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Abstract

In this work we demonstrate the vulnerability of vision
transformers (ViTs) to gradient-based inversion attacks. Dur-
ing this attack, the original data batch is reconstructed given
model weights and the corresponding gradients. We intro-
duce a method, named GradViT, that optimizes random noise
into naturally looking images via an iterative process. The
optimization objective consists of (i) a loss on matching the
gradients, (ii) image prior in the form of distance to batch-
normalization statistics of a pretrained CNN model, and (iii)
a total variation regularization on patches to guide correct
recovery locations. We propose a unique loss scheduling
function to overcome local minima during optimization. We
evaluate GadViT on ImageNet1K and MS-Celeb-1M datasets,
and observe unprecedentedly high fidelity and closeness to
the original (hidden) data. During the analysis we find that
vision transformers are significantly more vulnerable than
previously studied CNNs due to the presence of the attention
mechanism. Our method demonstrates new state-of-the-art
results for gradient inversion in both qualitative and quan-
titative metrics. Project page at https://gradvit.github.io/.

1. Introduction
Vision Transformers (ViTs) [9] have achieved state-of-

the-art performance in a number of vision tasks such as
image classification [40], object detection [7] and semantic
segmentation [6]. In ViT-based models, visual features are
split into patches and projected into an embedding space. A
series of repeating transformer encoder layers, consisting
of alternating Multi-head Self-Attention (MSA) and Multi-
Layer Perceptron (MLP) blocks extract feature representa-
tion from the embedded tokens for downstream tasks (e.g.,
classification). Recent studies have demonstrated the ef-
fectiveness of ViTs in learning uniform local and global
spatial dependencies [32]. In addition, ViTs have a great
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Figure 1. Inverting gradients for image recovery. We show vision
transformer gradients encode a surprising amount of information
such that high-fidelity original image batches of high resolution can
be recovered, see 112ˆ 112 pixel MS-Celeb-1M and 224ˆ 224
pixel ImageNet1K sample recovery above and more in experiments.
Our method, GradViT, yields the first successful attempt to invert
ViT gradients, not achievable by previous state-of-the-art methods.
We demonstrate that ViTs, despite lacking batchnorm layers, suffer
even more data leakage compared to CNNs. As insights we show
that ViT gradients (i) encode uneven original information across
layers, and (ii) attention is all that reveals.

capability in learning pre-text tasks and can be scaled for
distributed, collaborative, or federated learning scenarios. In
this work, we study vulnerability of sharing ViT’s gradients
in the above mentioned settings.

Recent efforts [10, 38, 44] have demonstrated the vulnera-
bility of convolutional neural networks (CNN) to gradient-
based inversion attacks. In such attacks, a malicious party
can intercept local model gradients and reconstruct private
training data in an optimization-based scheme via matching
the compromised gradients. Most methods are limited to
small image resolutions or non-linearity constraints amid the
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hardness of the problem. Among these, GradInversion [38]
demonstrated the first successful scaling of gradient inver-
sion to deep networks on large datasets over large batches.
In addition to gradient matching, GradInversion [38] is con-
strained to models with Batch Normalization layers to match
feature distribution and bring naturality to the reconstructed
images. However, vision transformers lack BN layers and are
less vulnerable to previously proposed inversion methods.
Naively applying CNN-Based gradient matching [10, 38]
techniques for ViT inversion results in sub-optimal solutions
due to inherent differences in architectures. Fig. 1 compares
reconstruction results obtained by applying current state-
of-the-art method GradInversion [38] on the CNN and ViT
models. We clearly see significantly degraded visual quality
when inverting the ViT gradients.

Since ViT-based models have a different architecture, op-
erate on image patches, and contain no BNs as in CNN
counterparts, it might be assumed as if they are more secure
to gradient-based inversion attacks. On the contrary to this
assumption, in this work we quantitatively and qualitatively
demonstrate that ViT-based models are even more vulnera-
ble than CNNs. To show that, we first study the challenges
introduced by ViT’s architectural difference, then propose
a novel method, named GradViT, which addresses them
and obtains unprecedented high-fidelity and closeness to the
original (hidden) data (Fig. 1). Specifically, in GradViT, we
tackle the absence of BN statistics by using an independently
trained CNN to match the feature distributions of natural
images and the images under optimization. We use a ResNet-
50 model trained with contrastive loss and its associated BN
statistic as an image prior. That is, another model can serve
as an image prior instead of the exact BN statistics and their
corresponding updates. Moreover, we discover that the pro-
posed image prior generalizes to unseen domain (e.g., faces)
which makes it universal.

