
Supplementary

Binary TTC: A Temporal Geofence for Autonomous Navigation

1. Additional Details on Architecture

1.1. Binary Estimation

Our binary segmentation architecture has three main

components: a feature extraction network (FeatExtractNet),

a segmentation network (SegNet2D), and a refinement net-

work (SegRefineNet). Our architecture blocks are adopted

from Bi3DNet [1]. We do not use any batch normalization

layers in our network.

FeatExtractNet. We use the same feature extraction net-

work as used in Bi3DNet [1]. This feature extraction mod-

ule is based on the simplified version of the feature extrac-

tion network from PSMNet [2]. We normalize each color

channel of the input images using the mean and standard

deviation of 0.5 before passing to this network. The output

is a 32-channel feature map at one third of the input image

resolution.

SegNet2D. We warp the source image features using a

task-dependent operator. To avoid cropping out the image

features during this warping operation, we zero pad the fea-

ture maps to 1.5× the feature map resolution. The refer-

ence image feature map and the warped source image fea-

ture map are concatenated and fed to the SegNet2D net-

work. SegNet2D is a 2D encoder-decoder network with

skip-connections. The encoder is comprised of five blocks,

each of which has a conv layer that downsamples the fea-

tures with a stride of 2 followed by another conv layer with

a stride of 1. We use 3 × 3 kernels. The feature sizes for

each of these five blocks are 128, 256, 512, 1024, and 1024.

The decoder is comprised of five blocks, each of which has

of a deconv layer with 4 × 4 kernels and a stride of 2, fol-

lowed by a conv layer with 3 × 3 kernels and a stride of

1. The feature sizes for each of these five blocks are 1024,

512, 256, 128, and 64. We use the LeakyReLU activation

function in the network with a slope of 0.1. A final conv

layer with 3 × 3 kernels, without any activation, is used to

generate 3 outputs: one for binary TTC, one for binary hor-

izontal optical flow, and one for binary vertical optical flow.

The final segmentation probability maps can be obtained by

cropping out the excess padding, upsampling the outputs to

the input image resolution and applying a sigmoid function.

SegRefineNet. SegRefineNet is used to refine the seg-

mentation outputs from SegNet2D network using the ref-

erence image as a guide. First, we generate a 16 channel

feature map for the reference image by applying 3 conv lay-

ers with 3× 3 kernels and a stride of 1. The first two layers

use ReLU activation and the final layer does not use any ac-

tivation. This feature extraction is done only once and can

be used for refining multiple segmentation outputs from the

SegNet2D network. An upsampled segmentation output is

concatenated with the reference image features and refined

by applying 4 conv layers. Each conv layer uses 3× 3 ker-

nels, a feature-size of 8, and LeakyReLU activation with a

slope of 0.1. The final output of this network is generated

by a final conv layer with 3 × 3 kernel and without any ac-

tivation. The final binary segmentation probability map can

then be generated by applying a sigmoid function.

1.2. Continuous Estimation

Given input images we generate the corresponding fea-

ture maps using the same FeatExtractNet as in Section 1.1.

To generate continuous estimation results we uniformly

sample the warping parameters in the desired range and use

these parameters to warp the features of the source image.

These warped source image features are concatenated with

the reference image features to form an input volume for

the SegNet2D network. SegNet2D generates an output vol-

ume which upon upsampling to the input image resolution,

applying the sigmoid operator followed by AUC operator

gives us the continuous estimation map. This continuous

map is further refined using the input image as a guide us-

ing a refinement network, ContRefineNet. This network

is based on the disparity refinement network proposed in

StereoNet [5].

2. Additional Details on Training

2.1. Binary Estimation

We pre-train our network for the binary optical flow task

on the FlyingChairs2 [3, 4] dataset for 300 epochs and train

it further on FlyingThings3D dataset [6] for 400 epochs

using a binary cross-entropy (BCE) loss with respect to a

thresholded version of the ground truth. Each batch for

training is formed by randomly sampling 16 image pairs

from the dataset and then randomly sampling shifts for the



two components of the optical flow vector for each image.

