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Abstract

We present a method that reconstructs and animates a 3D head avatar from a single-
view portrait image. Existing methods either involve time-consuming optimization
for a specific person with multiple images, or they struggle to synthesize intricate
appearance details beyond the facial region. To address these limitations, we
propose a framework that not only generalizes to unseen identities based on a
single-view image without requiring person-specific optimization, but also captures
characteristic details within and beyond the face area (e.g. hairstyle, accessories,
etc.). At the core of our method are three branches that produce three tri-planes
representing the coarse 3D geometry, detailed appearance of a source image, as
well as the expression of a target image. By applying volumetric rendering to
the combination of the three tri-planes followed by a super-resolution module,
our method yields a high fidelity image of the desired identity, expression and
pose. Once trained, our model enables efficient 3D head avatar reconstruction and
animation via a single forward pass through a network. Experiments show that the
proposed approach generalizes well to unseen validation datasets, surpassing SOTA
baseline methods by a large margin on head avatar reconstruction and animation.

1 Introduction
Head avatar animation [57; 29; 38] aims to animate a source portrait image with the motion (i.e.,
pose and expression) from a target image. It is a long-standing task in computer vision that has
been widely applied to video conferencing, computer games, Virtual Reality (VR) and Augmented
Reality (AR). In real-world applications, synthesizing a realistic portrait image that matches the given
identity and motion raises two major challenges – efficiency and high fidelity. Efficiency requires
the model to generalize to arbitrary unseen identities and motion without any further optimization
during inference. High fidelity demands the model to not only faithfully preserve intricate details in
the input image (e.g. hairstyle, glasses, earrings), but also hallucinate plausibly whenever necessary
(e.g. synthesize the occluded facial region when the input is in profile view or generate teeth when
the mouth transitions from closed to open).

Traditional methods [14; 17; 11] based on 3D Morphable Models (3DMMs) learn networks that
predict shape, expression, pose and texture of an arbitrary source portrait image efficiently. However,
these approaches often fall short in synthesizing realistic details due to limited mesh resolution and
a coarse texture model. Additionally, they exclusively focus on the facial region while neglecting
other personal characteristics such as hairstyle or glasses. Inspired by the remarkable progress
made in Generative Adversarial Networks (GANs) [22; 27; 58], another line of methods [57; 65;
67; 48; 46; 70; 15] represent motion as a warping field that transforms the given source image
to match the desired pose and expression. Yet, without explicit 3D understanding of the given
portrait image, these methods can only rotate the head within limited angles, before exhibiting
warping artifacts, unrealistic distortions and undesired identity changes across different target views.
Recently, neural rendering [39] has demonstrated impressive results in facial avatar reconstruction and

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://research.nvidia.com/labs/lpr/one-shot-avatar


animation [19; 42; 54; 55; 72; 2; 43; 20; 21; 23; 4]. Compared to meshes with fixed and pre-defined
topology, an implicit volumetric representation is capable of learning photo-realistic details including
areas beyond the facial region. However, these models have limited capacity and cannot generalize
trivially to unseen identities during inference. As a result, they require time-consuming optimization
and extensive training data of a specific person to faithfully reconstruct their 3D neural avatars.

In this paper, we present a framework aiming at a more practical but challenging scenario – given an
unseen single-view portrait image, we reconstruct an implicit 3D head avatar that not only captures
photo-realistic details within and beyond the face region, but also is readily available for animation
without requiring further optimization during inference. To this end, we propose a framework
with three branches that disentangle and reconstruct the coarse geometry, detailed appearance and
expression of a portrait image, respectively. Specifically, given a source portrait image, our canonical
branch reconstructs its coarse 3D geometry by producing a canonicalized tri-plane [9; 10] with
a neutral expression and frontal pose. To capture the fine texture and characteristic details of the
input image, we introduce an appearance branch that utilizes the depth rendered from the canonical
branch to create a second tri-plane by mapping pixel values from the input image onto corresponding
positions in the canonicalized 3D space. Finally, we develop an expression branch that takes the
frontal rendering of a 3DMM with a target expression and a source identity as input. It then produces a
third tri-plane that modifies the expression of the reconstruction as desired. After combining all three
tri-planes by summation, we carry out volumetric rendering followed by a super-resolution block and
produce a high-fidelity facial image with source identity as well as target pose and expression. Our
model is learned with large numbers of portrait images of various identity and motion during training.
At inference time, it can be readily applied to an unseen single-view image for 3D reconstruction and
animation, eliminating the need for additional test-time optimization.

