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One way to think of Instant Radiosity is the following. All the direct and indirect 
illumination is approximated with point lights, which are used for rendering. 
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Instant radiosity works as follows: 
Starting from a direct light source,  so called virtual point lights – VPLs – are 
created, which represent the indirect illumination. 
Note that a single VPL is essentially a hemispherical light with a cosine-falloff. 

To compute the indirect illumination at some surface location, we gather light from 
all VPLs . 

However, we still need to take dynamic visibility into account. For instance, this 
path is blocked. 
The easiest idea is to use shadow maps, even though that is expensive. 
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Derivation is intricate, this is the high-level idea. 
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Sample direct lighting (L_0), one-bounce indirect (L_1), two-bounce indirect (L_2), 
etc… 
Sum up contributions. 

Make sure VPLs are distributed according to average reflectance (raised to the bounce 
number). 
This ensures that there are more VPLs for the direct lighting, and then fewer for the 
first bounce, and then even fewer for the second bounce, etc. 

7 



8 



Pseudo-code for IR.  
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Let’s go back to the rendering equation and derive Instant Radiosity (IR). 
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Using the operator notation, we know that radiance towards the eye = … 
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IR assumes diffuse BRDFs and explicitly samples all possible paths. 
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First integral part of sum: all light emitted from y’ through Pixel 
Second part of sum: 
- Integrate of pixel 
- Sum over all path lengths j 
- Integrate over all paths of length j, p_j(…) is assumed to be _valid_ paths! 
- Integrate over all light source (starting) positions 
- Note that: V() is the visibility of between y_j and y’, i.e., y_j is a VPL and y’ are 
locations visible in screen-space. 
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The definition of p_j(): essentially the radiance after j reflections (assuming valid 
paths). 
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Now sample those paths. 

16 



17 



Instead of individually deciding which paths to continue, use fractional absorption 
based on the average reflectivity of the scene. 
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Classic Instant Radiosity requires a ray-tracer to follow photons through the scene.  

However, for a single bounce this can be easily done on the GPU. 
To this end, the scene is rendered as seen from the light source into an 
omnidirectional map. 
In particular,  positions, normals and direct lighting are rendered. 

Then all textures are sampled in parallel at a number of random points, which are 
importance sampled according to the brightness of the direct illumination. 
For instance, this gives you this VPL here. 

This is essentially the first step of reflective shadow mapping, what was shown before. 
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VPLs become visible for highly specular surfaces. 
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In practice, IR needs to render a large number of shadow maps, which is very costly. 
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In fact, the shadow map generation is the bottleneck: 

Assuming we use 1024 VPLs and a 100k triangle 3d-model. 

This means drawing 100 million triangles to fill the 1000 shadow maps .  

27 



Incremental Instant Radiosity allows semi-dynamic scenes with moving lights. 
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The ingredients are known but one: reuse of VPLs for moving lights. 
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The main idea is to reuse VPLs from previous frames (assuming static geometry). 



31 

The basic algorithm is simple: 
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Let’s assume for now that our main light source is a hemispherical spot-light with a 
cosine-fall off. 
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Imperfect shadow maps are based on two key observations. 
1.  indirect lighting varies smoothly in most scenes. 
2.  the individual contribution of each VPL is small. 
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Which leads to the conclusion that it is sufficient to use many low quality depth 
maps to determine visibility in indirect illumination, as errors tend to average out. 

Here you can see an example, where using low-quality depth maps does not impact 
the final rendering much. 
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The main ingredient of ISM is to allow imperfection when creating a depth map, 
which enables a much more efficient generation. 

The algorithm consists of 4 steps: 

1.  VPL generation, 
2.  Point-based depth map generation 
3.  A pull-push operation to fill holes from point rendering 
4.  Shading 

I will detail all four steps now. 
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There should be no VPLs where there is no direct light and there should be VPLs 
where there is direct light . 

To achieve this,  the scene is rendered as seen from the light source into an 
omnidirectional map. 
In particular,  positions, normals and direct lighting are rendered. 

Then all textures are sampled in parallel at a number of random points, which are 
importance sampled according to the brightness of the direct illumination. 
For instance, this gives you this VPL here. 
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Recall, that our goal is to generate as many depth maps as possible. 
Using classic depth maps for this, takes around half a second for the Sponza scene. 
We want it much faster, but as high-quality as possible. 

We will do this by simplification. 
We will draw a small number of points instead of a large number of tris, which is 
much cheaper. 
Also LOD for points is very simpler, because they don’t require connectivity. 
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At startup, we approximate the surfaces with a set of points.  
Each VPL has it’s own different set of points;   typically, we use 8k points per VPL. 