In addition, while a gradient-based optimization attack
can lead to a legitimate reconstruction of patches, their rel-
ative location will most likely be incorrect. This happens
due to the lack of inductive image bias and permutation in-
variance in ViTs. To address this problem, we propose a
patch prior loss that minimizes the total pixel distances of
edges between patches. In other words, we enforce spatial
constraints on shared borders (i.e., vertical and horizontal)
across neighboring patches as we expect no significant visual
discontinuities between them. Minimizing all three losses
simultaneously leads to sub-optimal solutions. Therefore,
we propose a tailored scheduler to balance the contribution
of each loss during training, which is observed to be critical
to achieve a valid image recovery.

We validate the effectiveness of GradViT across a wide
range of ViT-based models over changing datasets. We
start with batch reconstruction of training images from
ImageNet1K dataset [8] given the widely used ViT net-

works (e.g., ViT-B/16,32, ViT-S, ViT-T, DeiT, etc.) as the
base networks. Our results demonstrate new state-of-the-
art benchmarks in terms of image reconstruction metrics.
Furthermore, we demonstrate the possibility of detailed re-
covery of facial images by gradient inversion of a ViT-based
model [43] from MS-Celeb-1M dataset [12]. Our findings
demonstrate the vulnerabilities of ViT-based models to gra-
dient inversion attacks and specifically for sensitive domains
with human training data. With these concerns, we perform
extensive studies to analyze the source of vulnerability in
ViTs by investigating both layer-wise and component-wise
contributions. Our findings provide insights for the develop-
ment of protection mechanisms against such attacks, which
can be beneficial for securing distributed training of ViTs in
applications such as multi-node training or federated learn-
ing [15, 26].

Our main contributions are summarized as follows:
• We present GradViT, a first successful attempt at ViT

gradient inversion, in which random noise is optimized
to match shared gradients.
• We introduce an image prior based on CNNs trained

with contrastive loss and show scalability across do-
mains.
• We articulate a loss scheduling scheme to guide opti-

mization out of sub-optimal solutions.
• We formulate a patch prior loss function tailored to ViT

inversion that mitigates the issue of patch permutation
invariance in the reconstructed image.
• We set a state-of-the-art benchmark for ViT gradient

inversion across multiple ViT-based networks on Im-
ageNet1K [8] and MS-Celeb-1M [12] datasets. Our
method recovers high-resolution facial features with
the most intricate details.
• We study the vulnerability of ViT components by per-

forming layer-wise and component-wise analysis. Our
findings show that gradients of deeper layers are more
informative, and MSA gradients yield near-perfect in-
put recovery.

2. Related Work
Image synthesis. Synthesizing images from neural net-
works have been a long-lasting important topic for vision,
with generative models [11, 18, 28, 30, 41] being at the fore-
front and yielding state-of-the-art fidelity. However not all
networks are equipped with image synthesis capacity as in
GANs when pretrained on their target domains, and thus
urge alternative methods to generate natural images from
normally trained networks. To this end, one stream of work
visualizes pretrained networks by analyzing intermediate
representations [24, 25, 30, 31], while a more recent stream
of method synthesizes natural images from a trained network
through auxiliary generative networks [4, 20, 22, 23] or net-
work inversion [3, 29, 33, 39]. The rapid progress of the
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Figure 2. GradViT reconstructs original training data by gradient
matching and an image prior network. The batch-wise statistics
of synthesized images are matched with BN running statistics of
the prior network to enhance fidelity. A loss scheduler balances
training of the prior network with gradient matching to avoid local
minima during optimization. We also propose a patch prior total
variation loss to regularize the position of patches. GradViT is
capable of large batch gradient inversion of up to 30 images.

field has shown complete viability to reverse out high fidelity
images from deep nets on large-scale datasets with high im-
age resolution. Yet all aforementioned methods reveal only
dataset-level distributional prior, as opposed to image-level
private visual features that impose privacy concerns.
Gradient inversion. Early efforts [27, 35] investigated the
possibility of membership attacks and inferring properties
of private training data by exploiting shared gradients. Be-
yond these membership attacks, Wang et al. [37] attempted
to reconstruct one image from a client pool of private data
using a GAN-based reconstruction model. This work was
only evaluated for low-resolution images and a very shallow
attack network. Furthermore, Zhu et al. [44] demonstrated
successful joint image and label restoration by matching the
gradients of trainable inputs. As opposed to previous efforts,
this work used a relatively deeper CNN architecture [21],
however it was still limited to low-resolution images (e.g.,
CIFAR10) with single training mini-batches and incapable of
handling non-continuous activation functions (e.g., ReLU).
Geiping et al. [10] mitigated this issue using a cosine simi-
larity loss function to match the gradients sign. As a result,