To summarize, our contributions are:

• We propose a framework for 3D head avatar reconstruction and animation that simultane-
ously captures intricate details in a portrait image while generalizing to unseen identities
without test-time optimization.

• To achieve this, we introduce three novel modules for coarse geometry, detailed appearance
as well as expression disentanglement and modeling, respectively.

• Our model can be directly applied to animate an unseen image during inference efficiently,
achieving favourable performance against state-of-the-art head avatar animation methods.

2 Related Works
2.1 3D Morphable Models
Reconstructing and animating 3D faces from images has been a fundamental task in computer vision.
Following the seminal work by Parke et al. [44], numerous methods have been proposed to represent
the shape and motion of human faces by 3D Morphable Models (3DMMs) [1; 36; 16; 7; 35]. These
methods represent the shape, expression and texture of a given person by linearly combining a set of
bases using person-specific parameters. Building upon 3DMMs, many works have been proposed to
reconstruct and animate human faces by estimating the person-specific parameters given a single-view
portrait image [14; 17; 11; 34]. While 3DMMs provide a strong prior for understanding of human
faces, they are inherently limited in two ways. First, they exclusively focus on the facial region and
fail to capture other characteristic details such as hairstyle, eye glasses, inner mouth etc. Second, the
geometry and texture fidelity of the reconstructed 3D faces are limited by mesh resolution, leading
to unrealistic appearance in the rendered images. In this work, we present a method that effectively
exploits the strong prior in 3DMMs while addressing its geometry and texture fidelity limitation by
employing neural radiance fields [39; 5; 41].

2.2 2D Expression Transfer
The impressive performance of Generative Adversarial Networks (GANs) [22] spurred another line
of head avatar animation methods [57; 65; 67; 48; 46; 70; 15]. Instead of reconstructing the underline
3D shape of human faces, these methods represent motion (i.e. expression and pose) as a warping
field. Expression transfer is carried out by applying a warping operation onto the source image to
match the motion of the driving image. By leveraging the powerful capacity of generative models,
these methods produce high fidelity results with more realistic appearance compared to 3DMM-based
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methods. However, without an explicit understanding and modeling of the underlying 3D geometry
of human faces, these methods usually suffer from warping artifacts, unrealistic distortions and
undesired identity change when the target pose and expression are significantly different from the
ones in the source image. In contrast, we explicitly reconstruct the underline 3D geometry and texture
of a portrait image, enabling our method to produce more realistic synthesis even in cases of large
pose change during animation.

