

Glossary for Course #17: Physically-Based Reflectance for Games

- Φ radiant flux: total light power (Watts)
- *B* radiant exitance (radiosity): power/area density exitant from a surface (Watts/meter²)
- *E* irradiance: power/area density incident on a surface (Watts/meter²)
- *I* radiant intensity: directional power/solid angle density (Watts/steradian)
- *L* radiance: power/projected area/solid angle density in a ray (Watts/meter²·steradian)
- ω_i incident direction (unit vector) direction to light, is actually pointing outwards
- ω_e exitant direction (unit vector) direction to eye
- $L_i(\omega_i)$ incident radiance: radiance incoming to a point on a surface from a given direction
- $L_e(\omega_e)$ exitant radiance: radiance outgoing from a point on a surface into a given direction
- N surface normal (unit vector)
- T surface tangent (unit vector)
- B surface bitangent (unit vector)
- Ω hemisphere around the surface normal
- θ_i incidence angle: elevation angle of ω_i (radians)
- φ_i azimuth angle of ω_i (radians)
- θ_e elevation angle of ω_e (radians)
- φ_e azimuth angle of ω_e (radians)
- $\cos \theta$ clamped cosine factor (is 0 where cosine is negative) (unit-less)
- $f_r(\omega_i, \omega_e)$ BRDF: ratio of differential exitant radiance and differential irradiance
- $R(\omega_i)$ directional-hemispherical reflectance: ratio of diff. radiant exitance and diff. irradiance (unit-less)
- ρ bihemispherical reflectance (albedo): ratio of radiant exitance and irradiance (unit-less)
- ω_l direction to a point / directional light (unit vector)
- θ_l elevation angle of ω_l (radians)
- $R_F(0)$ directional-hemispherical Fresnel reflectance at normal incidence (unit-less)
- $p(\omega)$ NDF: normal distribution function density of normals pointing in a particular direction
- ω_h half-angle direction (unit vector) direction halfway between light and eye
- θ_h elevation angle of ω_h (radians)
- φ_h azimuth angle of ω_h (radians)
- α_h angle between ω_i and ω_h , or between ω_e and ω_h (radians)
- α_u angle between T and ω_h (radians)
- α_v angle between **B** and ω_h (radians)

 $G(\omega_i, \omega_e)$ geometry factor: fraction of microfacets which are not masked or shadowed

- K_p geometry constant: constant dependent on microgeometry structure
- ω_{ri} reflection of incident direction about the surface normal (unit vector)
- ω_{re} reflection of exitant direction about the surface normal (unit vector)
- α_r angle between ω_{ri} and ω_e , or between ω_{re} and ω_i (radians)
- i_l "game intensity" of light (is equal to I_l / π) (Watts/steradian, but note π factor)
- d_l distance from point light to surface point (meters)
- $f_d(d_l)$ distance attenuation factor as a function of distance from light (unit-less)
- $i_l(d_l)$ "game intensity" of light after attenuation by distance (Watts/steradian, but note factors)
- ρ_d diffuse or body bihemispherical reflectance (albedo) (unit-less)