this enabled reconstruction of input training data from more
commonly-used networks such as ResNet-18 using higher
resolution images (e.g., ImageNet), but it only produces
a single image. Yin et al. [38] introduced the GradInver-
sion model that scales the attack to larger mini-batches with
high-resolution ImageNet samples from a deep ResNet-50
network. In addition to gradient matching, GradInversion
proposes to match the distribution of running mean and
variance of batch normalization layers that are produced
from a synthesized input image, augmented by multi-agent
group consistency. Considering the prevalence of batch nor-
malization in CNN-based architectures and the associated
strong prior in running statistics, GradInversion significantly
improves the fidelity of reconstructed images. Despite re-
cent generative prior augmentation [16] and theoretical in-
sights [17], gradient inversion attacks remain valid only for
CNNs, with key assumptions nonexistent in ViTs.

3. GradViT

We next describe our proposed methodology in details.
Fig. 2 illustrates an overview of the GradViT framework.
Our inversion task is formulated as an optimization problem.
Given randomly initialized input tensor x̂ P RNˆHˆWˆC

(N,H,W,C being batch size, height, width and number of
channels) and a target network with weights W and gradient
updates ∆W averaged over a mini-batch, GradViT recovers
original image batch via the following optimization:

x̂˚ “ argmin
x̂

ΓptqLgradpx̂; ∆Wq `ΥptqRimagepx̂q `Rauxpx̂q,

(1)
in which Lgrad is a gradient matching loss,Rimage andRaux
are an image prior and auxiliary regularization. Γptq and
Υptq denote loss scheduler functions that balance contribu-
tions on the total loss at each training iteration t. We solve
the proposed optimization problem in an iterative manner.
Lgrad acts as a main force to reduce the error between the
shared model’s gradients and the computed one, while other
losses improve fidelity of the recovered images.

3.1. Gradient Matching

Gradient matching relies on valid target labels for simula-
tion of gradients given synthesized inputs. Akin to [38], we
first recover the labels through the negative sign traces of the
gradient in the classification head, resulting in a label set ŷ
for a batch size of N as

ŷ “ arg sort
`

min
i
∇W(CLS)

i,j
Lpx˚,y˚q

˘

r: N s, (2)

in which ∆W(CLS) denotes the gradient of the classification
head of ViT, and x˚ and y˚ represent original training im-
ages and labels, respectively. Once the labels are restored,
the `2 norm between the gradients from the synthesized
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inputs and shared gradients are minimized according to

Lgradpx̂; ∆Wq “
ÿ

l

||∇WplqLpx̂, ŷq´

∇WplqLpx˚,y˚q
looooooooomooooooooon

given batch gradient

||2,
(3)

where ∇WplqLpx̂, ŷq is calculated based on the synthesized
inputs x̂ and restored label ŷ in each layer l of the network.

3.2. Image Prior

As an image prior counterpart to guide the optimization
process towards image naturalness, we look into auxiliary
networks, such as CNN, to impose an image prior. In this pa-
per, we use a self-supervised trained MOCO V2 ResNet-50
via constrastive loss [5, 13] for this task, which we observe
scales across varying domains. More specifically, we use the
stored BN statistics of the feature maps as a target distribu-
tion for the estimated per-layer statistics when passing the
synthesized inputs through the network.

Given the batch-wise mean µlpx̂q and variance σ2
l px̂q of

synthesized inputs at layer l, the following image prior loss
is minimized

Rimagepx̂q “
ÿ

l

|| µlpx̂q ´ µl,BN||2`

ÿ

l

|| σ2
l px̂q ´ σ

2
l,BNq||2,

(4)

where µl,BN and σ2
l,BN denote the running mean and variance

of the CNN prior across layers l “ 1, 2, ..., L. By aligning
batch-wise and running statistics, the loss significantly en-
hances the image fidelity and visual realism, as we show
later.

3.3. Loss Scheduler

Balancing losses is vital for ViT gradient inversion to
yield valid recovery. In the early training stages, the gradient
loss is very sensitive to abrupt changes in the pixel-wise
values of the synthesized inputs. As a result, we observe
an early stage minimization of both the gradient and image
prior losses results in convergence to sub-optimal solutions.
As a remedy, we activate the image prior loss only after
the first half of training where the synthesized inputs are
close to optimum for the gradient loss. Then, we reduce the
contribution of the gradient loss to half for the rest of the
training to allow for more effective prior extraction. For a
total of T training iterations, loss schedulers Γptq and Υptq
at iteration t are defined as

Γptq “

"

αgrad 0 ă t ď T
2

1
2αgrad

T
2 ă t ď T

, (5)

Υptq “

"

0 0 ă t ď T
2

αimage
T
2 ă t ď T

. (6)

αgrad and αimage denote gradient and BN matching scale
factors, respectively. We observe this scheduling is key to
valid recovery, as shown in the ablations later.