2.3 Neural Head Avatars
Neural Radiance Field (NeRF) [39; 5; 41] debuts remarkable performance for 3D scene reconstruction.
Many works [19; 42; 54; 55; 72; 2; 43; 20; 21; 23; 4; 31; 73; 3] attempt to apply NeRF to human
portrait reconstruction and animation by extending it from static scenes to dynamic portrait videos.
Although these methods demonstrate realistic reconstruction results, they inefficiently learn separate
networks for different identities and require thousands of frames from a specific individual for
training. Another line of works focus on generating a controllable 3D head avatar from random
noise [53; 61; 51; 40; 62; 33; 75; 50]. Intuitively, 3D face reconstruction and animation could be
achieved by combining these generative methods with GAN inversion [47; 18; 64; 60]. However, the
individual optimization process for each frame during GAN inversion is computationally infeasible
for real-time performance in applications such as video conferencing. Meanwhile, several works [56;
66; 6; 13] focus on reconstructing 3D avatars from arbitrary input images, but they cannot animate
or reenact these avatars. Closest to our problem setting, few works explore portrait reconstruction
and animation in a few-shot [68] or one-shot [24; 29; 38; 76] manner. Specifically, the ROME
method [29] combines a learnable neural texture with explicit FLAME meshes [36] to reconstruct a
3D head avatar, encompassing areas beyond the face region. However, using meshes as the 3D shape
representation prevents the model from producing high-fidelity geometry and appearance details.
Instead of using explicit meshes as 3D representation, the HeadNeRF [24] and MofaNeRF methods
learn implicit neural networks that take 3DMM parameters (i.e. identity and expression coefficients
or albedo and illumination parameters) as inputs to predict the density and color for each queried
3D point. Additionally, the OTAvatar [38] method proposes to disentangle latent style codes from a
pre-trained 3D-aware GAN [9] into separate motion and identity codes, enabling facial animation by
exchanging the motion codes. Nonetheless, all three models [24; 76; 38] require laborious test-time
optimization, and struggle to reconstruct photo-realistic texture details of the given portrait image
presumably because they encode the appearance using a compact latent vector. In this paper, we
propose the first 3D head neural avatar animation work that not only generalizes to unseen identities
without test-time optimization, but also captures intricate details from the given portrait image,
surpassing all previous works in quality.

3 Method

We present a framework that takes a source image Is together with a target image It as inputs,
and synthesizes an image Io that combines the identity from the source image and the motion (i.e.,
expression and head pose) from the target image. The overview of the proposed method is illustrated
in Fig. 1. Given a source image including a human portrait, we begin by reconstructing the coarse
geometry and fine-grained person-specific details via a canonical branch and an appearance branch,
respectively. To align this reconstructed 3D neural avatar with the expression in the target image, we
employ an off-the-shelf 3DMM [14] model 1 to produce a frontal-view rendering that combines the
identity from the source image with the expression from the target image. Our expression branch
then takes this frontal-view rendering as input and outputs a tri-plane that aligns the reconstructed 3D
avatar to the target expression. By performing volumetric rendering from the target camera view and
applying a super-resolution block, we synthesize a high-fidelity image with the desired identity and
motion. In the following, we describe the details of each branch in our model, focusing on answering
three questions: a) how to reconstruct the coarse shape and texture of a portrait image with neutral
expression in Sec. 3.1; b) how to capture appearance details in the source image in Sec. 3.2; and
c) how to model and transfer expression from the target image onto the source image in Sec. 3.3.
The super-resolution module and the training stages with associated objectives will be discussed in
Sec. 3.4 and Sec. 3.5, respectively.

1We introduce the preliminary of the 3DMM in the supplementary.

3



canonical 
branch

#"!#

$!#
+

super-
resolution

(a) Framework Overview   (c) Rasterization

(b) Lifting

source image !!target image !"

reconstruction !#

point clouddepth $!

neural 
point cloud2D features %

neural 
point cloud tri-plane

3DMM

expression 
branch

Lifting Rasterization

appearance 
branch

ℛ&&'

&(

&)

'!#

!$%&

#"

*!

Figure 1: Overview. The proposed method contains four main modules: a canonical branch that
reconstructs the coarse geometry and texture of a portrait with a neutral expression (Sec. 3.1), an
appearance branch that captures fine-grained person-specific details (Sec. 3.2), an expression branch
that modifies the reconstruction to desired expression, and a super-resolution block that renders
high-fidelity synthesis (Sec. 3.4).

3.1 Coarse Reconstruction via the Canonical Branch

Given a source image Is depicting a human portrait captured from the camera view Cs, the canonical
branch predicts its coarse 3D reconstruction represented as a tri-plane [9; 10] Tc. To serve as a
strong geometric prior for the subsequent detailed appearance and expression modeling, we impose
two crucial properties on the coarse reconstruction. First, the coarse reconstruction of face images
captured from different camera views should be aligned in the 3D canonical space, allowing the
model to generalize to single-view portrait images captured from arbitrary camera views. Second, we
enforce the coarse reconstruction to have a neutral expression (i.e., opened eyes and closed mouth),
which facilitates the expression branch to add the target expression effectively.

