

We present meshlets, a novel local shape representation

that allows to reconstruct 3D meshes from sparse, noisy

point clouds. To do this, we train a variational autoen-

coder to learn the manifold of naturally-occurring mesh-

lets. Meshlets on this manifold act as priors for local, class-

agnostic, natural features. Therefore, meshlets allow us to

disentangle the overall pose of the object from its shape,

and can be used to reconstruct objects from classes not seen

in training. To reconstruct a full mesh we use a number

of meshlets. Then, we propose an alternating optimiza-

tion procedure that first optimizes the meshlets to match the

points (locally) and then enforces their consistency (glob-

ally). Our algorithm reconstructs objects from classes not

seen in training, in arbitrary pose, and under significant

noise and sparsity of the input points, even when existing

state-of-the-art methods fail.
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Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE Transactions on Vi-

sualization and Computer Graphics (TVCG), 1999. 2

[5] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan

Leutenegger, and Andrew J. Davison. CodeSLAM — learn-

ing a compact, optimisable representation for dense visual

SLAM. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 2, 3,

4

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and

Fisher Yu. ShapeNet: An information-rich 3D model repos-

itory. Technical Report arXiv:1512.03012, 2015. 3, 5, 6

[7] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-

teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.

MeshLab: An open-source mesh processing tool. In Euro-

graphics Italian Chapter Conference, 2008. 6, 7

[8] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In ACM Trans-

actions on Graphics (SIGGRAPH), 1996. 2

[9] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in Neural Information Processing Sys-

tems (NIPS), 2014. 2

[10] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

2

[11] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,

Bryan C. Russell, and Mathieu Aubry. A papier-mâché ap-
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