3.4. Auxiliary Regularization

We also explore an extensive set of auxiliary image priors
to govern image fidelity. Our auxiliary regularization loss
consists of (i) a novel patch prior loss to regularize the per-
mutation ordering of reconstructed patches, (ii) a registration
loss to ensure consistency among final reconstructions of
different optimization seeds and (iii) an image prior loss to
improve the image quality:

Rauxpx̂q “ α1Rpatchpx̂q ` α2Rregpx̂q ` α3Rpriorpx̂q. (7)

We next elaborate on each of the loss terms.

3.4.1 Patch Prior

As opposed to typical CNN-based networks, ViT-based mod-
els are permutation-invariant and lack inherent inductive
image biases. The patch-based strategy that is used for fea-
ture extraction in ViTs greatly manifests itself during the
inversion process in our GradViT, as several permutations of
the same group of reconstructed patches can equally satisfy
the minimization process. Hence, the reconstructed images
suffer from an incorrect order of patches.

To mitigate this issue, we propose a new patch prior
loss that enforces similarity between horizontal and vertical
joints of adjacent patches. The main idea is that even though
image tokens are regarded as separate entities when fed into
transformers to learn attention, their associated patches are
bonded spatially by nature - they have to form one single
image when put next to each other. As a result, pixel values
among adjacent patch edges shall be in similar ranges, and
abrupt changes shall be penalized.

By assuming a patch size of P ˆ P from an image of
H ˆW , our patch prior regularizes spatial positioning of
neighboring patches by enforcing

Rpatch px̂q “

H
P ´1
ÿ

k“1

}x̂r:, P ¨ k, :, :s ´ x̂r:, P ¨ k ´ 1, :, :s}2`

W
P ´1
ÿ

k“1

}x̂r:, :, P ¨ k, :s ´ x̂r:, :, P ¨ k ´ 1, :s}2.

(8)

Our ablation studies demonstrate the effectiveness of the
patch prior loss in enhancing the ordering of reconstructed
patches. In other words, forcing patch boundaries to
be smooth in color indirectly forces the optimizer to re-
distribute the patches, such that the loss can be further re-
duced.
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3.4.2 Registration

In the proposed framework, the final solution of recon-
structed images depend on the optimization initialization
(i.e., randomly selected seeds). As a result, reconstructions
with different image semantics and viewpoints may be pro-
duced. Inspired by Yin et al. [38], we also regularize the
reconstruction of different seeds by aligning them with a
consensus solution across all optimizations. Considering
x̂S “ rx̂1, x̂2, ..., x̂ss to represent all viable solutions for
each optimization round, we first compute a consensus so-
lution x̂m “ 1

|x̂S|

ř

s
x̂s by pixel-wise averaging of all so-

lutions. We perform an initial coarse alignment, by using
a RANSAC-Flow based image alignment strategy [34], for
each solution with respect to x̂m as the target and obtain
the final consensus solution x̂C by averaging all registered
inputs as in

x̂C “
1

|x̂S|

ÿ

s

Fx̂sÑx̂mpx̂sq, (9)

in which Fx̂sÑx̂m is a flow function for mapping the source
candidate x̂s to target x̂m. We minimize the `2 distance of
all solutions with respect to the final consensus solution:

Rregpx̂q “ ||x̂´ x̂C||2. (10)

3.4.3 Extra Priors

As a final step, we leverage extra conventional image prior
losses [39] including `2 and total variation to improve the
quality of reconstructions losses as:

Rpriorpx̂q “ R`2px̂q `RTVpx̂q. (11)

At this stage, all three image regularization terms are bal-
anced using scaling constants α1,2,3 in Eqn. 7, and then
summed into gradient matching and image prior losses for
input updates.

4. Experiments

4.1. Datasets

We next validate the effectiveness of our approach on the
ImageNet1K [8] and MS-Celeb-1M datasets [12] for the task
of image classification and face recognition, respectively. In
addition to ImageNet1K as a widely adopted benchmarking
task, the latter was chosen to demonstrate the risks of gra-
dient inversion data leakage from a sensitive domain with
considerable security concerns. For ImageNet1K experi-
ments, we use images of resolution 224ˆ 224 px, whereas
we resize MS-Celeb-1M images to 112ˆ 112 px amid net-
work input requirement of [43].