Based on these two goals, we design an encoder Ec that takes the source image Is ∈ R3×512×512

as input and predicts a canonicalized tri-plane Tc ∈ R3×32×256×256. Specifically, we fine-tune
a pre-trained SegFormer [59] model as our encoder, whose transformer design enables effective
mapping from the 2D input to the canonicalized 3D space. Furthermore, to ensure that Tc has a
neutral expression, we employ a 3DMM [14] to render a face with the same identity and camera
pose of the source image, but with a neutral expression. We then encourage the rendering of Tc to be
close to the 3DMM’s rendering within the facial region by computing an L1 loss and a perceptual
loss [25; 69] between them:

Ic = RV(Tc, Cs)

Ineu,Mneu = RM(αs, β0, Cs)

Lneutral = ||Ineu − Ic ×Mneu||+ ||ϕ(Ineu)− ϕ(Ic ×Mneu)||,
(1)

where RV(T,C) is the volumetric rendering of a tri-plane T from the camera view C, ϕ is a
pre-trained VGG-19 network [49]. I,M = RM(α, β, C) is the 3DMM [14] that takes identity
coefficients α, expression coefficients β as inputs, and renders an image I and a mask M including
only the facial region from camera view C. By setting α = αs (i.e. the identity coefficents of Is) and
β0 = 0̄ in Eq. 1, we ensure that Ineu has the same identity of Is but with a neutral expression.

As shown in Fig. 2(c), the rendered image Ic from the canonical tri-plane Tc indeed has a neutral
expression with opened eyes and closed mouth, but lacks fine-grained appearance. This is because
mapping a portrait from the 2D input to the canonicalized 3D space is a challenging and holistic
process. As a result, the encoder primarily focuses on aligning inputs from different camera views
and neglects individual appearance details. Similar observations have also been noted in [13; 66]. To
resolve this issue, we introduce an appearance branch that spatially transfers details from the input
image to the learned coarse reconstruction’s surface in the next section.
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Figure 2: Visualization of the contribution of each branch. (a) Source image. (b) Target image.
(c) Rendering of the canonical tri-plane. (d) Rendering of the combination of the canonical and
expression tri-planes. (e) Rendering of the combination of all three tri-planes.

3.2 Detail Reconstruction via the Appearance Branch

We now introduce the appearance branch that aims to capture and reconstruct intricate facial details
in the input image. The core idea is to leverage the depth map rendered from the canonical tri-plane
Tc to compute the 3D position of each pixel in the image such that the facial details can be accurately
“transferred” from the 2D input image to the 3D reconstruction. Specifically, we first render Tc from
the source camera view Cs to obtain a depth image Ds ∈ R128×128. The 3D position (denoted as
P ij) of each pixel Iijs in the source image Is can be computed by P ij = o+Dij

s d, where o and d are
the ray origin and viewing direction sampled from the camera view Cs of the source image. Based
on the 3D locations of all pixels, we construct a neural point cloud [63; 52] by associating the color
information from each pixel Iijs in the 2D image to its corresponding 3D position P ij . Instead of
directly using the RGB color of each pixel, we employ an encoder Ep to extract 2D features (denoted
as F ∈ R32×128×128) from Is and associate the feature at each pixel to its corresponding 3D location.
As a result, we establish a neural point cloud composed of all visible pixels in the image and associate
each point with a 32-dimensional feature vector. This mapping process from a 2D image to the 3D
space, is referred to as “Lifting” and demonstrated in Fig. 1(b).

To integrate the neural point cloud into the canonical tri-plane Tc, we propose a “Rasterization”
process (see Fig. 1(c)) that converts the neural point cloud to another tri-plane denoted as Tp such
that it can be directly added to Tc. For each location on the planes (i.e. the XY-, YZ-, XZ-plane) in
Tp, we compute its nearest point in the neural point cloud and transfer the feature from the nearest
point onto the query location on the plane. A comparison between Fig. 2(d) and Fig. 2(e) reveals the
contribution of our appearance tri-plane Tp, which effectively transfers the fine-grained details (e.g.,
pattern on the hat) from the image onto the 3D reconstruction.