Note that our SegNet2D network has three output heads and

we leave the head corresponding to binary TTC untouched

during this training. We then fine-tune our network for es-

timating binary TTC first on the Driving [6] for 500 epochs

and then on the KITTI15 [7] datasets for 10k epochs. Since

both datasets also offer optical flow data, in this second

stage we train for both binary optical flow and binary TCC.

To do this we form a batch by randomly sampling 16 im-

age pairs from the dataset. Then for each image pair we

form two sets of warped image features: one by randomly

sampling shifts for the two components of the optical flow

vector and other by randomly sampling scales for training

binary TTC. We select the appropriate segmentation out-

put corresponding to the task and use BCE loss to train our

network simultaneously for the binary optical flow and TTC

estimation task. Throughout our training we randomly sam-

ple shifts in the range [−99, 99], and scales in the range of

[0.5, 1.3]. We use relative weights of 0.8 and 0.2 for binary

TTC and binary optical flow task respectively. For training

on the KITTI15 dataset, we split our dataset into training

(160 examples) and validation (40 examples) sets, follow-

ing the split provided by Yang and Ramanan [8].

2.2. Continuous Estimation

To train our network for the continuous estimation task,

we start with the network trained on the FlyingChairs2 and

FlyingThings3D datasets for the binary optical flow task

and fine-tune it on FlyingThings3D for continuous optical

flow for 100 epochs. Each batch for training is formed by

randomly sampling 8 image pairs from the dataset. For

each training image pair we uniformly sample horizontal

and vertical shifts and stack the maps corresponding to each

shift. We use the resulting volumes to compute continu-

ous optical flow via the AUC operation which we refine

using ContRefineNet. To fine-tune our network for contin-

uous TTC estimation, we follow a similar strategy as for

the binary segmentation training. We continue training the

network for the task of continuous optical flow and con-

tinuous TTC estimation on Driving dataset for 100 epochs,

followed by KITTI15 datasets for 600 epochs. We form

three volumes, two corresponding for optical flow and one

for TTC. Throughout the training, we use BCE loss on

the estimated binary segmentation probability maps, and a

SmoothL1 (SL1) regression loss on the output of the AUC

module. We use relative weights of 0.1 and 0.9 respectively.

While training on both TTC and OF estimation tasks, we

use relative weights of 0.8 and 0.2 respectively. For optical

flow we randomly sample a contiguous block of 16 shifts

that are divisible by 3 and in the range [−99, 99] for both the

components of the optical flow. We select the shifts to be a

factor of 3 since we perform the shifting on the feature maps

that are one third the input image resolution. The AUC op-

eration seamlessly handles the objects with shifts that lie

beyond sampled range. For TTC estimation, we work in

the inverse TTC domain and uniformly sample 24 scales in

the range [0.5, 1.3]. We perform the training on the cropped

images of size 384×576. The cropping is done after the fea-

ture warping step. Again for the KITTI15 dataset, we split

the dataset into train and validation sets and use the valida-

tion set to compare our method with competing approaches.

The network trained on the entire KITTI15 dataset is used

for scene flow estimation on KITTI15 benchmark images as

explained in the main paper.

References

[1] Abhishek Badki, Alejandro Troccoli, Kihwan Kim, Jan Kautz,

Pradeep Sen, and Orazio Gallo. Bi3D: Stereo depth estimation

via binary classifications. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[2] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo match-

ing network. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[3] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser,

Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt,

Daniel Cremers, and Thomas Brox. FlowNet: Learning op-

tical flow with convolutional networks. In IEEE International

Conference on Computer Vision (ICCV), 2015.

[4] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas Brox.

Occlusions, motion and depth boundaries with a generic net-

work for disparity, optical flow or scene flow estimation. In

European Conference on Computer Vision (ECCV), 2018.

[5] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh

Kowdle, Julien Valentin, and Shahram Izadi. StereoNet:

Guided hierarchical refinement for real-time edge-aware

depth prediction. In European Conference on Computer Vi-

sion (ECCV), 2018.

[6] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity, op-

tical flow, and scene flow estimation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

[7] Moritz Menze and Andreas Geiger. Object scene flow for au-

tonomous vehicles. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015.

[8] Gengshan Yang and Deva Ramanan. Upgrading optical flow

to 3D scene flow through optical expansion. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

2020.