4.2. Evaluation Metrics

To make our comparisons comprehensive, we report
quantitative measurements in addition to qualitative results
throughout our experiments. We adopt the commonly-used
image quality metrics including (i) Peak Signal-to-Noise
Ratio (PSNR), (ii) Learned Perceptual Image Patch Simi-
larity (LPIPS) [42] and (iii) cosine similarity in the Fourier
space (FFT2D) to measure the similarity between the image
recovery and original counterparts.

4.3. Implementation Details

We explore different variations of the ViT [9] and
DeiT [36] models. MOCO V2-pretrained ResNet-50
model [5, 13] is used for all CNN experiments as a base for
the image prior in GradViT. For the MS-Celeb-1M dataset,
we use the FaceTransformer [43] that is a modified ViT
model. We use an Adam optimizer [19] with an initial learn-
ing rate of 0.1 for 120K iterations and with cosine learning
rate decay. For all experiments, we use an NVIDIA DGX-1
server and reconstruct the training images by only exploiting
the shared gradients, using a mini batch size of 8 unless spec-
ified otherwise. We use αgrad “ 4ˆ10´3, αimage “ 2ˆ10´1,
α1 “ 10´4, α2 “ 10´2 and α3 “ 10´4 as the scaling co-
efficients in the loss functions. According to the proposed
loss scheduler as described in Sec. 3.3, we first start the op-
timization process with only the gradient matching loss for
60K iterations, and then decrease αgrad to 2ˆ 10´3, jointly
with adding the image prior loss.

5. Results
5.1. ImageNet1K

Table 1 presents quantitative comparisons between our
method and the state-of-the-art benchmarks for batch gradi-
ent inversion on ImageNet1K, with Fig. 3 depicting our main
qualitative results. GradViT is used for inversion of variants
of ViT and DeiT models towards a target batch of size 8.
Gradient inversion reconstructions of ViT-B/16 using Grad-
ViT outperform the previous state-of-the-art benchmarks
(i.e., ResNet-50 with GradInversion) by a large margin in
terms of all image quality metrics. Applying GradInversion
to ViTs results in unsatisfactory results. GradViT, for the
first time, enables a viable, complete recovery of original
images. More surprisingly, it yields unprecedented image
realism and intricate original details that surpass even the
best recovery from ResNet-50 using CNN-tailored GradIn-
version. This sets a new benchmark for gradient inversion
on ImageNet1K.
5.2. MS-Celeb-1M

Fig. 4 shows the performance of GradViT on FaceTrans-
former [43]. We observe that GradViT recovers a substantial
amount of original information, including face, hair, cloth-
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Gradient Inversion Method Network Image Reconstruction Metrics Considerations

PSNR Ò FFT2D Ó LPIPS Ó Type Need Original Labels GAN-Based

Random Noise - 1.351 0.706 9.964 - No No
Latent projection [18] BigGAN [2] 10.149 0.275 0.722 CNN Yes Yes
DeepInversion [39] ResNet-50 [14] 10.131 0.238 0.728 CNN Yes No
Deep Gradient Leakage [44] ResNet-50 [14] 10.252 1.319 0.602 CNN No No
Inverting Gradients [10] ResNet-50 [14] 11.703 0.355 0.749 CNN Yes No
GradInversion [38] ResNet-50 [14] 12.929 0.175 0.484 CNN No No
GradInversion [38] ViT-B/16 [9] 10.824 0.116 0.708 ViT No No
GradViT ResNet-50 [14] 11.635 0.076 0.454 CNN No No

GradViT DeiT-B/16 [9] 13.252 0.058 0.413 ViT No No
GradViT ViT-B/16 [9] 15.515 0.032 0.295 ViT No No

Table 1. Quantitative comparisons of image reconstruction quality from batch of 8 images in ImageNet1K dataset. CNN-based networks use
ResNet-50 for gradient inversion in line with prior work. GradViT outperforms all prior approaches by a large margin across image quality
metrics.

Original batch of 224ˆ 224 px. - ground truth

GradInversion (CVPR’21) [38] - ResNet-50 - LPIPS Ó: 0.484

GradViT (ours) - ViT-B/16 - LPIPS Ó: 0.454

Figure 3. Qualitative comparisons of reconstructed images from batch of 8 images in ImageNet1K dataset using the proposed GradViT and
state-of-the-art GradInversion [38]. GradViT outperforms GradInversion both qualitatively and quantitatively. It recovers the most intricate
details, of very high image fidelity and naturalness, not only for the target objects, but also all the background scenes. Best viewed in color.

ing, and even background details close to the original images.
These results demonstrate the vulnerabilities of ViTs under
gradient inversion attacks, in a sensitive domain such as
face recognition. Here a leakage of private data can lead to
significant security concerns.