3.3 Expression Modeling via the Expression Branch

Expression reconstruction and transfer is a challenging task. Naively predicting the expression from an
image poses difficulties in disentangling identity, expression, and head rotation. Meanwhile, 3DMMs
provide a well-established expression representation that captures common human expressions
effectively. However, the compact expression coefficients in 3DMMs are highly correlated with the
expression bases and do not include spatially varying deformation details. As a result, conditioning a
network solely on these coefficients for expression modeling can be challenging. Instead, we propose
a simple expression branch that fully leverages the expression prior in any 3DMM and seamlessly
integrates with the other two branches. The core idea is to provide the model with target expression
information using a 2D rendering from the 3DMM instead of the expression coefficients. As shown
in Fig. 1(a), given the source image Is and target image It, we predict their corresponding shape and
expression coefficients denoted as αs and βt respectively using a 3DMM prediction network [14]. By
combining αs and βt, we render a frontal-view facial image as Iexp = RM(αs, βt, Cfront), where
Cfront is a pre-defined frontal camera pose. We then use an encoder (denoted as Ee) that takes
Iexp as input and produces an expression tri-plane Te ∈ R3×32×256×256. We modify the canonical
tri-plane Tc to the target expression by directly adding Te with Tc. Note that we always render Iexp
in the pre-defined frontal view so that the expression encoder can focus on modeling expression
changes only and ignore motion changes caused by head rotation. Moreover, our expression encoder
also learns to hallucinate realistic inner mouths (e.g., teeth) according to the target expression, as
the 3DMM rendering Iexp does not model the inner mouth region. Fig. 2(d) visualizes the images
rendered by combining the canonical and expression tri-planes, where the target expression from
Fig. 2(b) is effectively transferred onto Fig. 2(a) through the expression tri-plane.
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3.4 The Super-resolution Module
By adding the canonical and appearance tri-planes from a source image, together with the expression
tri-plane from a target image, we reconstruct and modify the portrait in the source image to match the
target expression. Through volumetric rendering, we can obtain a portrait image at a desired camera
view. However, the high memory and computational cost of volumetric rendering prevents the model
from synthesizing a high-resolution output. To overcome this challenge, existing works [9; 33; 50; 51]
utilize a super-resolution module that takes a low-resolution rendered image or feature map as input
and synthesizes a high-resolution result. In this work, we follow this line of works and fine-tune a
pre-trained GFPGAN [58; 51] as our super-resolution module [51]. By pre-training on the task of
2D face restoration, GFPGAN learns a strong prior for high-fidelity facial image super-resolution.
Additionally, its layer-wise feature-conditioning design prevents the model from deviating from the
low-resolution input, thereby mitigating temporal or multi-view inconsistencies, as observed in [51].

3.5 Model Training
We utilize a two-stage training schedule to promote multi-view consistent reconstructions, as well
as to reduce the overall training time. In the first stage, we train our model without the super-
resolution module using a reconstruction objective and the neutral expression loss discussed in
Sec. 3.1. Specifically, we compare the rendering of a) the canonical tri-plane (i.e., Ic = RV(Tc, Ct)),
b) the combination of the canonical and expression tri-planes (i.e., Ic+e = RV(Tc + Te, Ct)), and c)
the combination of all three tri-planes (i.e., Ic+e+p = RV(Tc + Te + Tp, Ct)) with the target image
via the L1 and the perceptual losses similarly to Eq. 1:

L1 = ||Ic − It||+ ||Ic+e − It||+ ||Ic+e+p − It||,
Lp = ||ϕ(Ic)− ϕ(It)||+ ||ϕ(Ic+e)− ϕ(It)||+ ||ϕ(Ic+e+p), ϕ(It)||.

(2)

Intuitively, applying supervision to different tri-plane combinations encourages the model to predict
meaningful reconstruction in all three branches. To encourage smooth tri-plane reconstruction,
we also adopt the TV loss proposed in [9]. The training objective for the first stage is L1 =
λ1L1+λpLp+λTV LTV +λneutralLneutral, where λx is the weight of the corresponding objective.