At run-time we deform this distribution according to surface deformations. 

The image to the right visualizes the point set for a single VPL, and as you can see it’s 
quite sparse. 
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Here’s a classic shadow map with triangles compared to an imperfect shadow map 
with points. There are quite a few holes. 
Using a process called pull-push, we fill holes, and then the maps are quite similar. 
Pull-push is essentially a hierarchical method to fill holes, essentially averaging 
nearby depth values. 
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Here we show the imperfect shadow of an individual VPL. 

A depth map without pull-push will have light leaks, that are fixed by pull-push. 
At least mostly, of course, there are still some errors in the depth maps.  
However, since we accumulate the result of many VPLs, and the errors are 
uncorrelated, they tend to average out. 
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We can do this pull-push step on all depth maps in parallel, as we work in texture 
space. 
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The rendering of direct and indirect lighting is separated, like in most current 
methods. 

For the direct illumination, we use standard methods. 
For the indirect, we accumulate light from all VPLs, with a visibility lookup into the 
ISMs. 
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Interleaved sampling is used for the indirect illumination,  
i.e. not every pixel is lit with every VPL, but only, say, 16 random ones out of 1024 
VPLs for every pixel (in order to save computation). 
Doing so, will result in noise, that is blurred away using a geometry-aware blur 
filter. 
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Time for some results. Our method is used to render this at 11 FPS, and it looks quite 
nice. 
You can see color bleeding as well as indirect shadows. 

But how does it compare to a reference solution? 
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This is a Monte Carlo reference rendering. 

There are some differences. But remember this is an extreme case, where indirect 
illumination dominates. 
In more “normal” scenes (without spot lights), the differences are then almost 
indistinguishable. 
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Here is a performance breakdown of the „Christo’s Sponza“ scene. 
It has 70k triangles and was rendered using 1024 VPLs, with a shadow map of 256x256 
each. 8k points are splatted into each individual depth map. 

The ISMs are generated in 44 ms. Generating classic shadow maps instead, takes around 10 to 
15 times longer for this step, because 70k triangles would be drawn per depth map. 

This results is more than 11 fps, on a Geforce 8800 GTX, around ten times faster than normal 
instant radiosity with classic shadow maps. 
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There are two main parameters that can be tweaked: the number of points and the 
shadow map size. 
We have experimented with these, and the findings are not surprising: 
More points per VPL yields higher quality, and 
 larger shadow maps are better, if there are sufficient points available. 

In general 1282 or 2562 shadow maps with 8k points yields good results. 
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Some ISM results, which range from diffuse bounces in a Cornell box to complex 
scenes, including multiple bounces, arbitrary local area lights, natural illumination to 
caustics. 
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In this example, running at 20 fps, we placed animated meshes inside the Cornell box 
with a dynamic direct light. 
Most of the light in this scene is indirect. 
Note, how the animals feet cast high-frequency shadows, whereas the animal itself 
casts a correct soft shadow. 
Also note, the subtle variations in shadow color. 
Despite the fundamental changes, in indirect lighting there is no flickering. 
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This is a more complex scene, where a deforming cloth is placed inside the Sponza 
model. 
To achieve sufficient temporal coherence, we need 1024 VPLs in this example. 
Note, how the bounced light color changes drastically when the cloth is moving. Also 
note, the indirect shadow from the columns. 

No other method can do this - all previous real-time methods were essentially 
limited to static scenes. 
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Finally, we are not limited to diffuse materials. 
Here, we have a gold ring, casting a caustic at 15 fps with full indirect visibility. 
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Imperfect reflective shadow map, generalize all this to additional bounces. 
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Why  couldn’t we use the same idea for direct lighting and approximate it with a 
number of point lights. 

In fact, that is easily possible. Let’s look at two results. 
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In this example, animals using direct natural illumination are rendered using ISMs. 
Note the shadows and the glossy highlights. 
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In a similar way, we can generate local soft shadows from complex area lights, even 
with varying color. 
Again,  here the area light is approximated with many point lights and use ISMs for 
rendering. 
Notice the glossy reflections on the floor. This is even difficult for offline rendering 
methods. 
There is no other method that can do this at this speed. 

This example runs at 15fps.  
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In summary, visibility for global illumination effects can be drastically simplified 
and a simple, practical method to exploit this on current graphics hardware was 
shown. 
Note that in the limit, i.e. with enough points, our method yields correct results. 

It can also be used for direct illumination, where it’s not quite as fast as the first 
technique, but more flexible. 

There are some limitations, ISMs could be more scalable to very large scenes (like an 
office building). 
Also, parameters are currently set by hand, an automated method for setting the 
parameters is not available. 
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