6. Analysis
6.1. Ablation Study

Table 2 provides both (i) quantitative comparisons to ab-
late the effectiveness of each training loss term on recovery
quality and (ii) the associated qualitative comparisons. We
observe that optimizingLgrad`Rreg as in DeepInversion [38]
restores certain features of the original training images. How-
ever, the reconstructions suffer from poor image fidelity and

loss of detailed semantics. Furthermore, naively optimizing
the image prior loss RD results in sub-optimal solutions.
Adding the scheduler alleviates this issue and results in sub-
stantially improved reconstructions. Adding the patch prior
loss Rpatch guides the location of recovered patches and
significantly enhances the image quality. Please see supple-
mentary materials for visualizations of synthesized images
in various stages of training.

6.2. Varying Architecture & Patch Size

Table 3 shows the performance of GradViT given vary-
ing architectures and changing patch sizes. We observe that
transformers with (i) a smaller patch size, (ii) more parame-
ters, and (iii) stronger training recipe with distillation, reveal
more original information and hence are more vulnerable in

6



Original images of 112ˆ 112 px.

Recovery from Face-Transformer [43] gradients with GradViT (ours)

Figure 4. Qualitative comparison of reconstructed images from MS-Celeb-1M dataset using batch gradient inversion of Face-Transformer [43].
GradViT is able to recover detailed and facial features identical to the original. Recovery at batch size 4. Best viewed in color.

Loss Function Lgrad
Image Reconstruction Metric

PSNR Ò FFT2D Ó LPIPS Ó

Random 8.143 0.706 9.964 1.351

Lgrad `Rreg [38] 4.190 11.431 0.071 0.498
+Rimage 3.127 11.291 0.078 0.504
+ Γp¨q, Υp¨q 3.047 13.404 0.049 0.412
+Rpatch 2.326 15.515 0.032 0.295

x˚ Lgrad `Rreg [38] +Rimage + Γp¨q, Υp¨q +Rpatch

Table 2. Effect of each loss term on reconstruction quality of final
synthesized images. Results presented among a batch of 8 images
with total variation and `2 priors included by default in all runs.

Network Distilled Image Reconstruction Metric

PSNR Ò FFT2D Ó LPIPS Ó

DeiT-T/16 [36] No 12.243 0.079 0.489
DeiT-T/16 [36] Yes 13.212 0.076 0.454
DeiT-S/16 [36] No 12.664 0.059 0.461
DeiT-S/16 [36] Yes 13.092 0.055 0.419
DeiT-B/16 [36] No 13.252 0.058 0.413
DeiT-B/16 [36] Yes 13.708 0.041 0.407
ViT-T/16 [9] - 12.521 0.062 0.483
ViT-S/32 [9] - 12.365 0.063 0.505
ViT-S/16 [9] - 13.658 0.042 0.412
ViT-B/32 [9] - 13.599 0.048 0.436
ViT-B/16 [9] - 15.515 0.032 0.295

Table 3. Quantitative comparisons of image reconstruction qual-
ity from gradient inversion of various ViT and DeiT models on
ImageNet1K.

gradient inversion attacks. In addition, we observe more vul-
nerabilities in ViTs in terms of revealing more information
than their counterpart DeiTs.

1

Figure 5. Effect of increasing batch size on the quality of image
recovery. ImageNet and MS-Celeb-1M images are reconstructed
in 224 ˆ 224 px and 112 ˆ 112 px respectively. Representative
sample reconstructions are presented for batch sizes of 8, 16, 30
and 48. The maximum number of batch sizes is limited to 30 for
ImageNet dataset amid GPU memory constraint.

Original batch size 8 batch size 16 batch size 30
Restored

Figure 6. Visual comparison of reconstruction quality with different
batch sizes on ImageNet. Although GradViT recovers major visual
features, the quality decreases with increasing batch size.

6.3. Increasing the Batch Size

In Fig. 5, we study the effect of batch size on reconstruc-
tion image quality as gradients are averaged over a larger
number of images. Considering GPU memory constrains,
we experimented with maximum batch sizes of 30 and 64
for ImageNet1K and MS-Celeb-1M datasets, respectively.
In both datasets, we observe that image quality degrades, as
expected, at a larger batch size. For facial recovery, Grad-
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ViT is still able to recover identifiable images even at the
batch size of 30 (see examples in Fig. 5). In the Appendix
we will also study the likelihood of person identification as
a function of the batch size, and the potential of auxiliary
GANs to improve fidelity. We also observe a similar trend
on ImageNet1K, as shown in Fig. 6. Reconstruction at a
batch size of 30 still reveals major visual features.