In the second stage, to encourage multi-view consistency, we only fine-tune the super-resolution
module and freeze other parts of the model. We use all the losses in the first stage and a dual-
discriminator proposed in [9] that takes the concatenation of the low-resolution rendering and the
high-resolution reconstruction as input. Specifically, we use the logistic formulation [22; 27; 58] of
the adversarial loss Ladv = E(Il

o,Io)
softplus(D(I lo ⊕ Io))), where I lo is the upsampled version of the

low-resolution rendered image and ⊕ represents the concatenation operation. The overall training
objective of the second stage is L2 = L1 + λadvLadv .

4 Experiments
4.1 Datasets
Training datasets. We train our model using a single-view image dataset (FFHQ [26]) and two
video datasets (CelebV-HQ [74] and RAVDESS [37]). For the single-view images in FFHQ, we carry
out the 3D portrait reconstruction task, i.e., the source and target images are exactly the same. For
the CelebV-HQ and the RAVDESS datasets, we randomly sample two frames from the same video
to formulate a pair of images with the same identity but different motion. Furthermore, we observe
that parts of videos in the CelebV-HQ and the RAVDESS datasets are fairly static, leading to a pair
of source and target images with similar head poses, impeding the model from learning correct 3D
shape of portraits. To enhance the learning of 3D reconstruction, we further employ an off-the-shelf
3D-aware GAN model [9] to synthesize 55,857 pairs of images rendered from two randomly sampled
camera views, i.e., the source and target images have the same identity and expression but different
views.

Evaluation datasets. We evaluate our method and the baselines [29; 24; 38; 65] on the CelebA
dataset [32] and the testing split of the HDTF dataset [71], following [65; 38]. Note that our method
has never seen any image from these two datasets during training while both StyleHeat[65] and
OTAvatar [38] are trained using the training split of the HDTF dataset. Nonetheless, our method
generalizes well to all validation datasets and achieves competitive performance, as discussed later.
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Table 1: Comparison on CelebA [32]. † Evaluated on a subset of CelebA, as discussed in Sec. 4.4.

3D Portrait Reconstruction Cross-Identity Reeanct
Methods L1↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ CSIM↑ AED↓ APD↓ FID↓

ROME [29] 0.032 0.085 23.47 0.847 11.00 0.505 0.244 0.032 34.45
Ours 0.015 0.040 28.61 0.946 2.457 0.531 0.251 0.023 25.26

HeadNeRF† [24] 0.135 0.314 13.86 0.748 65.87 0.224 0.285 0.027 117.1
Ours† 0.024 0.098 25.83 0.883 9.400 0.591 0.278 0.017 22.97

Datasets pre-processing. We compute the camera poses of images in all training and testing
datasets using [14] following [9]. As in previous literature [29; 24; 76], background modeling is out
of the scope of this work; we further use an off-the-shelf portrait matting method [28] to remove
backgrounds in all training and testing images.

4.2 Metrics and Baselines
We evaluate all methods for 3D portrait reconstruction, same-identity and cross-identity reenactment.

3D portrait reconstruction. We use all 29,954 high-fidelity images2 in CelebA [32]. We measure
the performance by computing various metrics between the reconstructed images and the input
images, including the L1 distance, perceptual similarity metric (LPIPS), peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and Fréchet inception distance (FID).

Same-identity reenactment. We follow [38] and use the testing split of HDTF [71], which includes
37,860 frames in total. We use the first frame of each video as the source image and the rest of the
frames as target images. Following the evaluation protocol in [38; 65], we evaluate PSNR, SSIM,
cosine similarity of the identity embedding (CSIM) based on [12], average expression distance (AED)
and average pose distance (APD) based on [14], average keypoint distance (AKD) based on [8], as
well as LPIPS, L1 and FID between the reenacted and ground truth frames.