6.4. Tracing the Source

To give guidance on future defense regimes, we delve
deep into tracing the source of information leakage – among
all shared gradients, (i) where among all layers and (ii) what
exact components leak the most original information?

Answering these questions are key to targeted protections
for enhanced security. As an attempt, we ablate the contribu-
tions of gradients from varying ViT architecture sections to
input recovery. More specifically, we conduct two streams
of analysis. Layer-wise, we study the changing effects of
removing gradient contributions from transformer layers of
different depths. This hints at the possibility to share gradi-
ents separately as a remedy to prevent an overall inversion.
Component-wise, we retrain by using gradients from either
MSA or MLPs across all the layers in the target model, and
analyze the strength of their links to original images. This
gives insights on what exact transformation retains the most
information. We base both analysis on ViT-B/16 and present
our findings next.

6.4.1 Later Stages Reveal More

More specifically, we remove gradients from initial, middle,
and later stages to ablate the impacts on recovery efficacy.
To this end, we reconstruct images without including the
gradients of layers 1´ 4, 5´ 8 and 9´ 12. Table 4 shows
that reconstructions by excluding the gradients of earlier
layers are more accurate than those of deeper layers, whereas
dropping the later stage alters the recovery the most. In other
words, gradients of deeper layers are more informative for
inversion - see Fig. 7(a) for qualitative comparisons.

6.4.2 Attention is All That Reveals

We next perform two component-wise data leakage studies
on the ViT-B/16 model by only utilizing the gradients of
MLP or MSA blocks for the inversion attacks. We present
results with Table 5 and Fig. 7(b). Table 5 demonstrates the
importance of MSA gradients, as its reconstructions have
significantly better image quality than images synthesized by
MLP gradients. As illustrated in Fig. 7(b), reconstructions
from MLP gradients lack important details, whereas utilizing
the gradients of MSA layers alone can already yield high-
quality reconstructions.

Original Recovery
(w/o full grad., layer-wise distinction)

w/o layers 1´ 4 w/o layers 5´ 8 w/o layers 9´ 12

(a)

Recovery
(w/ full grad.)

Recovery
(w/o full grad., component-wise distinction)

w/ MLP grad., w/o others w/ attn. grad., w/o others
(b)

Figure 7. Reconstructed images from layer-wise and component-
wise ablation studies using a batch size of 8. Later layers (9-12)
contain the most critical information that leads to data leakage.
The component-wise studies show that gradients of MSA blocks
have more critical information than those of MLP blocks. See
supplementary materials for more visualizations.

Layer-wise Gradients Image Reconstruction Metric

PSNR Ò FFT2D Ó LPIPS Ó

All (baseline) 15.515 0.032 0.295

w/o Layers 1-4 13.982 0.047 0.412
w/o Layers 5-8 11.086 0.086 0.555
w/o Layers 9-12 10.284 0.091 0.598

Table 4. Effect of layer-wise gradients on ViT-B/16 reconstructions.

Component-wise Gradients Image Reconstruction Metric

PSNR Ò FFT2D Ó LPIPS Ó

All (baseline) 15.515 0.032 0.295

w/ MLP, w/o others 12.256 0.066 0.568
w/ MSA, w/o others 13.559 0.047 0.408

Table 5. Effect of component-wise gradients on ViT-B/16 recon-
structions.

7. Conclusion
In this work, we have introduced a methodology for gra-

dient inversion of ViT-based models via (i) enforcing the
matching of gradients to the shared target (ii) leveraging an
image prior, (iii) and utilizing a novel patch prior loss to
guide patch recovery locations. Through extensive analysis
on ImageNet1K and MS-Celeb-1M datasets, we have shown
state-of-the-art benchmarks for gradient inversion of deep
neural networks. We have also conducted additional analysis
to offer insights to the community and guide designs of ViT
security mechanisms to prevent inversions that are shown
even stronger than on CNNs. Homomorphic encryption and
differential privacy have been shown effective against CNN-
based gradient inversion attacks. However, future work is
needed to study protection mechanisms against GradViT.
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Appendix

We provide more experimental details in the following
sections. First, we elaborate on person identification analysis
to evaluate inversion strength in Section A. Then, we demon-
strate efficacy of the proposed loss scheduling technique in
Section B. We include additional supplementary images for
ablation studies in Section C, and more visual examples for
GradViT in Section E.

A. Person Identification

In this section, we study the likelihood of person iden-
tification as a function of the batch size, and also leverage
a StyleGAN2 [18] network to improve the image fidelity.
Specifically, we utilize an iterative refinement approach [1]
based on a pre-trained StyleGAN2 for latent space optimiza-
tion and finding the closest real image. Fig. S.3 illustrates
the outputs of the latent optimization which uses a GradViT
recovered image as an input.

To quantify person identification, we utilize the Image
Identifiablity Precision (IIP) as studied by Yin et al. [38]
to check on the level of data leakage across varying batch
sizes. Specifically, we consider a total number of 15000
distinct subjects randomly selected from the MS-Celeb-1M
dataset. The experiments are performed once for reconstruc-
tions of a given batch size. For IIP calculation, we extract
deep feature embeddings using an ImageNet-1K pre-trained
ResNet-50. To compute exact matches, we use k-nearest
neighbor clustering to sort the closest training images to the
reconstructions in the embedding space. The IIP score is
computed as the ratio of number of exact matches to the
batch size.

We use the outputs of GradViT and GradViT followed by
StyleGAN2 for all person identification experiments (See
Fig. S.1). We observe that for a batch size of 4, both models
can accurately identify subjects with an IIP score of 100%.
For a batch size of 8, GradViT and GradViT+StyleGAN2
yield IIP scores of 75% and 87.5% respectively. We ob-
serve that enhancements by latent code optimization result
in improved facial recovery and hence increased IIP scores.
IIP gradually decrease for both cases amid more gradient
averaging at larger batch sizes.

B. Loss Scheduler

In Fig. S.2, we demonstrate the effect of our proposed
loss scheduler on balancing the training between the gra-
dient matching loss and the image prior. As observed by
the progression of optimization from random noise to the
final image, gradient matching phase obtains most of the
semantics in the image by the mid-training. However, the
recovered image lacks detailed information and suffers from
low fidelity. By enabling the image prior loss and decreasing
the contribution of gradient matching, the visual realism is

Figure S.1. Effect of batch size on IIP score for recovered images
from MS-Celeb-1M dataset. Random guess probability is 0.007%
as a reference.

1

Reference

Initial

Final

Mid-Stage

Figure S.2. Effect of loss scheduler on optimization progression of
reconstructions.

significantly improved and more fine-grained detailed are
recovered.

C. Ablation Studies Additional Examples
We provide additional qualitative visualizations of data

leakage analysis by layer-wise (Fig. S.4) and component-
wise (Fig. S.5) analysis of ViT/B-16 [9] architecture. Inver-
sion results obtained from batch of 8 images.

D. Limitations
GradViT remains computationally intensive. However,

this offers security benefits in reality, given that the associ-
ated computation burden may hinder gradient inversion at
scale.

E. More Inversion Examples
For ImageNet1K dataset, Fig. S.6 depicts additional re-

covered images from gradient inversion of vision transform-
ers using GradViT for varying batch sizes. In addition,
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Latent optimization outputs - recovered input from batch size 8

Latent optimization outputs - recovered input from batch size 16

Latent optimization outputs - recovered input from batch size 32

Figure S.3. Step-by-step latent optimization of GradViT outputs. Recovered image shown on the right.

Original Recovery
(w/o full grad., layer-wise distinction)

w/o layers 1´ 4 w/o layers 5´ 8 w/o layers 9´ 12

Figure S.4. Reconstructed images from layer-wise ablation.

Fig. S.7 demonstrates additional reconstructions from gradi-
ent inversion of FaceTransformer [43] model using GradViT

Original Recovery
(w/o full grad., component-wise distinction)

w/ full grad. w/ MLP grad. w/ attn. grad.

Figure S.5. Reconstructed images from component-wise ablation.

for different batch sizes.
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batch size 8

batch size 16

Figure S.6. Inverting ViT-B/16 gradients on the ImageNet-1K validation set. Pair of (left) original sample and its (right) recovery.

F. Face Reconstruction Quantitative Analysis
Table. S.1 presents the quantitative benchmarks of im-

age reconstruction quality for gradient inversion from batch
sizes of 4 and 8 using images in MS-Celeb-1M dataset. As
expected, for all image reconstruction metrics, the recon-
struction quality decreases with increasing batch size.

Batch Size Image Reconstruction Metric

PSNR Ò FFT2D Ó LPIPS Ó

4 27.370 0.001 0.030
8 23.313 0.008 0.101

Table S.1. Quantitative benchmarks of image reconstruction quality
from batch sizes of 4 and 8 images in MS-Celeb-1M dataset.
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batch size 4

batch size 8

Figure S.7. Additional examples of information leakage when inverting FaceTransformer gradients on the MS-Celeb-1M validation set.
Each block containing a pair of (left) original sample and its (right) reconstruction by GradViT.
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