Cross-identity reenactment. We conduct cross-identity reenactment on both the CelebA and
HDTF datasets. For CelebA, we split the dataset into 14,977 image pairs and transfer the expression
and head pose from one image to the other. As for the HDTF dataset, we follow [38] and use one
clip as the driving video and the first frame of the other videos as source images, which produces
67,203 synthesized images in total. To fully evaluate the performance of one-shot avatar animation,
we transfer motion from the HDTF videos to the single-view images in the CelebA dataset. Similar
to [65], we use the first 100 frames in the HDTF videos as target images and 60 images sampled from
the CelebA as source images, resulting in a total of 114,000 synthesized images. Since there is no
ground truth for cross-identity reenactment, we evaluate the results based on the CSIM, AED, APD,
and FID metrics. More evaluation details can be found in the supplementary.

Baselines. In terms of baselines, we compare our method against a SOTA 2D talking head synthesis
method [65], two SOTA 3D head avatar animation methods [24; 29], and one concurrent work [38].

4.3 Implementation Details
We implement the proposed method using the PyTorch framework [45] and train it with 8 32GB V100
GPUs. The first training stage takes 6 days, consisting of 750000 iterations. The second training stage
takes 2 days with 75000 iterations. Both stages use a batch size of 8 with the Adam optimizer [30]
and a learning rate of 0.0001. More implementation details can be found in the supplementary.

4.4 Qualitative and Quantitative Results
3D portrait reconstruction. For each testing portrait image, we reconstruct its 3D head avatar and
render it from the observed view using different methods. By comparing the rendering with the input
image, we assess the fidelity of 3D reconstruction of each method. Table 1 shows the quantitative
results, demonstrating that our model achieves significantly better reconstruction and fidelity scores.
These results highlight the ability of our model to faithfully capture details in the input images and
reconstruct high-fidelity 3D head avatars. Visual examples are present in the supplementary.

2Due to the time-consuming nature of HeadNeRF, we compare our method with HeadNeRF on a subset of
3000 images from the CelebA dataset.
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Figure 3: Cross-identity reenactment on CelebA [32] and HDFT [71]. The first two rows show
cross-identity reenactment results on the CelebA dataset, while the last two rows demonstrate motion
transfer from videos in the HDFT dataset to images in the CelebA dataset.

Table 2: Comparison on the HDTF dataset [71].

Same-Identity Reenactment Cross-Identity Reenactment
Methods PSNR↑ SSIM↑ CSIM↑ AED↓ APD↓ AKD↓ LPIPS↓ L1↓ FID↓ CSIM↑ AED↓ APD↓ FID↓

ROME [29] 20.75 0.838 0.746 0.123 0.012 2.938 0.173 0.047 31.55 0.629 0.247 0.020 43.38
OTAvatar [38] 20.12 0.806 0.619 0.162 0.017 2.933 0.198 0.053 36.63 0.514 0.282 0.028 44.86
StyleHeat [65] 19.18 0.805 0.654 0.141 0.021 2.843 0.194 0.056 108.3 0.537 0.246 0.025 105.1

Ours 22.15 0.868 0.789 0.129 0.010 2.596 0.117 0.037 21.60 0.643 0.263 0.018 47.39

Table 3: Cross-identity reenactment between the
HDTF dataset [71] and the CelebA dataset [32].

Methods CSIM↑ AED↓ APD↓ FID↓
ROME [29] 0.521 0.270 0.022 76.03
StyleHeat [65] 0.461 0.270 0.038 94.28
Ours 0.551 0.274 0.017 59.48

Cross-identity reenactment. Fig. 3, and
Fig. 4 showcase the qualitative results of cross-
identity reenactment on the CelebA [32] and
HDFT [71] dataset. Compared to the base-
lines [29; 65; 38], our method faithfully re-
constructs intricate details such as hairstyles,
earrings, eye glasses etc. in the input portrait images. Moreover, our method successfully synthesizes
realistic appearance change corresponding to the target motion. For instance, our model is able to
synthesize plausible teeth when the mouth transitions from closed to open (e.g., row 3 in Fig. 3),
it also hallucinates the occluded face region when the input image is in profile view (e.g., row 2
in Fig. 3). In contrast, the mesh-based baseline [29] can neither capture photo-realistic details nor
hallucinate plausible inner mouths, while the 2D talking head synthesis baseline [65] produces
unrealistic warping artifacts when the input portrait is in the profile view (e.g. row 2 in Fig. 3). We
provide quantitative evaluations of the cross-identity reenactment results in Table 1, Table 2, and
Table 3. Our method demonstrates better fidelity and identity preservation scores, showing its strong
ability in realistic portrait synthesis. It is worth noting that HDTF [71] includes images that are
less sharp compared to the high-fidelity images our model is trained on, which may account for the
slightly lower FID score in Table 2.
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(c) ours(a) source (b) target (e) w/o ℒ!"#$%&' (f) w/o appearance branch(d) linear expression

Figure 5: Ablation studies. Details are explained in Sec. 4.5.
Table 4: Ablation studies. Blue text highlights the inferior performance of the variants. (Sec. 4.5)

3D Portrait Reconstruction Cross-Identity Reeanct
Methods L1↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ CSIM↑ AED↓ APD↓ FID↓

w/o perspective 0.061 0.239 19.53 0.712 47.84 0.370 0.243 0.015 43.33
w/o neutral constraint 0.027 0.124 25.65 0.854 13.56 0.593 0.315 0.018 22.92

linear expression 0.031 0.134 25.08 0.841 14.62 0.443 0.217 0.016 26.18
Ours 0.030 0.116 24.77 0.861 10.47 0.599 0.276 0.017 17.36

(a) target (c) ROME (d) OTAvatar (e) StyleHeat (f) Ours(b) source

Figure 4: Cross-identity reenactment on HDFT [71].

Same-identity reenactment. Ta-
ble 2 shows the quantitative results
of same-identity reenactment on
HDTF [71]. Our method generalizes
well to HDTF and achieves better
metrics compared to existing SOTA
methods [29; 38; 65]. The qualitative
results of same-identity reenactment
can be found in the supplementary.

Efficiency. Since HeadNeRF [24]
and OTAvatar [38] require latent code optimization for unseen identities, the process of recon-
structing and animating an avatar takes them 53.0s and 19.4s, respectively. Meanwhile, ROME [29]
and our method only needs an efficient forward pass of the network for unseen identities, taking 1.2s
and 0.6s respectively. Overall, our method strikes the best balance in terms of speed and quality.

4.5 Ablation Studies
We conduct experiments to validate the effectiveness of the neutral expression constraint (Sec. 3.1), the
contribution of the appearance branch (Sec. 3.2), and the design of the expression branch (Sec. 3.3).

Neutral expression constraint. In our model, we aim to wipe out the expression in the source
image by enforcing the coarse reconstruction from the canonical branch to have a neutral expression.
This ensures that the expression branch always animates a fully "neutralized" expressionless face
from the canonical branch. Without this, the expression branch fails to correctly modify the coarse
reconstruction into the target expression, as shown in Fig. 5(e) and Table 4 (i.e., worse AED score).

Appearance branch. The appearance branch is the key to reconstructing intricate facial details of
the input portrait image. Without this branch, the model struggles to capture photo-realistic details,
resulting in considerably lower reconstruction and fidelity metrics, as shown in Table 4 and Fig. 5(f).

Alternative expression branch design. Instead of using the frontal view rendering from the 3DMM
to provide target expression information to the expression branch (see Sec. 3.3), an alternative way
is to use the 3DMM expression coefficients to linearly combine a set of learnable expression bases.
However, this design performs sub-optimally as it overlooks the individual local deformation details
caused by expression changes, introducing artifacts (e.g., mouth not fully closed) shown in Fig. 5(d)
and lower FID in Table 4. We provide more results and ablations in the supplementary.

5 Conclusions
In this paper, we propose a framework for one-shot 3D human avatar reconstruction and animation
from a single-view image. Our method excels at capturing photo-realistic details in the input
portrait image, while simultaneously generalizing to unseen images without the need for test-time
optimization. Through comprehensive experiments and evaluations on validation datasets, we
demonstrate that the proposed approach achieves favorable performance against state-of-the-art
baselines on head avatar reconstruction and animation.
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